

D

Е

CONTENTS

VQ35DE	AUTOMATIC SPEED CONTROL DEVICE (ASCD)37
SERVICE INFORMATION18	System Description37
INDEX FOR DTO	Component Description 38
INDEX FOR DTC18	,
U1000 - U101018	
P0011 - P008118	Cycloni Booonplion
P0101 - P012818	
P0130 - P015919	•
P0171 - P022320	
P0300 - P0430	
P0441 - P045621	
P0460 - P064321	· · · · · · · · · · · · · · · · · · ·
P0700 - P0745	
P0850 - P1554	
P1564 - P1615	
P1705 - P1774	
P1805 - P2A0324	Component Inspection48
PRECAUTIONS25	Component inspection46
Precaution for Supplemental Restraint System	POSITIVE CRANKCASE VENTILATION51
(SRS) "AIR BAG" and "SEAT BELT PRE-TEN-	Description51
SIONER"25	
Precaution for Procedure without Cowl Top Cover 25	
On Board Diagnosis (OBD) System of Engine and	IVIS (INFINITI VEHICLE IMMOBILIZER 515-
A/T25	TEM-NATS)53
Precaution	Description
110000001	14
PREPARATION29	ON BOARD DIAGNOSTIC (OBD) SYSTEM54
Special Service Tool29	Introduction54
Commercial Service Tool30	Two Trip Detection Logic54 Emission-Related Diagnostic Information 55
	Emission related Plagnostic information
ENGINE CONTROL SYSTEM31	
Schematic31	
Multiport Fuel Injection (MFI) System31	
Electronic Ignition (EI) System34	Basic Inspection76
Fuel Cut Control (At No Load and High Engine	Idla Speed and Ignition Timing Check
Speed)34	Procedure After Replacing ECM81
AIR CONDITIONING CUT CONTROL36	· · · · · · · · · · · · · · · · · · ·
Input/Output Signal Chart36	
System Description	,
Oysiciii Descriptiori	, vaivo diodda'i ddiddii Ldairiing

Idle Air Volume Learning	82	DTC P0031, P0032, P0051, P0052 A/F SEN-	
Fuel Pressure Check	84	SOR 1 HEATER	
TROUBLE DIAGNOSIS	00	Description	154
Trouble Diagnosis Introduction		CONSULT-III Reference Value in Data Monitor	
		Mode	
DTC Inspection Priority ChartFail-Safe Chart		On Board Diagnosis Logic	
Symptom Matrix Chart		DTC Confirmation Procedure	
Engine Control Component Parts Location		Wiring Diagram	
Vacuum Hose Drawing		Diagnosis Procedure	
Circuit Diagram		Component Inspection	
ECM Harness Connector Terminal Layout		Removal and Installation	160
ECM Terminal and Reference Value		DTC P0037, P0038, P0057, P0058 HO2S2	
CONSULT-III Function (ENGINE)		HEATER	161
Generic Scan Tool (GST) Function		Description	
CONSULT-III Reference Value in Data Monito		CONSULT-III Reference Value in Data Monitor	101
Mode		Mode	161
Major Sensor Reference Graph in Data Monito	or	On Board Diagnosis Logic	
Mode		DTC Confirmation Procedure	
	_	Wiring Diagram	
TROUBLE DIAGNOSIS - SPECIFICATION		Diagnosis Procedure	
VALUE		Component Inspection	
Description		Removal and Installation	
Testing Condition		Nomevar and metallation	100
Inspection Procedure		DTC P0075, P0081 IVT CONTROL SOLE-	
Diagnosis Procedure	133	NOID VALVE	169
TROUBLE DIAGNOSIS FOR INTERMITTE	NT	Component Description	169
		CONSULT-III Reference Value in Data Monitor	
INCIDENT		Mode	169
Description		On Board Diagnosis Logic	169
Diagnosis Procedure	140	DTC Confirmation Procedure	169
POWER SUPPLY AND GROUND CIRCUIT	Γ 141	Wiring Diagram	170
Wiring Diagram		Diagnosis Procedure	173
Diagnosis Procedure		Component Inspection	
Ground Inspection		Removal and Installation	175
		DTC D0404 MAE CENCOD	4-0
DTC U1000, U1001 CAN COMMUNICATION	N	DTC P0101 MAF SENSOR	
LINE	147	Component Description	1/6
Description	147	CONSULT-III Reference Value in Data Monitor	4
On Board Diagnosis Logic	147	Mode	
DTC Confirmation Procedure	147	On Board Diagnosis Logic	
Wiring Diagram	148	DTC Confirmation Procedure	
Diagnosis Procedure	148	Overall Function Check	
DTC 14040 CAN COMMUNICATION		Wiring Diagram	
DTC U1010 CAN COMMUNICATION		Diagnosis Procedure	
Description		Component InspectionRemoval and Installation	
On Board Diagnosis Logic		Removal and installation	184
DTC Confirmation Procedure		DTC P0102, P0103 MAF SENSOR	185
Diagnosis Procedure	149	Component Description	
DTC P0011, P0021 IVT CONTROL	150	CONSULT-III Reference Value in Data Monitor	
Description		Mode	185
CONSULT-III Reference Value in Data Monito		On Board Diagnosis Logic	
Mode		DTC Confirmation Procedure	
On Board Diagnosis Logic		Wiring Diagram	
DTC Confirmation Procedure		Diagnosis Procedure	
Diagnosis Procedure		Component Inspection	
Component Inspection		Removal and Installation	
Removal and Installation			
		DTC P0112. P0113 IAT SENSOR	192

Component Description	192	Component Description	218	
On Board Diagnosis Logic	192	CONSULT-III Reference Value in Data Monitor		/-
DTC Confirmation Procedure	192	Mode	218	
Wiring Diagram	193	On Board Diagnosis Logic	218	
Diagnosis Procedure		DTC Confirmation Procedure		E
Component Inspection		Overall Function Check		
Removal and Installation		Wiring Diagram		
		Diagnosis Procedure		
DTC P0116 ECT SENSOR	196	Removal and Installation		
Component Description	196		0	
On Board Diagnosis Logic	196	DTC P0131, P0151 A/F SENSOR 1	226	
DTC Confirmation Procedure	196	Component Description	226	Г
Diagnosis Procedure	197	CONSULT-III Reference Value in Data Monitor		-
Component Inspection	197	Mode	226	
Removal and Installation		On Board Diagnosis Logic		
		DTC Confirmation Procedure		Ь
DTC P0117, P0118 ECT SENSOR		Wiring Diagram	228	
Component Description	199	Diagnosis Procedure		
On Board Diagnosis Logic	199	Removal and Installation		F
DTC Confirmation Procedure	200	Tromovar and motaliation imministration	200	
Wiring Diagram	201	DTC P0132, P0152 A/F SENSOR 1	234	
Diagnosis Procedure	201	Component Description	234	
Component Inspection		CONSULT-III Reference Value in Data Monitor		
Removal and Installation		Mode	234	
		On Board Diagnosis Logic		
DTC P0122, P0123 TP SENSOR	204	DTC Confirmation Procedure		-
Component Description	204	Wiring Diagram		
CONSULT-III Reference Value in Data Monitor		Diagnosis Procedure		
Mode	204	Removal and Installation		
On Board Diagnosis Logic	204	Tromovar and motaliation		
DTC Confirmation Procedure	204	DTC P0133, P0153 A/F SENSOR 1	242	
Wiring Diagram	205	Component Description	242	
Diagnosis Procedure	206	CONSULT-III Reference Value in Data Monitor		
Component Inspection		Mode	242	
Removal and Installation	209	On Board Diagnosis Logic	242	
		DTC Confirmation Procedure		k
DTC P0125 ECT SENSOR		Wiring Diagram	244	
Component Description	210	Diagnosis Procedure		
On Board Diagnosis Logic	210	Removal and Installation		1
DTC Confirmation Procedure	210			
Diagnosis Procedure	211	DTC P0137, P0157 HO2S2	251	
Component Inspection	211	Component Description	251	_
Removal and Installation	212	CONSULT-III Reference Value in Data Monitor		1\
DTO DOLOT LAT OFNICE		Mode	251	
DTC P0127 IAT SENSOR		On Board Diagnosis Logic	251	
Component Description		DTC Confirmation Procedure	251	1
On Board Diagnosis Logic		Overall Function Check		
DTC Confirmation Procedure	213	Wiring Diagram	253	
Diagnosis Procedure	214	Diagnosis Procedure		
Component Inspection	214	Component Inspection		
Removal and Installation	215	Removal and Installation		
DTC P0128 THERMOSTAT FUNCTION	216			-
On Board Diagnosis Logic		DTC P0138, P0158 HO2S2		F
DTC Confirmation Procedure		Component Description	260	
		CONSULT-III Reference Value in Data Monitor		
Diagnosis Procedure		Mode		
Component Inspection		On Board Diagnosis Logic		
Removal and Installation	217	DTC Confirmation Procedure		
DTC P0130, P0150 A/F SENSOR 1	210	Overall Function Check	261	
DIO 1 0100, 1 0100 A/1 OLINOUN 1	210	Wiring Diagram	263	

Diagnosis Procedure	266	DTC P0300, P0301, P0302, P0303, P0304,	
Component Inspection		P0305, P0306 MULTIPLE CYLINDER MIS-	
Removal and Installation		FIRE, NO. 1 - 6 CYLINDER MISFIRE	318
DTO DOLOG DOLEGO HOGOS		On Board Diagnosis Logic	
DTC P0139, P0159 HO2S2		DTC Confirmation Procedure	
Component Description		Diagnosis Procedure	
CONSULT-III Reference Value in Data Monitor		-	
Mode		DTC P0327, P0328 KS	
On Board Diagnosis Logic		Component Description	
DTC Confirmation Procedure		On Board Diagnosis Logic	
Overall Function Check		DTC Confirmation Procedure	
Wiring Diagram		Wiring Diagram	
Diagnosis Procedure	276	Diagnosis Procedure	
Component Inspection		Component Inspection	328
Removal and Installation	279	Removal and Installation	329
DTC P0171, P0174 FUEL INJECTION SYS-		DTC D0225 CVD SENSOD (DOS)	222
TEM FUNCTION		DTC P0335 CKP SENSOR (POS)	
On Board Diagnosis Logic		Component Description	330
DTC Confirmation Procedure		CONSULT-III Reference Value in Data Monitor	000
Wiring Diagram		Mode	
Diagnosis Procedure		On Board Diagnosis Logic	
Diagnosis Procedure	201	DTC Confirmation Procedure	
DTC P0172, P0175 FUEL INJECTION SYS-	1	Wiring Diagram	
TEM FUNCTION		Diagnosis Procedure	
On Board Diagnosis Logic		Component Inspection	
DTC Confirmation Procedure		Removal and Installation	334
Wiring Diagram		DTC P0340, P0345 CMP SENSOR (PHASE)	335
Diagnosis Procedure		Component Description	
Diagnosis i recodure	200	CONSULT-III Reference Value in Data Monitor	555
DTC P0181 FTT SENSOR	304	Mode	335
Component Description	304	On Board Diagnosis Logic	
On Board Diagnosis Logic	304	DTC Confirmation Procedure	
DTC Confirmation Procedure		Wiring Diagram	
Wiring Diagram	305	Diagnosis Procedure	
Diagnosis Procedure		Component Inspection	
Component Inspection		Removal and Installation	
Removal and Installation		Removal and installation	342
		DTC P0420, P0430 THREE WAY CATALYS	Γ
DTC P0182, P0183 FTT SENSOR		FUNCTION	
Component Description		On Board Diagnosis Logic	
On Board Diagnosis Logic		DTC Confirmation Procedure	
DTC Confirmation Procedure	308	Overall Function Check	
Wiring Diagram	309	Diagnosis Procedure	
Diagnosis Procedure		Diagnosis i roccaire	044
Component Inspection	311	DTC P0441 EVAP CONTROL SYSTEM	347
Removal and Installation	311	System Description	347
DTO DOSCO DOSCO TO OFNICOD		On Board Diagnosis Logic	
DTC P0222, P0223 TP SENSOR		DTC Confirmation Procedure	
Component Description		Overall Function Check	
CONSULT-III Reference Value in Data Monitor		Diagnosis Procedure	
Mode		•	
On Board Diagnosis Logic		DTC P0442 EVAP CONTROL SYSTEM	
DTC Confirmation Procedure		On Board Diagnosis Logic	
Wiring Diagram		DTC Confirmation Procedure	352
Diagnosis Procedure		Diagnosis Procedure	353
Component Inspection		-	
Removal and Installation	317	DTC P0443 EVAP CANISTER PURGE VOL-	
		UME CONTROL SOLENOID VALVE	
		Description	359

CONSULT-III Reference Value in Data Monitor	Wiring Diagram389
Mode	Diagnosis Procedure390
On Board Diagnosis Logic	Component Inspection392
DTC Confirmation Procedure	
Wiring Diagram	DTC P0453 EVAP CONTROL SYSTEM
Diagnosis Procedure	PRESSURE SENSOR393
Component Inspection	Component Description393
Removal and Installation	CONSULT-III Reference Value in Data Monitor
Temoval and installation	Mode393
DTC P0444, P0445 EVAP CANISTER PURGE	On Board Diagnosis Logic393
VOLUME CONTROL SOLENOID VALVE366	DTC Confirmation Procedure393
Description	Wiring Diagram395
CONSULT-III Reference Value in Data Monitor	Diagnosis Procedure396
Mode	Component Inspection399
On Board Diagnosis Logic	
DTC Confirmation Procedure	DTC P0455 EVAP CONTROL SYSTEM 400
Wiring Diagram	On Board Diagnosis Logic400
Diagnosis Procedure	DTC Confirmation Procedure400
Component Inspection	Diagnosis Procedure401
Removal and Installation	
Nomoval and installation	DTC P0456 EVAP CONTROL SYSTEM 406
DTC P0447 EVAP CANISTER VENT CON-	On Board Diagnosis Logic406
TROL VALVE372	DTC Confirmation Procedure407
Component Description	Overall Function Check407
CONSULT-III Reference Value in Data Monitor	Diagnosis Procedure408
Mode	DT0 D0 400 EUEL 1 EVEL 0EN00D
On Board Diagnosis Logic	DTC P0460 FUEL LEVEL SENSOR413
DTC Confirmation Procedure	Component Description413
Wiring Diagram	On Board Diagnosis Logic413
Diagnosis Procedure	DTC Confirmation Procedure413
Component Inspection	Diagnosis Procedure413
Component inspection	Removal and Installation414
DTC P0448 EVAP CANISTER VENT CON-	DTC P0461 FUEL LEVEL SENSOR415
TROL VALVE378	
Component Description378	Component Description
CONSULT-III Reference Value in Data Monitor	On Board Diagnosis Logic
Mode	Overall Function Check415
On Board Diagnosis Logic	Diagnosis Procedure
DTC Confirmation Procedure	Removal and Installation416
Wiring Diagram	DTC P0462, P0463 FUEL LEVEL SENSOR
Diagnosis Procedure	CIRCUIT 417
Component Inspection	Component Description417
Component inspection	
DTC P0451 EVAP CONTROL SYSTEM	On Board Diagnosis Logic417 DTC Confirmation Procedure417
PRESSURE SENSOR384	
Component Description	Diagnosis Procedure
CONSULT-III Reference Value in Data Monitor	Removal and Installation418
Mode	DTC P0500 VSS419
On Board Diagnosis Logic	Description
DTC Confirmation Procedure	On Board Diagnosis Logic419
Diagnosis Procedure	DTC Confirmation Procedure419
Component Inspection	Overall Function Check419
Component inspection	
DTC P0452 EVAP CONTROL SYSTEM	Diagnosis Procedure420
PRESSURE SENSOR387	DTC P0506 ISC SYSTEM421
Component Description	Description
CONSULT-III Reference Value in Data Monitor	On Board Diagnosis Logic421
Mode	DTC Confirmation Procedure421
	Diagnosis Procedure421
On Board Diagnosis Logic	Diagnosis Frocedure421
TOTAL COMMINISTRATION PROCESSION 287	

DTC P0507 ISC SYSTEM	423	DTC P1217 ENGINE OVER TEMPERATURE	449
Description		Description	449
On Board Diagnosis Logic		CONSULT-III Reference Value in Data Monitor	
DTC Confirmation Procedure		Mode	450
Diagnosis Procedure		On Board Diagnosis Logic	
-		Overall Function Check	
DTC P0550 PSP SENSOR	425	Wiring Diagram	
Component Description		Diagnosis Procedure	
CONSULT-III Reference Value in Data Mor		Main 12 Causes of Overheating	4 55
Mode			
On Board Diagnosis Logic		Component Inspection	457
DTC Confirmation Procedure		DTC P1220 FUEL PUMP CONTROL MOD-	
Wiring Diagram		ULE (FPCM)	450
		•	
Diagnosis Procedure		Description	459
Component Inspection		CONSULT-III Reference Value in Data Monitor	
Removal and Installation	429	Mode	
DTC P0603 ECM POWER SUPPLY	430	On Board Diagnosis Logic	
		DTC Confirmation Procedure	
Component Description		Wiring Diagram	
On Board Diagnosis Logic		Diagnosis Procedure	462
DTC Confirmation Procedure		Component Inspection	465
Wiring Diagram			
Diagnosis Procedure	432	DTC P1225 TP SENSOR	
DTO DOCOE FOM	40.4	Component Description	
DTC P0605 ECM		On Board Diagnosis Logic	
Component Description		DTC Confirmation Procedure	466
On Board Diagnosis Logic	434	Diagnosis Procedure	466
DTC Confirmation Procedure		Removal and Installation	
Diagnosis Procedure	435		
DTO DOGGO OFNICOD DOWED GUDDI V		DTC P1226 TP SENSOR	468
DTC P0643 SENSOR POWER SUPPLY		Component Description	468
On Board Diagnosis Logic		On Board Diagnosis Logic	
DTC Confirmation Procedure		DTC Confirmation Procedure	
Wiring Diagram		Diagnosis Procedure	
Diagnosis Procedure	438	Removal and Installation	
			00
DTC P0850 PNP SWITCH		DTC P1421 COLD START CONTROL	470
Component Description		Description	470
CONSULT-III Reference Value in Data Mor	nitor	On Board Diagnosis Logic	470
Mode	441	DTC Confirmation Procedure	
On Board Diagnosis Logic	441	Diagnosis Procedure	
DTC Confirmation Procedure	441	Diagnosis i roccadio	470
Overall Function Check		DTC P1550 BATTERY CURRENT SENSOR	472
Wiring Diagram		Component Description	
Diagnosis Procedure		CONSULT-III Reference Value in Data Monitor	
Diagnosis i rocodaro		Mode	472
DTC P1148, P1168 CLOSED LOOP CO	N-		
TROL		On Board Diagnosis Logic	
On Board Diagnosis Logic		DTC Confirmation Procedure	
On Board Biagnosis Logic		Wiring Diagram	
DTC P1211 TCS CONTROL UNIT	447	Diagnosis Procedure	
Description		Component Inspection	476
On Board Diagnosis Logic		DTO DATEA DATEO DATTEDY OUDDENT	
DTC Confirmation Procedure		DTC P1551, P1552 BATTERY CURRENT	
		SENSOR	
Diagnosis Procedure	447	Component Description	477
DTC P1212 TCS COMMUNICATION LIN	VF 448	CONSULT-III Reference Value in Data Monitor	
Description		Mode	477
On Board Diagnosis Logic		On Board Diagnosis Logic	477
		DTC Confirmation Procedure	
DTC Confirmation Procedure		Wiring Diagram	
Diagnosis Procedure	448		•

Diagnosis Procedure	479	CONSULT-III Reference Value in Data Monitor		•
Component Inspection	481	Mode	515	
		On Board Diagnosis Logic	515	
DTC P1553 BATTERY CURRENT SENSOR		DTC Confirmation Procedure	515	
Component Description	482	Wiring Diagram	517	Ε
CONSULT-III Reference Value in Data Monitor		Diagnosis Procedure	518	_
Mode		Component Inspection	521	
On Board Diagnosis Logic				
DTC Confirmation Procedure		DTC P1574 ICC VEHICLE SPEED SENSOR		
Wiring Diagram		Component Description		
Diagnosis Procedure		On Board Diagnosis Logic	522	
Component Inspection	486	DTC Confirmation Procedure	522	
DTO DATE A DATTEDY OUDDENT OFNIODD		Diagnosis Procedure	522	
DTC P1554 BATTERY CURRENT SENSOR		DT0 D4554 400D V511101 5 0D55D 0511		
Component Description	487	DTC P1574 ASCD VEHICLE SPEED SEN-		
CONSULT-III Reference Value in Data Monitor		SOR		
Mode		Component Description	524	
On Board Diagnosis Logic		On Board Diagnosis Logic	524	
Overall Function Check		DTC Confirmation Procedure	524	
Wiring Diagram	489	Diagnosis Procedure	524	
Diagnosis Procedure		•		
Component Inspection		DTC P1715 INPUT SPEED SENSOR		
DTO DATOA IOO OTTEDINO OMITOU	, .	Description	526	,
DTC P1564 ICC STEERING SWITCH		CONSULT-III Reference Value in Data Monitor		
Component Description	493	Mode		
CONSULT-III Reference Value in Data Monitor		On Board Diagnosis Logic		
Mode		Diagnosis Procedure	526	
On Board Diagnosis Logic		DTO BARRE DD AVE CWITCH		
DTC Confirmation Procedure		DTC P1805 BRAKE SWITCH		
Wiring Diagram		Component Description	527	
Diagnosis Procedure		CONSULT-III Reference Value in Data Monitor		
Component Inspection	498	Mode		
DTC D4504 ACCD CTCCDING CWITCH	500	On Board Diagnosis Logic		
DTC P1564 ASCD STEERING SWITCH		DTC Confirmation Procedure		
Component Description	500	Wiring Diagram		
CONSULT-III Reference Value in Data Monitor	=00	Diagnosis Procedure		
Mode		Component Inspection	532	
On Board Diagnosis Logic		DTC P2100, P2103 THROTTLE CONTROL		
DTC Confirmation Procedure			504	
Wiring Diagram		MOTOR RELAY		
Diagnosis Procedure		Component Description	534	
Component Inspection	505	CONSULT-III Reference Value in Data Monitor	=0.4	
DTC P1568 ICC FUNCTION	Ene	Mode		
		On Board Diagnosis Logic		
On Board Diagnosis Logic		DTC Confirmation Procedure		
DTC Confirmation Procedure		Wiring Diagram		
Diagnosis Procedure	506	Diagnosis Procedure	536	
DTC P1572 ICC BRAKE SWITCH	507	DTC P2101 ELECTRIC THROTTLE CON-		
Component Description			Egg	
CONSULT-III Reference Value in Data Monitor	007	TROL FUNCTION		
Mode	507	Description		
On Board Diagnosis Logic		On Board Diagnosis Logic		
DTC Confirmation Procedure		DTC Confirmation Procedure		
		Wiring Diagram		
Wiring Diagram		Diagnosis Procedure		
Diagnosis Procedure		Component Inspection		
Component Inspection	514	Removal and Installation	543	
DTC P1572 ASCD BRAKE SWITCH	515	DTC P2118 THROTTLE CONTROL MOTOR	E11	
Component Description				
		Component Description	544	

On Board Diagnosis Logic	544	CONSULT-III Reference Value in Data Monitor	
DTC Confirmation Procedure	544	Mode	574
Wiring Diagram	545	On Board Diagnosis Logic	574
Diagnosis Procedure	546	DTC Confirmation Procedure	574
Component Inspection		Wiring Diagram	576
Removal and Installation	547	Diagnosis Procedure	579
		Removal and Installation	
DTC P2119 ELECTRIC THROTTLE CON-		ACCD DDAI/E CWITCH	500
TROL ACTUATOR		ASCD BRAKE SWITCH	
Component Description		Component Description	583
On Board Diagnosis Logic	548	CONSULT-III Reference Value in Data Monitor	500
DTC Confirmation Procedure		Mode	
Diagnosis Procedure	549	Wiring Diagram	
DTC P2122, P2123 APP SENSOR	550	Diagnosis Procedure	
Component Description		Component Inspection	588
CONSULT-III Reference Value in Data Monitor	550	ASCD INDICATOR	589
Mode	550	Component Description	
On Board Diagnosis Logic		CONSULT-III Reference Value in Data Monitor	000
DTC Confirmation Procedure		Mode	589
Wiring Diagram		Wiring Diagram	
		Diagnosis Procedure	
Diagnosis Procedure Component Inspection		Diagnosis i roccadio	550
Removal and Installation		ELECTRICAL LOAD SIGNAL	592
Removal and installation	554	Description	592
DTC P2127, P2128 APP SENSOR	555	CONSULT-III Reference Value in Data Monitor	
Component Description		Mode	592
CONSULT-III Reference Value in Data Monitor		Diagnosis Procedure	
Mode	555	•	
On Board Diagnosis Logic		FUEL INJECTOR	594
DTC Confirmation Procedure		Component Description	594
Wiring Diagram		CONSULT-III Reference Value in Data Monitor	
Diagnosis Procedure		Mode	594
Component Inspection		Wiring Diagram	595
Removal and Installation		Diagnosis Procedure	596
Nomoval and motalitation		Component Inspection	599
DTC P2135 TP SENSOR	561	Removal and Installation	599
Component Description	561	FUEL DUMP	
CONSULT-III Reference Value in Data Monitor		FUEL PUMP	
Mode	561	Description	600
On Board Diagnosis Logic	561	CONSULT-III Reference Value in Data Monitor	
DTC Confirmation Procedure		Mode	
Wiring Diagram	562	Wiring Diagram	
Diagnosis Procedure		Diagnosis Procedure	
Component Inspection		Component Inspection	
Removal and Installation		Removal and Installation	606
DTO DOLOG ADD OFNOOD		ICC BRAKE SWITCH	607
DTC P2138 APP SENSOR		Component Description	
Component Description	567	CONSULT-III Reference Value in Data Monitor	007
CONSULT-III Reference Value in Data Monitor		Mode	607
Mode		Wiring Diagram	
On Board Diagnosis Logic		Diagnosis Procedure	
DTC Confirmation Procedure		Component Inspection	
Wiring Diagram		Component inspection	013
Diagnosis Procedure		IGNITION SIGNAL	614
Component Inspection		Component Description	
Removal and Installation	573	Wiring Diagram	
DTC D2A00 D2A02 A/E SENSOD 4	E 7 4	Diagnosis Procedure	
DTC P2A00, P2A03 A/F SENSOR 1		Component Inspection	
Component Description	5/4		520

Removal and Installation625	
REFRIGERANT PRESSURE SENSOR 626	A/T647 Precaution648
Component Description626	1 16Gaution
Wiring Diagram627	
Diagnosis Procedure628	
Removal and Installation	·
SNOW MODE SWITCH631	
Description	
CONSULT-III Reference Value in Data Monitor	Multiport Fuel Injection (MFI) System
Mode	• • • • • • • • • • • • • • • • • • • •
Wiring Diagram	
Diagnosis Procedure 632	
Component Inspection634	AIR CONDITIONING CUT CONTROL658
MIL AND DATA LINK CONNECTOR636	
Wiring Diagram636	1 1 5
SERVICE DATA AND SPECIFICATIONS	AUTOMATIC SPEED CONTROL DEVICE
(SDS)	
Fuel Pressure	•
Idle Speed and Ignition Timing	
Calculated Load Value	
Mass Air Flow Sensor	
Intake Air Temperature Sensor	
Engine Coolant Temperature Sensor	
Fuel Tank Temperature Sensor	
Crankshaft Position Sensor (POS)639	Component Inspection 664
Camshaft Position Sensor (PHASE)639	Pomoval and Installation 666
A/F Sensor 1 Heater639	How to Detect Fuel Vanor Leakage 666
Heated Oxygen Sensor 2 Heater639	· -
Throttle Control Motor	ON BOARD REI GEEING VAI OR REGOV
Fuel Injector639	
Fuel Pump639	System Description668
VK45DE	Diagnosis Procedure668
SERVICE INFORMATION640	Component Inspection670
SERVICE INFORMATION640	POSITIVE CRANKCASE VENTILATION 673
INDEX FOR DTC640	Description673
U1000 - U1010640	Component Inspection673
P0011 - P0081640)
P0101 - P0128640	IVIS (INFINITI VEHICLE IMMOBILIZER SYS-
P0130 - P0159641	TEM-NATS)675
P0171 - P0223641	
P0300 - P0308642	<u>'</u>
P0327 - P0430642	
P0441 - P0456643	
P0460 - P0643643	
P0700 - P0745644	Emission-Related Diagnostic Information677
P0850 - P1421644	
P1550 - P1574645	
P1610 - P1774645	
P1800 - P2A03646	BASIC SERVICE PROCEDURE702
	Basic Inspection702
PRECAUTIONS647	, ,
Precaution for Supplemental Restraint System	Procedure After Replacing ECM706
(SRS) "AIR BAG" and "SEAT BELT PRE-TEN-	VIN Registration706
SIONER"647	
Precaution for Procedure without Cowl Top Cover. 647	Throttle Valve Closed Position Learning706

Idle Air Volume Learning	707	DTC P0031, P0032, P0051, P0052 A/F SEN-	
Fuel Pressure Check	708	SOR 1 HEATER	
TROUBLE DIAGNOSIS	740	Description	785
		CONSULT-III Reference Value in Data Monitor	
Trouble Diagnosis Introduction		Mode	
DTC Inspection Priority ChartFail-Safe Chart		On Board Diagnosis Logic	
		DTC Confirmation Procedure	785
Symptom Matrix Chart		Wiring Diagram	786
Engine Control Component Parts Location		Diagnosis Procedure	789
Vacuum Hose Drawing		Component Inspection	791
Circuit Diagram		Removal and Installation	791
ECM Harness Connector Terminal Layout ECM Terminal and Reference Value		DTC D0027 D0020 D0057 D0050 H0050	
CONSULT-III Function		DTC P0037, P0038, P0057, P0058 HO2S2	
Generic Scan Tool (GST) Function		HEATER	
CONSULT-III Reference Value in Data Monit		Description	792
Mode		CONSULT-III Reference Value in Data Monitor	
Wode	731	Mode	
TROUBLE DIAGNOSIS - SPECIFICATION	V	On Board Diagnosis Logic	
VALUE	755	DTC Confirmation Procedure	
Description		Wiring Diagram	
Testing Condition		Diagnosis Procedure	
Inspection Procedure		Component Inspection	
Diagnosis Procedure		Removal and Installation	798
		DTC P0075, P0081 IVT CONTROL SOLE-	
TROUBLE DIAGNOSIS FOR INTERMITTE		NOID VALVE	799
INCIDENT		Component Description	
Description		CONSULT-III Reference Value in Data Monitor	
Diagnosis Procedure	763	Mode	799
POWER SUPPLY AND GROUND CIRCUI	T 704	On Board Diagnosis Logic	
		DTC Confirmation Procedure	
Wiring Diagram		Wiring Diagram	
Diagnosis Procedure		Diagnosis Procedure	
Ground Inspection	769	Component Inspection	
DTC U1000, U1001 CAN COMMUNICATION	ON	Removal and Installation	
LINE			
Description		DTC P0101 MAF SENSOR	
On Board Diagnosis Logic		Component Description	806
DTC Confirmation Procedure		CONSULT-III Reference Value in Data Monitor	
Wiring Diagram		Mode	
Diagnosis Procedure		On Board Diagnosis Logic	
		DTC Confirmation Procedure	
DTC U1010 CAN COMMUNICATION	772	Overall Function Check	
Description		Wiring Diagram	
On Board Diagnosis Logic	772	Diagnosis Procedure	
DTC Confirmation Procedure	772	Component Inspection	
Diagnosis Procedure	772	Removal and Installation	813
DTC P0011, P0021 IVT CONTROL	772	DTC P0102, P0103 MAF SENSOR	814
Description		Component Description	
CONSULT-III Reference Value in Data Monit		CONSULT-III Reference Value in Data Monitor	
Mode		Mode	814
On Board Diagnosis Logic		On Board Diagnosis Logic	
DTC Confirmation Procedure		DTC Confirmation Procedure	
Wiring Diagram		Wiring Diagram	
Diagnosis Procedure		Diagnosis Procedure	
Component Inspection		Component Inspection	
Removal and Installation		Removal and Installation	
. toora: and motalidion minimum			
		DTC P0112. P0113 IAT SENSOR	821

Component Description	821	Component Description	848	
On Board Diagnosis Logic	821	CONSULT-III Reference Value in Data Monitor		1
DTC Confirmation Procedure	821	Mode	848	
Wiring Diagram	822	On Board Diagnosis Logic	848	
Diagnosis Procedure	822	DTC Confirmation Procedure		ΕŒ
Component Inspection		Overall Function Check	849	_`
Removal and Installation		Wiring Diagram	850	
		Diagnosis Procedure	853	
DTC P0116 ECT SENSOR		Removal and Installation	855	
Component Description		DT0 D0/0/ D0/5/ A/T 05/100D /		
On Board Diagnosis Logic		DTC P0131, P0151 A/F SENSOR 1		
DTC Confirmation Procedure		Component Description	856	
Diagnosis Procedure		CONSULT-III Reference Value in Data Monitor		
Component Inspection		Mode		
Removal and Installation	827	On Board Diagnosis Logic		Е
DTC P0117, P0118 ECT SENSOR	020	DTC Confirmation Procedure		-
·		Wiring Diagram		
Component Description		Diagnosis Procedure		
On Board Diagnosis Logic		Removal and Installation	863	ŀ
DTC Confirmation Procedure		DTC P0132, P0152 A/F SENSOR 1	064	
Wiring Diagram				
Diagnosis Procedure		Component Description CONSULT-III Reference Value in Data Monitor	864	
Component InspectionRemoval and Installation		Mode	064	
Removal and installation	032			
DTC P0122, P0123 TP SENSOR	833	On Board Diagnosis Logic DTC Confirmation Procedure		-
Component Description				
CONSULT-III Reference Value in Data Monitor		Wiring Diagram		
Mode	. 833	Diagnosis Procedure Removal and Installation		
On Board Diagnosis Logic		Removal and installation	0/ 1	
DTC Confirmation Procedure		DTC P0133, P0153 A/F SENSOR 1	872	
Wiring Diagram		Component Description		
Diagnosis Procedure		CONSULT-III Reference Value in Data Monitor		
Component Inspection		Mode	872	
Removal and Installation		On Board Diagnosis Logic		
		DTC Confirmation Procedure		k
DTC P0125 ECT SENSOR	839	Wiring Diagram		
Component Description		Diagnosis Procedure		
On Board Diagnosis Logic		Removal and Installation		
DTC Confirmation Procedure				
Diagnosis Procedure		DTC P0137, P0157 HO2S2		
Component Inspection		Component Description	881	
Removal and Installation	841	CONSULT-III Reference Value in Data Monitor		Ν
DTC P0127 IAT SENSOR	0.40	Mode		
		On Board Diagnosis Logic		
Component Description		DTC Confirmation Procedure		1
On Board Diagnosis Logic		Overall Function Check		
DTC Confirmation Procedure		Wiring Diagram		
Diagnosis Procedure		Diagnosis Procedure	886	
Component Inspection		Component Inspection		
Removal and Installation	844	Removal and Installation	889	
DTC P0128 THERMOSTAT FUNCTION		DTC P0138, P0158 HO2S2	890	F
On Board Diagnosis Logic		Component Description		
DTC Confirmation Procedure		CONSULT-III Reference Value in Data Monitor		
Diagnosis Procedure		Mode	890	
Component Inspection		On Board Diagnosis Logic		
Removal and Installation	847	DTC Confirmation Procedure		
DTC D0130 D0150 A/E SENSOD 4	0.40	Overall Function Check	891	
DTC P0130, P0150 A/F SENSOR 1	048	Wiring Diagram	803	

Diagnosis Procedure896	DTC P0300 - P0308 MULTIPLE CYLINDER	
Component Inspection900	MISFIRE, NO. 1 - 8 CYLINDER MISFIRE	947
Removal and Installation901	On Board Diagnosis Logic	
DTO D0400 D0450 H0000	DTC Confirmation Procedure	
DTC P0139, P0159 HO2S2902	Diagnosis Procedure	948
Component Description902		
CONSULT-III Reference Value in Data Monitor	DTC P0327, P0328, P0332, P0333 KS	
Mode902	Component Description	
On Board Diagnosis Logic902	On Board Diagnosis Logic	
DTC Confirmation Procedure902	DTC Confirmation Procedure	953
Overall Function Check903	Wiring Diagram	
Wiring Diagram904	Diagnosis Procedure	
Diagnosis Procedure907	Component Inspection	
Component Inspection909	Removal and Installation	957
Removal and Installation910	DTO DOSSE OVER CENTOR (DOC)	
DTC P0171, P0174 FUEL INJECTION SYS-	DTC P0335 CKP SENSOR (POS)	
	Component Description	958
TEM FUNCTION911	CONSULT-III Reference Value in Data Monitor	
On Board Diagnosis Logic911	Mode	
DTC Confirmation Procedure911	On Board Diagnosis Logic	
Wiring Diagram915	DTC Confirmation Procedure	
Diagnosis Procedure918	Wiring Diagram	
DTC P0172, P0175 FUEL INJECTION SYS-	Diagnosis Procedure	
TEM FUNCTION922	Component Inspection	
	Removal and Installation	962
On Board Diagnosis Logic922 DTC Confirmation Procedure922	DTC D0340 CAMSHAET DOSITION (CMD)	
	DTC P0340 CAMSHAFT POSITION (CMP)	
Wiring Diagram	SENSOR (PHASE)	
Diagnosis Procedure929	Component Description	
DTC P0181 FTT SENSOR933	On Board Diagnosis Logic	
Component Description933	DTC Confirmation Procedure	
On Board Diagnosis Logic933	Wiring Diagram	
DTC Confirmation Procedure933	Diagnosis Procedure	
Wiring Diagram934	Component Inspection	
Diagnosis Procedure934	Removal and Installation	968
Component Inspection936	DTC P0420, P0430 THREE WAY CATALYST	г
Removal and Installation936	FUNCTION	
Nomoval and motaliation		
DTC P0182, P0183 FTT SENSOR 937	On Board Diagnosis Logic DTC Confirmation Procedure	
Component Description937	Overall Function Check	
On Board Diagnosis Logic937		
DTC Confirmation Procedure937	Diagnosis Procedure	970
Wiring Diagram938	DTC P0441 EVAP CONTROL SYSTEM	973
Diagnosis Procedure938	System Description	
Component Inspection940	On Board Diagnosis Logic	
Removal and Installation940	DTC Confirmation Procedure	
	Overall Function Check	
DTC P0222, P0223 TP SENSOR941	Diagnosis Procedure	
Component Description941	Diagnosis i rosodaro	07 1
CONSULT-III Reference Value in Data Monitor	DTC P0442 EVAP CONTROL SYSTEM	978
Mode941	On Board Diagnosis Logic	978
On Board Diagnosis Logic941	DTC Confirmation Procedure	
DTC Confirmation Procedure941	Diagnosis Procedure	
Wiring Diagram942	-	-
Diagnosis Procedure943	DTC P0443 EVAP CANISTER PURGE VOL-	
Component Inspection945	UME CONTROL SOLENOID VALVE	985
Removal and Installation946	Description	985
	CONSULT-III Reference Value in Data Monitor	
	Mode	085

On Board Diagnosis Logic986	Component Inspection1017
DTC Confirmation Procedure986	DTC DOAES EVAD CONTROL EVETEM
Wiring Diagram987	DTC P0453 EVAP CONTROL SYSTEM
Diagnosis Procedure	PRESSURE SENSOR1018
Component Inspection991	Component Description
Removal and Installation991	CONSULT-III Reference Value in Data Monitor
DTC DOAAA DOAAE EVAD CANIETED DUDGE	Mode
DTC P0444, P0445 EVAP CANISTER PURGE	On Board Diagnosis Logic1018
VOLUME CONTROL SOLENOID VALVE992	DTC Confirmation Procedure1018
Description	Wiring Diagram1020
CONSULT-III Reference Value in Data Monitor	Diagnosis Procedure1021
Mode	Component Inspection1024
On Board Diagnosis Logic993	DTC P0455 EVAP CONTROL SYSTEM1025
DTC Confirmation Procedure	On Board Diagnosis Logic1025
Wiring Diagram994	DTC Confirmation Procedure
Diagnosis Procedure	Diagnosis Procedure1026
Component Inspection	Diagnosis i rocedure1020
Removal and Installation997	DTC P0456 EVAP CONTROL SYSTEM1031
DTC P0447 EVAP CANISTER VENT CON-	On Board Diagnosis Logic1031
TROL VALVE998	DTC Confirmation Procedure1032
Component Description	Overall Function Check1032
CONSULT-III Reference Value in Data Monitor	Diagnosis Procedure1033
Mode	
	DTC P0460 FUEL LEVEL SENSOR1038
On Board Diagnosis Logic	Component Description1038
	On Board Diagnosis Logic1038
Wiring Diagram	DTC Confirmation Procedure1038
Diagnosis Procedure	Diagnosis Procedure1038
Component Inspection1002	Removal and Installation1039
DTC P0448 EVAP CANISTER VENT CON-	DTC P0461 FUEL LEVEL SENSOR1040
TROL VALVE1003	Component Description1040
Component Description1003	
CONSULT-III Reference Value in Data Monitor	On Board Diagnosis Logic1040 Overall Function Check1040
Mode1003	Diagnosis Procedure1041
On Board Diagnosis Logic1003	Removal and Installation1041
DTC Confirmation Procedure1003	Removal and installation1041
Wiring Diagram1005	DTC P0462, P0463 FUEL LEVEL SENSOR
Diagnosis Procedure1006	CIRCUIT1042
Component Inspection1007	Component Description1042
·	On Board Diagnosis Logic1042
DTC P0451 EVAP CONTROL SYSTEM	DTC Confirmation Procedure1042
PRESSURE SENSOR1009	Diagnosis Procedure1042
Component Description1009	Removal and Installation1043
CONSULT-III Reference Value in Data Monitor	Nomoval and installation
Mode1009	DTC P0500 VSS1044
On Board Diagnosis Logic1009	Description1044
DTC Confirmation Procedure1009	On Board Diagnosis Logic1044
Diagnosis Procedure1010	DTC Confirmation Procedure1044
Component Inspection1010	Overall Function Check1045
·	Diagnosis Procedure1045
DTC P0452 EVAP CONTROL SYSTEM	•
PRESSURE SENSOR1012	DTC P0506 ISC SYSTEM1046
Component Description1012	Description1046
CONSULT-III Reference Value in Data Monitor	On Board Diagnosis Logic1046
Mode1012	DTC Confirmation Procedure1046
On Board Diagnosis Logic1012	Diagnosis Procedure1046
DTC Confirmation Procedure1012	
Wiring Diagram1014	DTC P0507 ISC SYSTEM1048
Diagnosis Procedure1015	Description1048

On Board Diagnosis Logic		Description	1080
DTC Confirmation Procedure	1048	On Board Diagnosis Logic	1080
Diagnosis Procedure	1048	DTC Confirmation Procedure	1080
DTO DOLLO DOD OLIVOOD		Diagnosis Procedure	1080
DTC P0550 PSP SENSOR		DTC P1212 TCS COMMUNICATION LINE	4004
CONSULT III Deference Value in Date Maritan			
CONSULT-III Reference Value in Data Monitor		Description	
Mode		On Board Diagnosis Logic	
On Board Diagnosis Logic		DTC Confirmation Procedure	
DTC Confirmation Procedure		Diagnosis Procedure	1081
Wiring Diagram		DTC P1217 ENGINE OVER TEMPERATURE	Ξ1082
Diagnosis Procedure		Description	
Component Inspection Removal and Installation		CONSULT-III Reference Value in Data Monitor	
Removal and installation	1054	Mode	1083
DTC P0603 ECM POWER SUPPLY	1055	On Board Diagnosis Logic	
Component Description		Overall Function Check	
On Board Diagnosis Logic		Wiring Diagram	
DTC Confirmation Procedure		Diagnosis Procedure	
Wiring Diagram		Main 13 Causes of Overheating	
Diagnosis Procedure		Component Inspection	
-			
DTC P0605 ECM		DTC P1220 FUEL PUMP CONTROL MOD-	
Component Description		ULE (FPCM)	1092
On Board Diagnosis Logic	1059	Description	1092
DTC Confirmation Procedure	1059	CONSULT-III Reference Value in Data Monitor	
Diagnosis Procedure	1060	Mode	1092
DTC D0C42 CENCOD DOWED CURRLY	4004	On Board Diagnosis Logic	1092
DTC P0643 SENSOR POWER SUPPLY		DTC Confirmation Procedure	1092
On Board Diagnosis Logic		Wiring Diagram	1094
DTC Confirmation Procedure		Diagnosis Procedure	1095
Wiring Diagram		Component Inspection	1098
Diagnosis Procedure	1063	DTO DAGGE TO OFNICOD	
DTC P0850 PNP SWITCH	1066	DTC P1225 TP SENSOR	
Component Description		Component Description	
CONSULT-III Reference Value in Data Monitor		On Board Diagnosis Logic	
Mode		DTC Confirmation Procedure	
On Board Diagnosis Logic	1066	Diagnosis Procedure	
DTC Confirmation Procedure		Removal and Installation	1100
Overall Function Check		DTC P1226 TP SENSOR	_1101
Wiring Diagram		Component Description	
Diagnosis Procedure		On Board Diagnosis Logic	
		DTC Confirmation Procedure	
DTC P1140, P1145 IVT CONTROL POSITIO		Diagnosis Procedure	
SENSOR	1071	Removal and Installation	
Component Description	1071		
CONSULT-III Reference Value in Data Monitor		DTC P1421 COLD START CONTROL	1103
Mode	1071	Description	1103
On Board Diagnosis Logic	1071	On Board Diagnosis Logic	
DTC Confirmation Procedure	1071	DTC Confirmation Procedure	1103
Wiring Diagram		Diagnosis Procedure	1103
Diagnosis Procedure	1075	DTO D4550 DATTEDY CURRENT CENCOR	
Component Inspection		DTC P1550 BATTERY CURRENT SENSOR	
Removal and Installation	1078	Component Description	1105
DTC D4440 D4460 CLOSED LOOD CON		CONSULT-III Reference Value in Data Monitor	440-
DTC P1148, P1168 CLOSED LOOP CON-	4	Mode	
TROL		On Board Diagnosis Logic	
On Board Diagnosis Logic	1079	DTC Confirmation Procedure	
DTC P1211 TCS CONTROL UNIT	1080	Wiring Diagram	1106

Diagnosis Procedure1107	Component Description1139	
Component Inspection1109	CONSULT-III Reference Value in Data Monitor	/
DT0 D4554 D4550 D4TTEDY 011DDENT	Mode1139	
DTC P1551, P1552 BATTERY CURRENT	On Board Diagnosis Logic1139	
SENSOR1110	DTC Confirmation Procedure1139	ΕŒ
Component Description1110	Wiring Diagram1141	
CONSULT-III Reference Value in Data Monitor	Diagnosis Procedure1142	_
Mode1110	Component Inspection1146	
On Board Diagnosis Logic1110		(
DTC Confirmation Procedure1110	DTC P1572 ASCD BRAKE SWITCH1147	
Wiring Diagram1111	Component Description1147	
Diagnosis Procedure1112	CONSULT-III Reference Value in Data Monitor	
Component Inspection1114	Mode1147	
DTO DATES DATTEDY OURDENT SENSOR	On Board Diagnosis Logic1147	
DTC P1553 BATTERY CURRENT SENSOR 1115	DTC Confirmation Procedure1147	Е
Component Description1115	Wiring Diagram1149	
CONSULT-III Reference Value in Data Monitor	Diagnosis Procedure1150	
Mode1115	Component Inspection1153	
On Board Diagnosis Logic1115	DTO 04574 IOO VELIIOI E ODEED OENOOD	F
DTC Confirmation Procedure1115	DTC P1574 ICC VEHICLE SPEED SENSOR 1154	
Wiring Diagram1116	Component Description1154	
Diagnosis Procedure1117	On Board Diagnosis Logic1154	(
Component Inspection1119	DTC Confirmation Procedure1154	
DTO DATE A DATTEDY OURDENT OFNOOD	Diagnosis Procedure1154	
DTC P1554 BATTERY CURRENT SENSOR 1120	DTC D4574 ACCD VEHICLE CDEED CEN	
Component Description1120	DTC P1574 ASCD VEHICLE SPEED SEN-	Г
CONSULT-III Reference Value in Data Monitor	SOR1156	
Mode1120	Component Description1156	
On Board Diagnosis Logic1120	On Board Diagnosis Logic1156	
Overall Function Check1120	DTC Confirmation Procedure1156	
Wiring Diagram1122	Diagnosis Procedure1156	
Diagnosis Procedure1123	DTC D474E INDUT CDEED CENCOD	
Component Inspection1125	DTC P1715 INPUT SPEED SENSOR1158	
DTC D4EC4 ICC CTEEDING CWITCH	Description	
DTC P1564 ICC STEERING SWITCH1126	CONSULT-III Reference Value in Data Monitor	
Component Description1126	Mode1158	k
CONSULT-III Reference Value in Data Monitor	On Board Diagnosis Logic1158	
Mode1126	Diagnosis Procedure1158	
On Board Diagnosis Logic1126	DTC P1800 VIAS CONTROL SOLENOID	L
DTC Confirmation Procedure1127	VALVE1159	
Wiring Diagram1128	Component Description	
Diagnosis Procedure1129	CONSULT-III Reference Value in Data Monitor	Λ
Component Inspection1131		1 1
DTC P1564 ASCD STEERING SWITCH1132	Mode	
	On Board Diagnosis Logic	
CONSULT III Reference Value in Data Maniter	DTC Confirmation Procedure	N
CONSULT-III Reference Value in Data Monitor	Wiring Diagram1160	
Mode	Diagnosis Procedure1161	
On Board Diagnosis Logic1132	Component Inspection1162	
DTC Confirmation Procedure1132	Removal and Installation1162	
Wiring Diagram	DTC P1805 BRAKE SWITCH1164	
Diagnosis Procedure1135		
Component Inspection1137	CONSULT III Peterana Value in Data Manitor	ŀ
DTC P1568 ICC FUNCTION1138	CONSULT-III Reference Value in Data Monitor	
	Mode	
On Board Diagnosis Logic	On Board Diagnosis Logic	
DTC Confirmation Procedure1138	DTC Confirmation Procedure1164	
Diagnosis Procedure1138	Wiring Diagram1165	
DTC P1572 ICC BRAKE SWITCH1139	Diagnosis Procedure1166	
DIO I 1312 IOO DIVANE SWITCH1139	Component Inspection1169	

DTC P2100, P2103 THROTTLE CONTROL	CONSULT-III Reference Value in Data Monitor	
MOTOR RELAY1171	Mode11	199
Component Description1171	On Board Diagnosis Logic11	199
CONSULT-III Reference Value in Data Monitor	DTC Confirmation Procedure11	
Mode1171	Wiring Diagram12	
On Board Diagnosis Logic1171	Diagnosis Procedure12	
DTC Confirmation Procedure1171	Component Inspection12	
Wiring Diagram1172	Removal and Installation12	204
Diagnosis Procedure1173	DTC P2138 APP SENSOR12	205
DTC P2101 ELECTRIC THROTTLE CON-	Component Description	
TROL FUNCTION1175	CONSULT-III Reference Value in Data Monitor	_00
Description1175	Mode12	205
On Board Diagnosis Logic1175	On Board Diagnosis Logic12	
DTC Confirmation Procedure1175	DTC Confirmation Procedure12	
Wiring Diagram1176	Wiring Diagram12	
Diagnosis Procedure1177	Diagnosis Procedure12	
Component Inspection1180	Component Inspection12	
Removal and Installation1180	Removal and Installation12	
	DTC P2A00, P2A03 A/F SENSOR 112	242
DTC P2118 THROTTLE CONTROL MOTOR 1181	Component Description	
Component Description1181	CONSULT-III Reference Value in Data Monitor	<u> </u>
On Board Diagnosis Logic1181	Mode	212
DTC Confirmation Procedure1181	On Board Diagnosis Logic12	
Wiring Diagram1182	DTC Confirmation Procedure	
Diagnosis Procedure1183	Wiring Diagram12	
Component Inspection	Diagnosis Procedure	
Removal and Installation1184	Removal and Installation	
DTC P2119 ELECTRIC THROTTLE CON-		
TROL ACTUATOR1186	ASCD BRAKE SWITCH12	
Component Description1186	Component Description12	222
On Board Diagnosis Logic1186	CONSULT-III Reference Value in Data Monitor	
DTC Confirmation Procedure1186	Mode12	
Diagnosis Procedure1187	Wiring Diagram12	
	Diagnosis Procedure12	
DTC P2122, P2123 APP SENSOR1188	Component Inspection12	225
Component Description	ASCD INDICATOR12	227
CONSULT-III Reference Value in Data Monitor	Component Description	
Mode	CONSULT-III Reference Value in Data Monitor	
On Board Diagnosis Logic	Mode	227
DTC Confirmation Procedure	Wiring Diagram12	
Wiring Diagram	Diagnosis Procedure12	
Diagnosis Procedure	•	
Component Inspection	ELECTRICAL LOAD SIGNAL12	230
Removal and installation192	Description12	230
DTC P2127, P2128 APP SENSOR1193	CONSULT-III Reference Value in Data Monitor	
Component Description1193	Mode	
CONSULT-III Reference Value in Data Monitor	Diagnosis Procedure12	230
Mode1193	FUEL INJECTOR12	232
On Board Diagnosis Logic1193	Component Description	
DTC Confirmation Procedure1193	CONSULT-III Reference Value in Data Monitor	_02
Wiring Diagram1194	Mode	232
Diagnosis Procedure1195	Wiring Diagram12	
Component Inspection1198	Diagnosis Procedure	
Removal and Installation1198	Component Inspection	
DTC P2135 TP SENSOR1199	Removal and Installation	
Component Description		
Component Description1199		

FUEL PUMP	1237
Description	1237
CONSULT-III Reference Value in Data Monitor	
Mode	
Wiring Diagram	
Diagnosis Procedure	
Component Inspection	
Removal and Installation	1242
ICC BRAKE SWITCH	1243
Component Description	
CONSULT-III Reference Value in Data Monitor	
Mode	1243
Wiring Diagram	
Diagnosis Procedure	
Component Inspection	
IGNITION SIGNAL	12/12
Component Description	
Wiring Diagram	
Diagnosis Procedure	
	1254
Component Inspection	1257
Component InspectionRemoval and Installation	1257 1258
Component Inspection	1257 1258 1259
Component Inspection Removal and Installation REFRIGERANT PRESSURE SENSOR Component Description	1257 1258 1259 1259
Component Inspection Removal and Installation REFRIGERANT PRESSURE SENSOR Component Description Wiring Diagram	1257 1258 1259 1260
Component Inspection Removal and Installation REFRIGERANT PRESSURE SENSOR Component Description Wiring Diagram Diagnosis Procedure	1257 1258 1259 1259 1260 1261
Component Inspection Removal and Installation REFRIGERANT PRESSURE SENSOR Component Description Wiring Diagram	1257 1258 1259 1259 1260 1261
Component Inspection Removal and Installation REFRIGERANT PRESSURE SENSOR Component Description Wiring Diagram Diagnosis Procedure	1257 1258 1259 1259 1260 1261 1263
Component Inspection Removal and Installation REFRIGERANT PRESSURE SENSOR Component Description Wiring Diagram Diagnosis Procedure Removal and Installation SNOW MODE SWITCH Description	1257 1258 1259 1260 1261 1263
Component Inspection Removal and Installation REFRIGERANT PRESSURE SENSOR Component Description Wiring Diagram Diagnosis Procedure Removal and Installation SNOW MODE SWITCH	1257 1258 1259 1260 1261 1263
Component Inspection Removal and Installation REFRIGERANT PRESSURE SENSOR Component Description Wiring Diagram Diagnosis Procedure Removal and Installation SNOW MODE SWITCH Description	1257 1258 1259 1269 1261 1263 1264 1264

Wiring Diagram	
Diagnosis Procedure	
Component Inspection	1267
VIAS	1269
Description	
CONSULT-III Reference Value in Data N	
Mode	
Wiring Diagram	
Diagnosis Procedure	
Component Inspection	
Removal and Installation	1275
MIL AND DATA LINK CONNECTOR	4070
	_
Wiring Diagram	12/6
SERVICE DATA AND SPECIFICATIO	NS
(000)	
(รับรั)	1278
(SDS) Fuel Pressure	1278
Fuel Pressure	1278
	1278 1278
Fuel PressureIdle Speed and Ignition Timing	1278 1278 1278
Fuel Pressure Idle Speed and Ignition Timing Calculated Load Value Mass Air Flow Sensor	1278 1278 1278 1278
Fuel Pressure Idle Speed and Ignition Timing Calculated Load Value	1278 1278 1278 1278 1278
Fuel Pressure Idle Speed and Ignition Timing Calculated Load Value Mass Air Flow Sensor Intake Air Temperature Sensor	
Fuel Pressure	
Fuel Pressure Idle Speed and Ignition Timing Calculated Load Value Mass Air Flow Sensor Intake Air Temperature Sensor Engine Coolant Temperature Sensor Fuel Tank Temperature Sensor	
Fuel Pressure Idle Speed and Ignition Timing Calculated Load Value Mass Air Flow Sensor Intake Air Temperature Sensor Engine Coolant Temperature Sensor Fuel Tank Temperature Sensor (POS)	
Fuel Pressure	
Fuel Pressure	
Fuel Pressure	
Fuel Pressure Idle Speed and Ignition Timing Calculated Load Value Mass Air Flow Sensor Intake Air Temperature Sensor Engine Coolant Temperature Sensor Fuel Tank Temperature Sensor (POS) Crankshaft Position Sensor (PHASE) A/F Sensor 1 Heater Heated Oxygen Sensor 2 Heater Throttle Control Motor	

Α

EC

D

Е

F

G

Н

J

Κ

L

M

Ν

0

Ρ

2008 M35/M45

SERVICE INFORMATION

INDEX FOR DTC

U1000 - U1010

NOTE:

- If DTC U1000 or U1001 is displayed with other DTC, first perform the trouble diagnosis for DTC U1000, U1001. Refer to <u>EC-147</u>.
- If DTC U1010 is displayed with other DTC, first perform the trouble diagnosis for DTC U1010. Refer to EC-149.

DT	C*1	Items	
CONSULT-III GST* ²	ECM* ³	(CONSULT-III screen terms)	Reference page
U1000	1000*4	CAN COMM CIRCUIT	EC-147
U1001	1001* ⁴	CAN COMM CIRCUIT	EC-147
U1010	1010	CONTROL UNIT(CAN)	EC-149

^{*1: 1}st trip DTC No. is the same as DTC No.

P0011 - P0081

NOTE:

- If DTC U1000 or U1001 is displayed with other DTC, first perform the trouble diagnosis for DTC U1000, U1001. Refer to <u>EC-147</u>.
- If DTC U1010 is displayed with other DTC, first perform the trouble diagnosis for DTC U1010. Refer to EC-149.

DT	C* ¹	Items	
CONSULT-III GST* ²	ECM* ³	(CONSULT-III screen terms)	Reference page
P0011	0011	INT/V TIM CONT-B1	EC-150
P0021	0021	INT/V TIM CONT-B2	EC-150
P0031	0031	A/F SEN1 HTR (B1)	EC-154
P0032	0032	A/F SEN1 HTR (B1)	EC-154
P0037	0037	HO2S2 HTR (B1)	EC-161
P0038	0038	HO2S2 HTR (B1)	EC-161
P0051	0051	A/F SEN1 HTR (B2)	EC-154
P0052	0052	A/F SEN1 HTR (B2)	EC-154
P0057	0057	HO2S2 HTR (B2)	EC-161
P0058	0058	HO2S2 HTR (B2)	EC-161
P0075	0075	INT/V TIM V/CIR-B1	EC-169
P0081	0081	INT/V TIM V/CIR-B2	EC-169

^{*1: 1}st trip DTC No. is the same as DTC No.

P0101 - P0128

NOTE:

^{*2:} This number is prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.

^{*4:} The troubleshooting for this DTC needs CONSULT-III.

^{*2:} This number is prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.

INDEX FOR DTC

< SERVICE INFORMATION > [VQ35DE]

• If DTC U1000 or U1001 is displayed with other DTC, first perform the trouble diagnosis for DTC U1000, U1001. Refer to <u>EC-147</u>.

• If DTC U1010 is displayed with other DTC, first perform the trouble diagnosis for DTC U1010. Refer to

EC

D

Е

F

Н

DTC	·*1	Items	
CONSULT-III GST* ²	ECM* ³	(CONSULT-III screen terms)	Reference page
P0101	0101	MAF SEN/CIRCUIT	EC-176
P0102	0102	MAF SEN/CIRCUIT	EC-185
P0103	0103	MAF SEN/CIRCUIT	EC-185
P0112	0112	IAT SEN/CIRCUIT	EC-192
P0113	0113	IAT SEN/CIRCUIT	EC-192
P0116	0116	ECT SENSOR	EC-196
P0117	0117	ECT SEN/CIRC	EC-199
P0118	0118	ECT SEN/CIRC	EC-199
P0122	0122	TP SEN 2/CIRC	EC-204
P0123	0123	TP SEN 2/CIRC	EC-204
P0125	0125	ECT SENSOR	EC-210
P0127	0127	IAT SENSOR	EC-213
P0128	0128	THERMSTAT FNCTN	EC-216

^{*1: 1}st trip DTC No. is the same as DTC No.

P0130 - P0159

NOTE:

• If DTC U1000 or U1001 is displayed with other DTC, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-147.

• If DTC U1010 is displayed with other DTC, first perform the trouble diagnosis for DTC U1010. Refer to <u>EC-149</u>.

D	ГС* ¹	Items		L
CONSULT-III GST* ²	ECM* ³	(CONSULT-III screen terms)	Reference page	
P0130	0130	A/F SENSOR1 (B1)	EC-218	M
P0131	0131	A/F SENSOR1 (B1)	<u>EC-226</u>	_
P0132	0132	A/F SENSOR1 (B1)	EC-234	N
P0133	0133	A/F SENSOR1 (B1)	<u>EC-242</u>	11
P0137	0137	HO2S2 (B1)	EC-251	_
P0138	0138	HO2S2 (B1)	<u>EC-260</u>	0
P0139	0139	HO2S2 (B1)	EC-271	
P0150	0150	A/F SENSOR1 (B2)	EC-218	– – P
P0151	0151	A/F SENSOR1 (B2)	<u>EC-226</u>	- P
P0152	0152	A/F SENSOR1 (B2)	EC-234	_
P0153	0153	A/F SENSOR1 (B2)	<u>EC-242</u>	
P0157	0157	HO2S2 (B2)	EC-251	_
P0158	0158	HO2S2 (B2)	<u>EC-260</u>	_
P0159	0159	HO2S2 (B2)	EC-271	

Revision: 2009 February **EC-19** 2008 M35/M45

^{*2:} This number is prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.

- *1: 1st trip DTC No. is the same as DTC No.
- *2: This number is prescribed by SAE J2012.
- *3: In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.

P0171 - P0223

NOTE:

- If DTC U1000 or U1001 is displayed with other DTC, first perform the trouble diagnosis for DTC U1000, U1001. Refer to <u>EC-147</u>.
- If DTC U1010 is displayed with other DTC, first perform the trouble diagnosis for DTC U1010. Refer to EC-149.

DT	C* ¹	Items	
CONSULT-III GST* ²	ECM* ³	(CONSULT-III screen terms)	Reference page
P0171	0171	FUEL SYS-LEAN-B1	EC-280
P0172	0172	FUEL SYS-RICH-B1	EC-292
P0174	0174	FUEL SYS-LEAN-B2	EC-280
P0175	0175	FUEL SYS-RICH-B2	EC-292
P0181	0181	FTT SENSOR	EC-304
P0182	0182	FTT SEN/CIRCUIT	EC-308
P0183	0183	FTT SEN/CIRCUIT	EC-308
P0222	0222	TP SEN 1/CIRC	EC-312
P0223	0223	TP SEN 1/CIRC	EC-312

^{*1: 1}st trip DTC No. is the same as DTC No.

P0300 - P0430

NOTE:

- If DTC U1000 or U1001 is displayed with other DTC, first perform the trouble diagnosis for DTC U1000, U1001. Refer to <u>EC-147</u>.
- If DTC U1010 is displayed with other DTC, first perform the trouble diagnosis for DTC U1010. Refer to EC-149.

DTC	,*1	Items		
CONSULT-III GST* ²	ECM*3	(CONSULT-III screen terms)	Reference page	
P0300	0300	MULTI CYL MISFIRE	<u>EC-318</u>	
P0301	0301	CYL 1 MISFIRE	EC-318	
P0302	0302	CYL 2 MISFIRE	EC-318	
P0303	0303	CYL 3 MISFIRE	<u>EC-318</u>	
P0304	0304	CYL 4 MISFIRE	EC-318	
P0305	0305	CYL 5 MISFIRE	EC-318	
P0306	0306	CYL 6 MISFIRE	EC-318	
P0327	0327	KNOCK SEN/CIRC-B1	EC-325	
P0328	0328	KNOCK SEN/CIRC-B1	EC-325	
P0335	0335	CKP SEN/CIRCUIT	EC-330	
P0340	0340	CMP SEN/CIRC-B1	EC-335	
P0345	0345	CMP SEN/CIRC-B2	EC-335	

^{*2:} This number is prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.

INDEX FOR DTC

< SERVICE INFORMATION > [VQ35DE]

DTC* ¹		Itama		
CONSULT-III GST* ²	ECM* ³	ltems (CONSULT-III screen terms)	Reference page	
P0420	0420	TW CATALYST SYS-B1	EC-343	
P0430	0430	TW CATALYST SYS-B2	EC-343	

^{*1: 1}st trip DTC No. is the same as DTC No.

P0441 - P0456

NOTE:

- If DTC U1000 or U1001 is displayed with other DTC, first perform the trouble diagnosis for DTC U1000, U1001. Refer to <u>EC-147</u>.
- If DTC U1010 is displayed with other DTC, first perform the trouble diagnosis for DTC U1010. Refer to EC-149.

DT	·C*1	- Items	
CONSULT-III GST* ²	ECM* ³	(CONSULT-III screen terms)	Reference page
P0441	0441	EVAP PURG FLOW/MON	EC-347
P0442	0442	EVAP SMALL LEAK	EC-352
P0443	0443	PURG VOLUME CONT/V	EC-359
P0444	0444	PURG VOLUME CONT/V	EC-366
P0445	0445	PURG VOLUME CONT/V	EC-366
P0447	0447	VENT CONTROL VALVE	EC-372
P0448	0448	VENT CONTROL VALVE	EC-378
P0451	0451	EVAP SYS PRES SEN	EC-384
P0452	0452	EVAP SYS PRES SEN	EC-387
P0453	0453	EVAP SYS PRES SEN	EC-393
P0455	0455	EVAP GROSS LEAK	<u>EC-400</u>
P0456	0456	EVAP VERY SML LEAK	<u>EC-406</u>

^{*1: 1}st trip DTC No. is the same as DTC No.

P0460 - P0643

NOTE:

- If DTC U1000 or U1001 is displayed with other DTC, first perform the trouble diagnosis for DTC U1000, U1001. Refer to <u>EC-147</u>.
- If DTC U1010 is displayed with other DTC, first perform the trouble diagnosis for DTC U1010. Refer to <u>EC-149</u>.

DTC* ¹		Items		
CONSULT-III GST* ²	ECM* ³	(CONSULT-III screen terms)	Reference page	
P0460	0460	FUEL LEV SEN SLOSH	EC-413	
P0461	0461	FUEL LEVEL SENSOR	EC-415	
P0462	0462	FUEL LEVL SEN/CIRC	EC-417	
P0463	0463	FUEL LEVL SEN/CIRC	EC-417	

Α

C

INFOID:0000000003464823

F

Е

Н

J

K

INFOID:0000000003464824

Ν

M

0

Р

^{*2:} This number is prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.

^{*2:} This number is prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.

DTC*1		ltems		
CONSULT-III GST* ²	ECM* ³	(CONSULT-III screen terms)	Reference page	
P0500	0500	VEH SPEED SEN/CIRC*4	EC-419	
P0506	0506	ISC SYSTEM	EC-421	
P0507	0507	ISC SYSTEM	EC-423	
P0550	0550	PW ST P SEN/CIRC	EC-425	
P0603	0603	ECM BACK UP/CIRCUIT	EC-430	
P0605	0605	ECM	EC-434	
P0643	0643	SENSOR POWER/CIRC	EC-436	

^{*1: 1}st trip DTC No. is the same as DTC No.

P0700 - P0745

NOTE:

- If DTC U1000 or U1001 is displayed with other DTC, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-147.
- If DTC U1010 is displayed with other DTC, first perform the trouble diagnosis for DTC U1010. Refer to EC-149.

DTC*1		W		
CONSULT-III GST* ²	ECM* ³	(CONSULT-III screen terms)	Reference page	
P0700	0700	TCM	<u>AT-102</u>	
P0705	0705	PNP SW/CIRC	<u>AT-103</u>	
P0710	0710	ATF TEMP SEN/CIRC	<u>AT-133</u>	
P0717	0717	TURBINE SENSOR	<u>AT-106</u>	
P0720	0720	VEH SPD SEN/CIR AT*4	<u>AT-108</u>	
P0725	0725	ENGINE SPEED SIG	<u>AT-113</u>	
P0740	0740	TCC SOLENOID/CIRC	<u>AT-125</u>	
P0744	0744	A/T TCC S/V FNCTN	<u>AT-127</u>	
P0745	0745	L/PRESS SOL/CIRC	<u>AT-129</u>	

^{*1: 1}st trip DTC No. is the same as DTC No.

P0850 - P1554

NOTE:

- If DTC U1000 or U1001 is displayed with other DTC, first perform the trouble diagnosis for DTC U1000, U1001. Refer to <u>EC-147</u>.
- If DTC U1010 is displayed with other DTC, first perform the trouble diagnosis for DTC U1010. Refer to EC-149.

^{*2:} This number is prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.

^{*4:} When the fail-safe operations for both self-diagnoses occur, the MIL illuminates.

^{*2:} This number is prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.

^{*4:} When the fail-safe operations for both self-diagnoses occur, the MIL illuminates.

Α

EC

D

Е

F

Н

K

Ν

Р

INFOID:0000000003464828

INFOID:0000000003464827

DTC* ¹		Items	
CONSULT-III GST* ²	ECM* ³	(CONSULT-III screen terms)	Reference page
P0850	0850	P-N POS SW/CIRCUIT	EC-441
P1148	1148	CLOSED LOOP-B1	EC-446
P1168	1168	CLOSED LOOP-B2	EC-446
P1211	1211	TCS C/U FUNCTN	EC-447
P1212	1212	TCS/CIRC	EC-448
P1217	1217	ENG OVER TEMP	EC-449
P1220	1220	FPCM/CIRCUIT	EC-459
P1225	1225	CTP LEARNING	EC-466
P1226	1226	CTP LEARNING	EC-468
P1421	1421	COLD START CONTROL	EC-470
P1550	1550	BAT CURRENT SENSOR	EC-472
P1551	1551	BAT CURRENT SENSOR	EC-477
P1552	1552	BAT CURRENT SENSOR	EC-477
P1553	1553	BAT CURRENT SENSOR	EC-482
P1554	1554	BAT CURRENT SENSOR	EC-487

^{*1: 1}st trip DTC No. is the same as DTC No.

P1564 - P1615

NOTE:

 If DTC U1000 or U1001 is displayed with other DTC, first perform the trouble diagnosis for DTC U1000, U1001. Refer to <u>EC-147</u>.

 If DTC U1010 is displayed with other DTC, first perform the trouble diagnosis for DTC U1010. Refer to EC-149.

DTC*1		Items		
CONSULT-III GST* ²	ECM* ³	(CONSULT-III screen terms)	Reference page	
P1564	1564	ASCD SW	EC-493 (Models with ICC) EC-500 (Models with ASCD)	
P1568	1568	ICC COMMAND VALUE*4	EC-506	
P1572	1572	ASCD BRAKE SW	EC-507 (Models with ICC) EC-515 (Models with ASCD)	
P1574	1574	ASCD VHL SPD SEN	EC-522 (Models with ICC) EC-524 (Models with ASCD)	
P1610 - P1615	1610 - 1615	NATS MALFUNCTION	EC-53	

^{*1: 1}st trip DTC No. is the same as DTC No.

NOTE:

P1705 - P1774

• If DTC U1000 or U1001 is displayed with other DTC, first perform the trouble diagnosis for DTC U1000, U1001. Refer to <u>EC-147</u>.

EC-23 Revision: 2009 February 2008 M35/M45

^{*2:} This number is prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.

^{*2:} This number is prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.

^{*4:} Models with ICC.

INFOID:0000000003464829

• If DTC U1010 is displayed with other DTC, first perform the trouble diagnosis for DTC U1010. Refer to <u>EC-149</u>.

DT	C* ¹	- Items	
CONSULT-III GST* ²	ECM*3	(CONSULT-III screen terms)	Reference page
P1705	1705	TP SEN/CIRC A/T	AT-131
P1715	1715	IN PULY SPEED	EC-526
P1730	1730	A/T INTERLOCK	AT-140
P1752	1752	I/C SOLENOID/CIRC	<u>AT-144</u>
P1757	1757	FR/B SOLENOID/CIRC	<u>AT-146</u>
P1762	1762	D/C SOLENOID/CIRC	<u>AT-148</u>
P1767	1767	HLR/C SOL/CIRC	<u>AT-150</u>
P1772	1772	LC/B SOLENOID/CIRC	<u>AT-152</u>
P1774	1774	LC/B SOLENOID FNCT	<u>AT-154</u>

^{*1: 1}st trip DTC No. is the same as DTC No.

P1805 - P2A03

NOTE:

- If DTC U1000 or U1001 is displayed with other DTC, first perform the trouble diagnosis for DTC U1000, U1001. Refer to <u>EC-147</u>.
- If DTC U1010 is displayed with other DTC, first perform the trouble diagnosis for DTC U1010. Refer to EC-149.

DTC*1		No.		
CONSULT-III GST* ²	ECM* ³	Items (CONSULT-III screen terms)	Reference page	
P1805	1805	BRAKE SW/CIRCUIT	EC-527	
P2100	2100	ETC MOT PWR	EC-534	
P2101	2101	ETC FUNCTION/CIRC	EC-538	
P2103	2103	ETC MOT PWR	EC-534	
P2118	2118	ETC MOT	EC-544	
P2119	2119	ETC ACTR	EC-548	
P2122	2122	APP SEN 1/CIRC	EC-550	
P2123	2123	APP SEN 1/CIRC	EC-550	
P2127	2127	APP SEN 2/CIRC	EC-555	
P2128	2128	APP SEN 2/CIRC	EC-555	
P2135	2135	TP SENSOR	EC-561	
P2138	2138	APP SENSOR	EC-567	
P2A00	2A00	A/F SENSOR1 (B1)	EC-574	
P2A03	2A03	A/F SENSOR1 (B2)	EC-574	

^{*1: 1}st trip DTC No. is the same as DTC No.

^{*2:} This number is prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.

^{*2:} This number is prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.

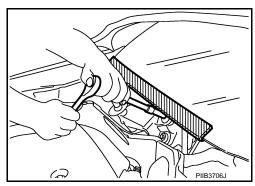
PRECAUTIONS

Precaution for Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT PRE-TENSIONER"

INFOID:0000000005154049

The Supplemental Restraint System such as "AIR BAG" and "SEAT BELT PRE-TENSIONER", used along with a front seat belt, helps to reduce the risk or severity of injury to the driver and front passenger for certain types of collision. This system includes seat belt switch inputs and dual stage front air bag modules. The SRS system uses the seat belt switches to determine the front air bag deployment, and may only deploy one front air bag, depending on the severity of a collision and whether the front occupants are belted or unbelted. Information necessary to service the system safely is included in the "SUPPLEMENTAL RESTRAINT SYS-TEM" and "SEAT BELTS" of this Service Manual.

- To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death in the event of a collision which would result in air bag inflation, all maintenance must be performed by an authorized NISSAN/INFINITI dealer.
- Improper maintenance, including incorrect removal and installation of the SRS, can lead to personal injury caused by unintentional activation of the system. For removal of Spiral Cable and Air Bag Module, see the "SUPPLEMENTAL RESTRAINT SYSTEM".
- Do not use electrical test equipment on any circuit related to the SRS unless instructed to in this Service Manual. SRS wiring harnesses can be identified by yellow and/or orange harnesses or harness connectors.


PRECAUTIONS WHEN USING POWER TOOLS (AIR OR ELECTRIC) AND HAMMERS

WARNING:

- When working near the Air Bag Diagnosis Sensor Unit or other Air Bag System sensors with the ignition ON or engine running, DO NOT use air or electric power tools or strike near the sensor(s) with a hammer. Heavy vibration could activate the sensor(s) and deploy the air bag(s), possibly causing serious injury.
- When using air or electric power tools or hammers, always switch the ignition OFF, disconnect the battery, and wait at least 3 minutes before performing any service.

Precaution for Procedure without Cowl Top Cover

When performing the procedure after removing cowl top cover, cover the lower end of windshield with urethane, etc.

On Board Diagnosis (OBD) System of Engine and A/T

The ECM has an on board diagnostic system. It will light up the malfunction indicator lamp (MIL) to warn the driver of a malfunction causing emission deterioration.

CAUTION:

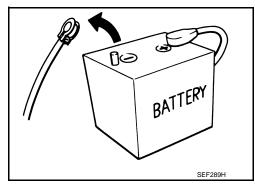
- Be sure to turn the ignition switch OFF and disconnect the negative battery cable before any repair or inspection work. The open/short circuit of related switches, sensors, solenoid valves, etc. will cause the MIL to light up.
- Be sure to connect and lock the connectors securely after work. A loose (unlocked) connector will cause the MIL to light up due to the open circuit. (Be sure the connector is free from water, grease, dirt, bent terminals, etc.)
- Certain systems and components, especially those related to OBD, may use a new style slide-locking type harness connector. For description and how to disconnect, refer to PG-75.
- Be sure to route and secure the harnesses properly after work. The interference of the harness with a bracket, etc. may cause the MIL to light up due to the short circuit.

EC

Α

D

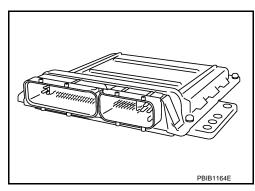
INFOID:0000000002954077

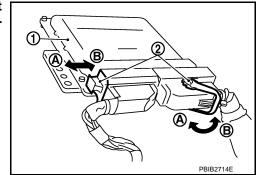

INFOID:00000000002954078

M

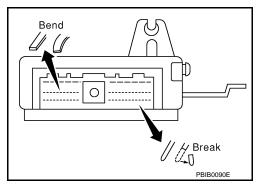
- Be sure to connect rubber tubes properly after work. A misconnected or disconnected rubber tube
 may cause the MIL to light up due to the malfunction of the EVAP system or fuel injection system,
 etc.
- Be sure to erase the unnecessary malfunction information (repairs completed) from the ECM and TCM (Transmission control module) before returning the vehicle to the customer.

Precaution

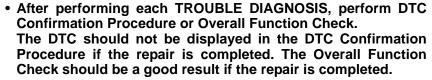

- Always use a 12 volt battery as power source.
- Do not attempt to disconnect battery cables while engine is running.
- Before connecting or disconnecting the ECM harness connector, turn ignition switch OFF and disconnect negative battery cable. Failure to do so may damage the ECM because battery voltage is applied to ECM even if ignition switch is turned OFF.
- Before removing parts, turn ignition switch OFF and then disconnect negative battery cable.

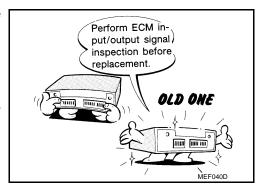


- · Do not disassemble ECM.
- If a battery cable is disconnected, the memory will return to the ECM value.

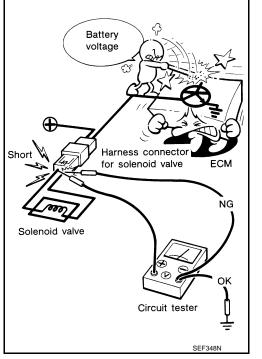

The ECM will now start to self-control at its initial value. Engine operation can vary slightly when the terminal is disconnected. However, this is not an indication of a malfunction. Do not replace parts because of a slight variation.

- If the battery is disconnected, the following emission-related diagnostic information will be lost within 24 hours.
- Diagnostic trouble codes
- 1st trip diagnostic trouble codes
- Freeze frame data
- 1st trip freeze frame data
- System readiness test (SRT) codes
- Test values
- When connecting ECM harness connector, fasten (B) it securely with a lever (2) as far as it will go as shown in the figure.
- ECM (1)
- Loosen (A)






- When connecting or disconnecting pin connectors into or from ECM, take care not to damage pin terminals (bend or break).
 - Make sure that there are not any bends or breaks on ECM pin terminal, when connecting pin connectors.
- Securely connect ECM harness connectors.
 A poor connection can cause an extremely high (surge) voltage to develop in coil and condenser, thus resulting in damage to ICs.
- Keep engine control system harness at least 10 cm (4 in) away from adjacent harness, to prevent engine control system malfunctions due to receiving external noise, degraded operation of ICs, etc.


- Keep engine control system parts and harness dry.
- Before replacing ECM, perform ECM Terminals and Reference Value inspection and make sure ECM functions properly.
 Refer to EC-108, "ECM Terminal and Reference Value".
- Handle mass air flow sensor carefully to avoid damage.
- Do not clean mass air flow sensor with any type of detergent.
- Do not disassemble electric throttle control actuator.
- Even a slight leak in the air intake system can cause serious incidents.
- Do not shock or jar the camshaft position sensor (PHASE), crankshaft position sensor (POS).

- When measuring ECM signals with a circuit tester, never allow the two tester probes to contact.
 - Accidental contact of probes will cause a short circuit and damage the ECM power transistor.
- Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

EC

Α

D

Е

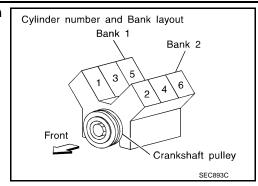
F

G

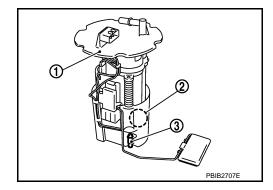
Н

K

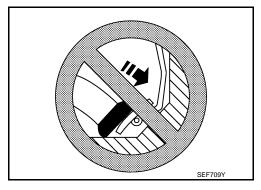
ı

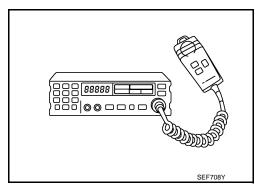

M

Ν


O

М


• B1 indicates the bank 1, B2 indicates the bank 2 as shown in the figure.


- Do not operate fuel pump when there is no fuel in lines.
- Fuel level sensor unit and fuel pump (1)
- Fuel pressure regulator (2)
- Fuel tank temperature sensor (3)
- Tighten fuel hose clamps to the specified torque.

- Do not depress accelerator pedal when starting.
- Immediately after starting, do not rev up engine unnecessarilv.
- Do not rev up engine just prior to shutdown.

- When installing C.B. ham radio or a mobile phone, be sure to observe the following as it may adversely affect electronic control systems depending on installation location.
- Keep the antenna as far as possible from the electronic control units.
- Keep the antenna feeder line more than 20 cm (8 in) away from the harness of electronic controls.
 - Do not let them run parallel for a long distance.
- Adjust the antenna and feeder line so that the standing-wave radio can be kept smaller.
- Be sure to ground the radio to vehicle body.

Α

PREPARATION

Special Service Tool

INFOID:0000000002954080

Tool number (Kent-Moore No.) Tool name		Description	EC
EG17650301 (J-33984-A) Radiator cap tester adapter	Q • • • • • • • • • • • • • • • • • • •	Adapting radiator cap tester to radiator cap and radiator filler neck a: 28 (1.10) dia. b: 31.4 (1.236) dia. c: 41.3 (1.626) dia.	C D
	S-NT564	Unit: mm (in)	Е
(J-44321)		Checking fuel pressure	-
Fuel pressure gauge kit			F
	LEC642		G
KV109E0010 (J-46209)		Measuring the ECM signals with a circuit tester	Н
Break-out box			I
	S-NT825		J
KV109E0080 (J-45819) Y-cable adapter		Measuring the ECM signals with a circuit tester	K
	NTB26		L

 \mathbb{M}

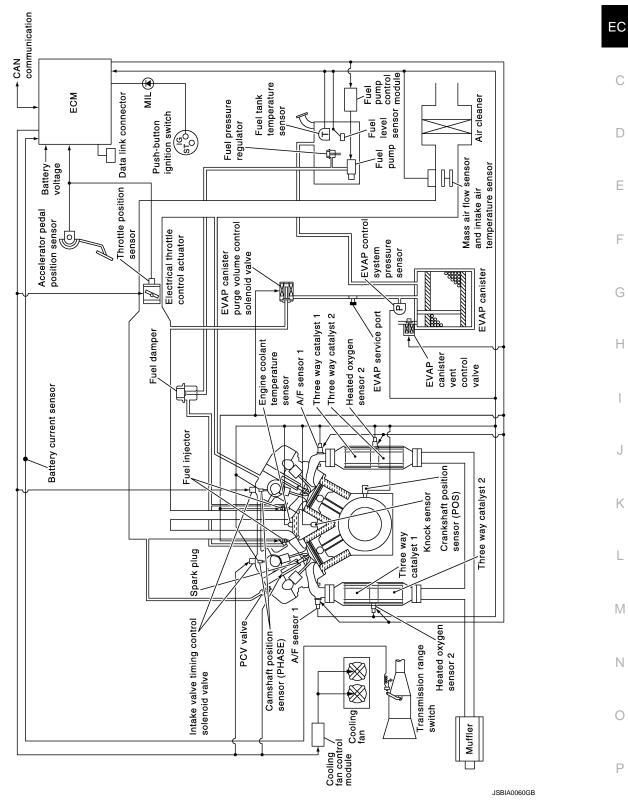
Ν

0

Ρ

Commercial Service Tool

INFOID:0000000002954081


Tool name (Kent-Moore No.)		Description
Leak detector i.e.: (J-41416)		Locating the EVAP leak
EVAP service port adapter i.e.: (J-41413-OBD)	S-NT703	Applying positive pressure through EVAP service port
Fuel filler cap adapter i.e.: (MLR-8382)	S-NT704	Checking fuel tank vacuum relief valve opening pressure
Socket wrench	19 mm (0.75 in) Note than 32 mm (1.26 in)	Removing and installing engine coolant tempera- ture sensor
Oxygen sensor thread cleaner i.e.: (J-43897-18) (J-43897-12)	Mating surface shave cylinder	Reconditioning the exhaust system threads before installing a new oxygen sensor. Use with antiseize lubricant shown below. a: 18 mm diameter with pitch 1.5 mm for Zirconia Oxygen Sensor b: 12 mm diameter with pitch 1.25 mm for Titania Oxygen Sensor
Anti-seize lubricant i.e.: (Permatex TM 133AR or equivalent meeting MIL specifica- tion MIL-A-907)	S-NT779	Lubricating oxygen sensor thread cleaning tool when reconditioning exhaust system threads.

INFOID:0000000002954083

Α

ENGINE CONTROL SYSTEM

Schematic INFOID:000000002954082

Multiport Fuel Injection (MFI) System

INPUT/OUTPUT SIGNAL CHART

Sensor	Input Signal to ECM	ECM function	Actuator
Crankshaft position sensor (POS)	Engine speed*3		
Camshaft position sensor (PHASE)	Piston position		
Mass air flow sensor	Amount of intake air	-	
Engine coolant temperature sensor	Engine coolant temperature	-	
Air fuel ratio (A/F) sensor 1	Density of oxygen in exhaust gas	-	
Throttle position sensor	Throttle position	=	Fuel injector
Accelerator pedal position sensor	Accelerator pedal position	-	
Transmission range switch	Gear position	Fuel injection & mixture ratio	
Battery	Battery voltage*3	control	
Knock sensor	Engine knocking condition	1	
Power steering pressure sensor	Power steering operation	=	
Heated oxygen sensor 2*1	Density of oxygen in exhaust gas	=	
ABS actuator and electric unit (control unit)	VDC/TCS operation command*2		
Air conditioner switch	Air conditioner operation*2		
Wheel sensor	Vehicle speed*2		

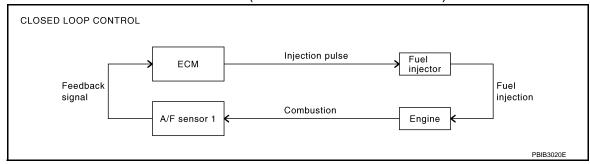
^{*1:} This sensor is not used to control the engine system under normal conditions.

SYSTEM DESCRIPTION

The amount of fuel injected from the fuel injector is determined by the ECM. The ECM controls the length of time the valve remains open (injection pulse duration). The amount of fuel injected is a program value in the ECM memory. The program value is preset by engine operating conditions. These conditions are determined by input signals (for engine speed and intake air) from the crankshaft position sensor (POS), camshaft position sensor (PHASE) and the mass air flow sensor.

VARIOUS FUEL INJECTION INCREASE/DECREASE COMPENSATION

In addition, the amount of fuel injected is compensated to improve engine performance under various operating conditions as listed below.


<Fuel increase>

- During warm-up
- · When starting the engine
- During acceleration
- Hot-engine operation
- · When selector lever is changed from N to D
- High-load, high-speed operation

<Fuel decrease>

- During deceleration
- During high engine speed operation

MIXTURE RATIO FEEDBACK CONTROL (CLOSED LOOP CONTROL)

^{*2:} This signal is sent to the ECM through CAN communication line.

^{*3:} ECM determines the start signal status by the signals of engine speed and battery voltage.

The mixture ratio feedback system provides the best air-fuel mixture ratio for driveability and emission control. The three way catalyst 1 can then better reduce CO, HC and NOx emissions. This system uses A/F sensor 1 in the exhaust manifold to monitor whether the engine operation is rich or lean. The ECM adjusts the injection pulse width according to the sensor voltage signal. For more information about A/F sensor 1, refer to EC-226. This maintains the mixture ratio within the range of stoichiometric (ideal air-fuel mixture).

This stage is referred to as the closed loop control condition.

Heated oxygen sensor 2 is located downstream of the three way catalyst 1. Even if the switching characteristics of A/F sensor 1 shift, the air-fuel ratio is controlled to stoichiometric by the signal from heated oxygen sensor 2.

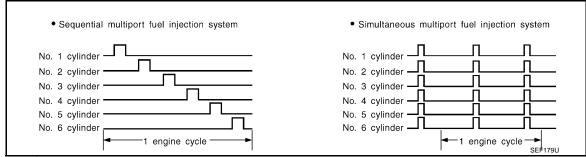
Open Loop Control

The open loop system condition refers to when the ECM detects any of the following conditions. Feedback control stops in order to maintain stabilized fuel combustion.

- Deceleration and acceleration
- · High-load, high-speed operation
- Malfunction of A/F sensor 1 or its circuit
- Insufficient activation of A/F sensor 1 at low engine coolant temperature
- High engine coolant temperature
- During warm-up
- After shifting from N to D
- When starting the engine

MIXTURE RATIO SELF-LEARNING CONTROL

The mixture ratio feedback control system monitors the mixture ratio signal transmitted from A/F sensor 1. This feedback signal is then sent to the ECM. The ECM controls the basic mixture ratio as close to the theoretical mixture ratio as possible. However, the basic mixture ratio is not necessarily controlled as originally designed. Both manufacturing differences (i.e., mass air flow sensor hot wire) and characteristic changes during operation (i.e., fuel injector clogging) directly affect mixture ratio.


Accordingly, the difference between the basic and theoretical mixture ratios is monitored in this system. This is then computed in terms of "injection pulse duration" to automatically compensate for the difference between the two ratios.

"Fuel trim" refers to the feedback compensation value compared against the basic injection duration. Fuel trim includes short term fuel trim and long term fuel trim.

"Short term fuel trim" is the short-term fuel compensation used to maintain the mixture ratio at its theoretical value. The signal from A/F sensor 1 indicates whether the mixture ratio is RICH or LEAN compared to the theoretical value. The signal then triggers a reduction in fuel volume if the mixture ratio is rich, and an increase in fuel volume if it is lean.

"Long term fuel trim" is overall fuel compensation carried out long-term to compensate for continual deviation of the short term fuel trim from the central value. Such deviation will occur due to individual engine differences, wear over time and changes in the usage environment.

FUEL INJECTION TIMING

Two types of systems are used.

Sequential Multiport Fuel Injection System

Fuel is injected into each cylinder during each engine cycle according to the firing order. This system is used when the engine is running.

Simultaneous Multiport Fuel Injection System

Fuel is injected simultaneously into all six cylinders twice each engine cycle. In other words, pulse signals of the same width are simultaneously transmitted from the ECM.

The six fuel injectors will then receive the signals two times for each engine cycle.

This system is used when the engine is being started and/or if the fail-safe system (CPU) is operating.

EC

С

D

Е

F

Н

J

K

N

FUEL SHUT-OFF

Fuel to each cylinder is cut off during deceleration, operation of the engine at excessively high speeds or operation of the vehicle at excessively high speeds.

Electronic Ignition (EI) System

INFOID:0000000002954084

INPUT/OUTPUT SIGNAL CHART

Sensor	Input Signal to ECM	ECM function	Actuator
Crankshaft position sensor (POS)	Engine speed* ² Piston position		Power transistor
Camshaft position sensor (PHASE)			
Mass air flow sensor	Amount of intake air		
Engine coolant temperature sensor	Engine coolant temperature		
Throttle position sensor	Throttle position	Ignition timing	
Accelerator pedal position sensor	Accelerator pedal position	control	
Battery	Battery voltage*2		
Knock sensor	Engine knocking		
Transmission range switch	Gear position		
Wheel sensor	Vehicle speed*1		

^{*1:} This signal is sent to the ECM through CAN communication line.

SYSTEM DESCRIPTION

Firing order: 1 - 2 - 3 - 4 - 5 - 6

The ignition timing is controlled by the ECM to maintain the best air-fuel ratio for every running condition of the engine. The ignition timing data is stored in the ECM.

The ECM receives information such as the injection pulse width and camshaft position sensor (PHASE) signal. Computing this information, ignition signals are transmitted to the power transistor.

During the following conditions, the ignition timing is revised by the ECM according to the other data stored in the ECM.

- At starting
- During warm-up
- At idle
- At low battery voltage
- During acceleration

The knock sensor retard system is designed only for emergencies. The basic ignition timing is programmed within the anti-knocking zone, if recommended fuel is used under dry conditions. The retard system does not operate under normal driving conditions. If engine knocking occurs, the knock sensor monitors the condition. The signal is transmitted to the ECM. The ECM retards the ignition timing to eliminate the knocking condition.

Fuel Cut Control (At No Load and High Engine Speed)

INFOID:0000000002954085

INPUT/OUTPUT SIGNAL CHART

Sensor	Input Signal to ECM	ECM function	Actuator
Transmission range switch	Neutral position	Fuel cut control	Fuel injector
Accelerator pedal position sensor	Accelerator pedal position		
Engine coolant temperature sensor	Engine coolant temperature		
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed		
Wheel sensor	Vehicle speed*		

^{*:} This signal is sent to the ECM through CAN communication line.

SYSTEM DESCRIPTION

^{*2:} ECM determines the start signal status by the signals of engine speed and battery voltage.

ENGINE CONTROL SYSTEM

< SERVICE INFORMATION >

[VQ35DE]

If the engine speed is above 1,400 rpm under no load (for example, the selector lever position is neutral and engine speed is over 1,400 rpm) fuel will be cut off after some time. The exact time when the fuel is cut off varies based on engine speed.

Fuel cut will be operated until the engine speed reaches 1,000 rpm, then fuel cut will be cancelled. **NOTE:**

This function is different from deceleration control listed under Multiport Fuel Injection (MFI) System, <u>EC-31</u>, "Multiport Fuel Injection (MFI) System".

EC

С

D

Е

F

G

Н

Κ

L

M

Ν

0

Р

AIR CONDITIONING CUT CONTROL

Input/Output Signal Chart

INFOID:0000000002954086

Sensor	Input Signal to ECM	ECM function	Actuator
Air conditioner switch	Air conditioner ON signal*1		Air conditioner relay
Accelerator pedal position sensor	Accelerator pedal position		
Engine coolant temperature sensor	Engine coolant temperature		
Battery	Battery voltage*2	Air conditioner cut control	
Refrigerant pressure sensor	Refrigerant pressure		
Power steering pressure sensor	Power steering operation		
Wheel sensor	Vehicle speed*1		

^{*1:} This signal is sent to the ECM through CAN communication line.

System Description

INFOID:0000000002954087

This system improves engine operation when the air conditioner is used.

Under the following conditions, the air conditioner is turned off.

- When the accelerator pedal is fully depressed.
- When cranking the engine.
- At high engine speeds.
- When the engine coolant temperature becomes excessively high.
- When operating power steering during low engine speed or low vehicle speed.
- When engine speed is excessively low.
- When refrigerant pressure is excessively low or high.

^{*2:} ECM determines the start signal status by the signals of engine speed and battery voltage.

AUTOMATIC SPEED CONTROL DEVICE (ASCD)

< SERVICE INFORMATION >

[VQ35DE]

Α

EC

Е

Н

AUTOMATIC SPEED CONTROL DEVICE (ASCD)

System Description

INFOID:0000000002954088

INPUT/OUTPUT SIGNAL CHART

Sensor	Input signal to ECM	ECM function	Actuator	
ASCD brake switch	Brake pedal operation			_
Stop lamp switch	Brake pedal operation			
ASCD steering switch	ASCD steering switch operation	ACCD webiele en eed eentrel	Electric throttle control	
Transmission range switch	Gear position	ASCD vehicle speed control	actuator	
Wheel sensor	Vehicle speed*			
TCM	Powertrain revolution*			

^{*:} This signal is sent to the ECM through CAN communication line

BASIC ASCD SYSTEM

Refer to Owner's Manual for ASCD operating instructions.

Automatic Speed Control Device (ASCD) allows a driver to keep vehicle at predetermined constant speed without depressing accelerator pedal. Driver can set vehicle speed in advance between approximately 40 km/h (25 MPH) and 144 km/h (89 MPH).

ECM controls throttle angle of electric throttle control actuator to regulate engine speed.

Operation status of ASCD is indicated by CRUISE lamp and SET lamp in combination meter. If any malfunction occurs in ASCD system, it automatically deactivates control.

NOTE

Always drive vehicle in safe manner according to traffic conditions and obey all traffic laws.

SET OPERATION

Press MAIN switch. (The CRUISE lamp in combination meter illuminates.)

When vehicle speed reaches a desired speed between approximately 40 km/h (25 MPH) and 144 km/h (89 MPH), press SET/COAST switch. (Then SET lamp in combination meter illuminates.)

ACCELERATE OPERATION

If the RESUME/ACCELERATE switch is pressed during cruise control driving, increase the vehicle speed until the switch is released or vehicle speed reaches maximum speed controlled by the system. And then ASCD will keep the new set speed.

CANCEL OPERATION

When any of following conditions exist, cruise operation will be canceled.

- CANCEL switch is pressed
- More than 2 switches at ASCD steering switch are pressed at the same time (Set speed will be cleared)
- Brake pedal is depressed
- Selector lever is changed to N, P, R position
- Vehicle speed decreased to 13 km/h (8 MPH) lower than the set speed
- VDC/TCS system is operated

When the ECM detects any of the following conditions, the ECM will cancel the cruise operation and inform the driver by blinking indicator lamp.

- Engine coolant temperature is slightly higher than the normal operating temperature, CRUISE lamp may blink slowly.
 - When the engine coolant temperature decreases to the normal operating temperature, CRUISE lamp will stop blinking and the cruise operation will be able to work by pressing SET/COAST switch or RESUME/ACCELERATE switch.
- Malfunction for some self-diagnoses regarding ASCD control: SET lamp will blink quickly.

If MAIN switch is turned to OFF during ASCD is activated, all of ASCD operations will be canceled and vehicle speed memory will be erased.

COAST OPERATION

When the SET/COAST switch is pressed during cruise control driving, decrease vehicle set speed until the switch is released. And then ASCD will keep the new set speed.

RESUME OPERATION

AUTOMATIC SPEED CONTROL DEVICE (ASCD)

< SERVICE INFORMATION >

[VQ35DE]

When the RESUME/ACCELERATE switch is pressed after cancel operation other than pressing MAIN switch is performed, vehicle speed will return to last set speed. To resume vehicle set speed, vehicle condition must meet following conditions.

- Brake pedal is released
- A/T selector lever is in other than P and N positions
- Vehicle speed is greater than 40 km/h (25 MPH) and less than 144 km/h (89 MPH)

Component Description

INFOID:0000000002954089

ASCD STEERING SWITCH

Refer to EC-500.

ASCD BRAKE SWITCH

Refer to EC-515 and EC-583.

STOP LAMP SWITCH

Refer to <u>EC-515</u>, <u>EC-527</u> and <u>EC-583</u>

ELECTRIC THROTTLE CONTROL ACTUATOR

Refer to <u>EC-534</u>, <u>EC-538</u>, <u>EC-544</u> and <u>EC-548</u>.

ASCD INDICATOR

Refer to EC-589.

CAN COMMUNICATION

< SERVICE INFORMATION >

CAN COMMUNICATION

System Description

CAN (Controller Area Network) is a serial communication line for real time application. It is an on-vehicle multiplex communication line with high data communication speed and excellent error detection ability. Many electronic control units are equipped onto a vehicle, and each control unit shares information and links with other control units during operation (not independent). In CAN communication, control units are connected with 2 communication lines (CAN H line, CAN L line) allowing a high rate of information transmission with less wiring. Each control unit transmits/receives data but selectively reads required data only.

Refer to LAN-29, "CAN System Specification Chart", about CAN communication for detail..

[VQ35DE]

INFOID:0000000002954090

EC

Α

0

D

Ε

F

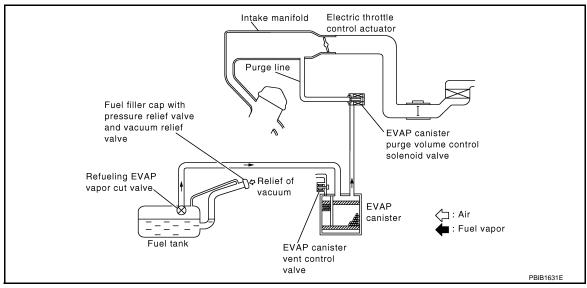
Н

. [

Κ

L

M

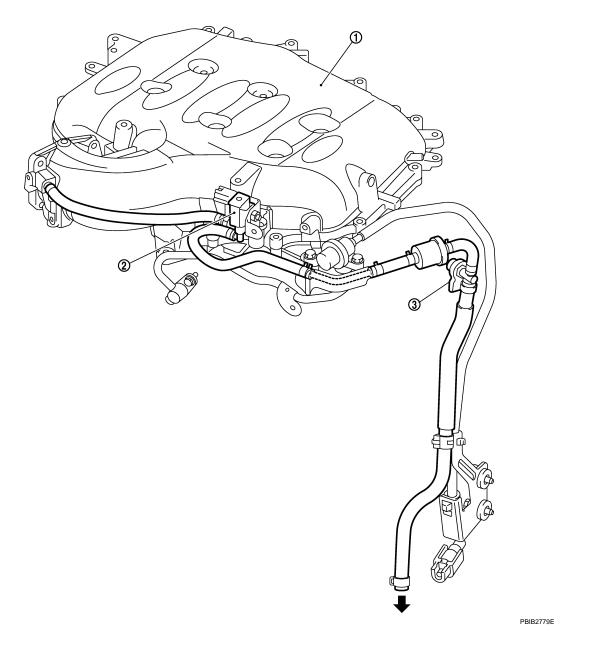

Ν

0

EVAPORATIVE EMISSION SYSTEM

Description

SYSTEM DESCRIPTION


The evaporative emission system is used to reduce hydrocarbons emitted into the atmosphere from the fuel system. This reduction of hydrocarbons is accomplished by activated charcoals in the EVAP canister.

The fuel vapor in the sealed fuel tank is led into the EVAP canister which contains activated carbon and the vapor is stored there when the engine is not operating or when refueling to the fuel tank.

The vapor in the EVAP canister is purged by the air through the purge line to the intake manifold when the engine is operating. EVAP canister purge volume control solenoid valve is controlled by ECM. When the engine operates, the flow rate of vapor controlled by EVAP canister purge volume control solenoid valve is proportionally regulated as the air flow increases.

EVAP canister purge volume control solenoid valve also shuts off the vapor purge line during decelerating and idling.

EVAPORATIVE EMISSION LINE DRAWING

= : From next page

1. Intake manifold collector

2. EVAP canister purge volume control 3. EVAP service port solenoid valve

NOTE:

Do not use soapy water or any type of solvent while installing vacuum hose or purge hoses.

EC

Α

D

Е

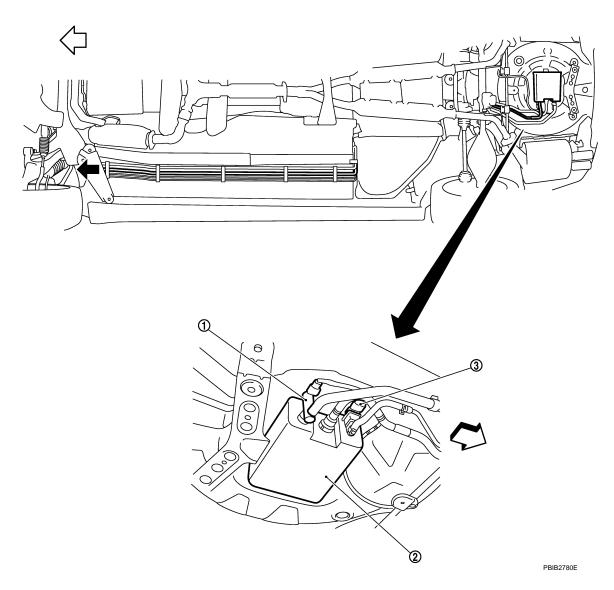
F

G

Н

ı

J


Κ

L

M

Ν

0

< : Vehicle front

: To previous page

1. EVAP canister vent control valve

2. EVAP canister

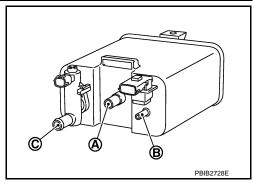
EVAP control system pressure sensor

NOTE:

Do not use soapy water or any type of solvent while installing vacuum hose or purge hoses.

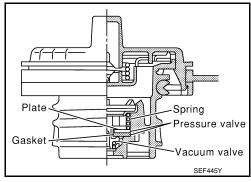
Component Inspection

INFOID:0000000002954092


EVAP CANISTER

EVAPORATIVE EMISSION SYSTEM

< SERVICE INFORMATION >


Check EVAP canister as follows:

- Block port (B).
- 2. Blow air into port (A) and check that it flows freely out of port (C).
- 3. Release blocked port (B).
- 4. Apply vacuum pressure to port (B) and check that vacuum pressure exists at the ports (A) and (C).
- 5. Block port (A) and (B).
- 6. Apply pressure to port (C) and check that there is no leakage.

FUEL TANK VACUUM RELIEF VALVE (BUILT INTO FUEL FULLER CAP)

1. Wipe clean valve housing.

2. Check valve opening pressure and vacuum.

Pressure: 15.3 - 20.0 kPa (0.156 - 0.204 kg/cm², 2.22 -

2.90 psi)

Vacuum: -6.0 to -3.3 kPa (-0.061 to -0.034 kg/cm²,

-0.87 to -0.48 psi)

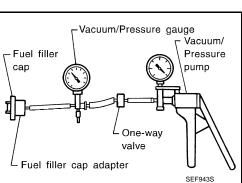
3. If out of specification, replace fuel filler cap as an assembly.

CAUTION:

Use only a genuine fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.

FUEL TANK TEMPERATURE SENSOR

Refer to EC-307.


EVAP CANISTER VENT CONTROL VALVE

Refer to EC-376.

EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-385.

EVAP SERVICE PORT

Α

[VQ35DE]

EC

D

Е

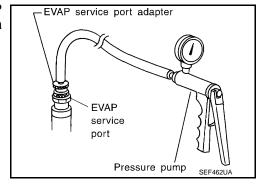
F

Н

I

J

K

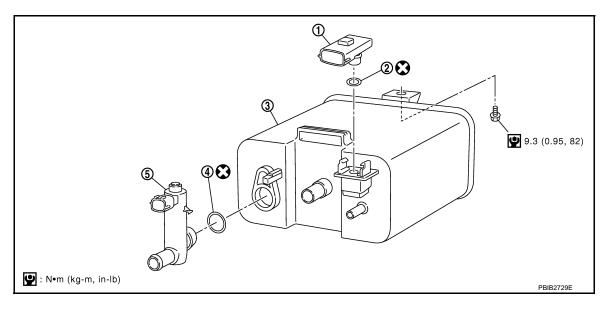

M

Ν

 \circ

< SERVICE INFORMATION >

Positive pressure is delivered to the EVAP system through the EVAP service port. If fuel vapor leakage in the EVAP system occurs, use a leak detector to locate the leak.



Removal and Installation

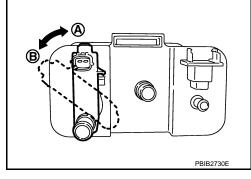
INFOID:0000000002954093

EVAP CANISTER

Tighten EVAP canister as shown in the figure.

- EVAP control system pressure sensor
- 2. O-ring

3. EVAP canister


4. O-ring

5. EVAP canister vent control valve

EVAP CANISTER VENT CONTROL VALVE

- 1. Turn EVAP canister vent control valve counterclockwise.
 - Lock (A)
 - Unlock (B)
- 2. Remove the EVAP canister vent control valve.

Always replace O-ring with a new one.

How to Detect Fuel Vapor Leakage

INFOID:0000000002954094

CAUTION:

- Do not use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in EVAP system.
 NOTE:
- Do not start engine.

EVAPORATIVE EMISSION SYSTEM

< SERVICE INFORMATION >

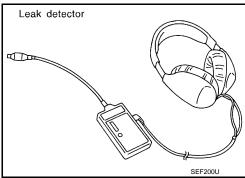
[VQ35DE]

Α

EC

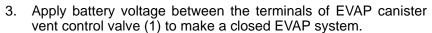
D

Е

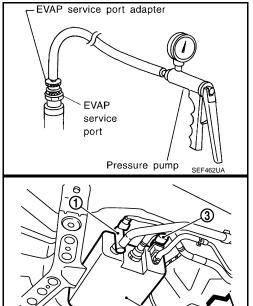

Н

K

• Improper installation of EVAP service port adapter to the EVAP service port may cause a leak.


(P) WITH CONSULT-III

- 1. Attach the EVAP service port adapter securely to the EVAP service port.
- 2. Also attach the pressure pump and hose to the EVAP service port adapter.
- 3. Turn ignition switch ON.
- 4. Select the "EVAP SYSTEM CLOSE" of "WORK SUPPORT MODE" with CONSULT-III.
- 5. Touch "START". A bar graph (Pressure indicating display) will appear on the screen.
- 6. Apply positive pressure to the EVAP system until the pressure indicator reaches the middle of the bar graph.
- 7. Remove EVAP service port adapter and hose with pressure pump.
- 8. Locate the leak using a leak detector. Refer to EC-40, "Description".



WITHOUT CONSULT-III

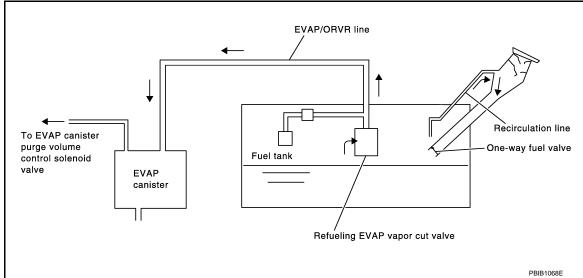
- Attach the EVAP service port adapter securely to the EVAP service port.
- 2. Also attach the pressure pump with pressure gauge to the EVAP service port adapter.

- Illustration shows the view from under the vehicle
- ✓=: Vehicle front
- EVAP canister (2)
- EVAP control system pressure sensor (3)
- To locate the leak, deliver positive pressure to the EVAP system until pressure gauge points reach 1.38 to 2.76 kPa (0.014 to 0.028 kg/cm², 0.2 to 0.4 psi).
- Remove EVAP service port adapter and hose with pressure pump.
- Locate the leak using a leak detector. Refer to <u>EC-40, "Description"</u>.

Ν

M

Р


Revision: 2009 February **EC-45** 2008 M35/M45

[VQ35DE]

ON BOARD REFUELING VAPOR RECOVERY (ORVR)

System Description

INFOID:0000000002954095

From the beginning of refueling, the air and vapor inside the fuel tank go through refueling EVAP vapor cut valve and EVAP/ORVR line to the EVAP canister. The vapor is absorbed by the EVAP canister and the air is released to the atmosphere.

When the refueling has reached the full level of the fuel tank, the refueling EVAP vapor cut valve is closed and refueling is stopped because of auto shut-off. The vapor which was absorbed by the EVAP canister is purged during driving.

WARNING:

When conducting inspections below, be sure to observe the following:

- Put a "CAUTION: FLAMMABLE" sign in workshop.
- Do not smoke while servicing fuel system. Keep open flames and sparks away from work area.
- Be sure to furnish the workshop with a CO2 fire extinguisher.

CAUTION:

- Before removing fuel line parts, carry out the following procedures:
- Put drained fuel in an explosion-proof container and put lid on securely.
- Release fuel pressure from fuel line. Refer to EC-84, "Fuel Pressure Check".
- Disconnect battery ground cable.
- Always replace O-ring when the fuel gauge retainer is removed.
- Do not kink or twist hose and tube when they are installed.
- Do not tighten hose and clamps excessively to avoid damaging hoses.
- · After installation, run engine and check for fuel leaks at connection.
- Do not attempt to top off the fuel tank after the fuel pump nozzle shuts off automatically. Continued refueling may cause fuel overflow, resulting in fuel spray and possibly a fire.

Diagnosis Procedure

INFOID:0000000002954096

SYMPTOM: FUEL ODOR FROM EVAP CANISTER IS STRONG.

1. CHECK EVAP CANISTER

- 1. Remove EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.
- Weigh the EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.

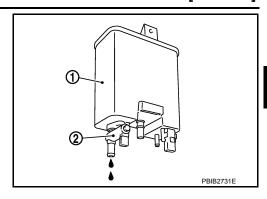
The weight should be less than 2.0 kg (4.4 lb).

OK or NG

OK >> GO TO 2. NG >> GO TO 3.

2. CHECK IF EVAP CANISTER SATURATED WITH WATER

< SERVICE INFORMATION >


[VQ35DE]

Does water drain from the EVAP canister?

- EVAP canister (1)
- EVAP canister vent control valve (2)

Yes or No

Yes >> GO TO 3. No >> GO TO 5.

3. REPLACE EVAP CANISTER

Replace EVAP canister with a new one.

>> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the EVAP hose between EVAP canister and vehicle frame for clogging or poor connection.

>> Repair or replace EVAP hose.

5. CHECK REFUELING EVAP VAPOR CUT VALVE

Refer to EC-48, "Component Inspection".

OK or NG

OK >> INSPECTION END

NG >> Replace refueling EVAP vapor cut valve with fuel tank.

SYMPTOM: CANNOT REFUEL/FUEL ODOR FROM THE FUEL FILLER OPENING IS STRONG WHILE REFUELING.

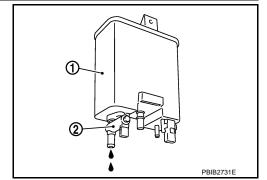
1. CHECK EVAP CANISTER

- Remove EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.
- Weigh the EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.

The weight should be less than 2.0 kg (4.4 lb).

OK or NG

OK >> GO TO 2. NG >> GO TO 3.


2.CHECK IF EVAP CANISTER SATURATED WITH WATER

Does water drain from the EVAP canister?

- EVAP canister (1)
- EVAP canister vent control valve (2)

Yes or No

Yes >> GO TO 3. No >> GO TO 5.

3. REPLACE EVAP CANISTER

Replace EVAP canister with a new one.

Α

EC

C

D

Е

0

Н

J

K

L

M

Ν

0

< SERVICE INFORMATION >

[VQ35DE]

>> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the EVAP hose between EVAP canister and vehicle frame for clogging or poor connection.

>> Repair or replace EVAP hose.

CHECK VENT HOSES AND VENT TUBES

Check hoses and tubes between EVAP canister and refueling control valve for clogging, kink, looseness and improper connection.

OK or NG

OK >> GO TO 6.

NG >> Repair or replace hoses and tubes.

6.CHECK FILLER NECK TUBE

Check recirculation line for clogging, dents and cracks.

OK or NG

OK >> GO TO 7.

NG >> Replace filler neck tube.

7. CHECK REFUELING EVAP VAPOR CUT VALVE

Refer to EC-48, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace refueling EVAP vapor cut valve with fuel tank.

8. CHECK FUEL FILLER TUBE

Check filler neck tube and hose connected to the fuel tank for clogging, dents and cracks.

OK or NG

OK >> GO TO 9.

NG >> Replace fuel filler tube.

9. CHECK ONE-WAY FUEL VALVE-I

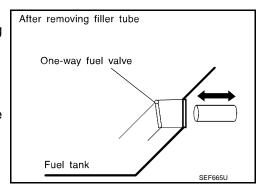
Check one-way valve for clogging.

OK or NG

OK >> GO TO 10.

NG >> Repair or replace one-way fuel valve with fuel tank.

10.CHECK ONE-WAY FUEL VALVE-II


- 1. Make sure that fuel is drained from the tank.
- Remove fuel filler tube and hose.
- Check one-way fuel valve for operation as follows.
 When a stick is inserted, the valve should open, when removing stick it should close.

Do not drop any material into the tank.

OK or NG

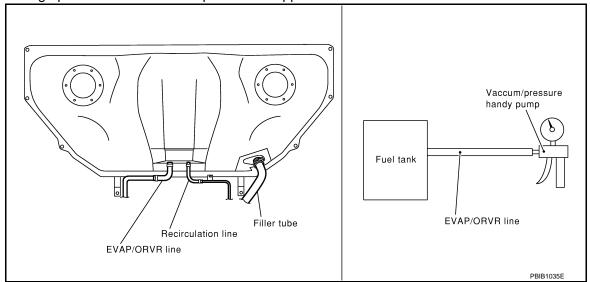
OK >> INSPECTION END

NG >> Replace fuel filler tube or replace one-way fuel valve with fuel tank.

Component Inspection

INFOID:0000000002954097

REFUELING EVAP VAPOR CUT VALVE


(II) With CONSULT-III

< SERVICE INFORMATION >

- Remove fuel tank. Refer to <u>FL-10</u>.
- 2. Drain fuel from the tank as follows:
- Remove fuel feed hose located on the fuel gauge retainer.
- Connect a spare fuel hose, one side to fuel gauge retainer where the hose was removed and the other side to a fuel container.
- c. Drain fuel using "FUEL PUMP RELAY" in "ACTIVE TEST" mode with CONSULT-III.
- Check refueling EVAP vapor cut valve for being stuck to close as follows.
 Blow air into the refueling EVAP vapor cut valve (from the end of EVAP/ORVR line hose), and check that the air flows freely into the tank.
- 4. Check refueling EVAP vapor cut valve for being stuck to open as follows.
- Connect vacuum pump to hose end.
- b. Remove fuel gauge retainer with fuel gauge unit.

Always replace O-ring with new one.

- c. Put fuel tank upside down.
- d. Apply vacuum pressure to hose end [–13.3 kPa (–100 mmHg, –3.94 inHg)] with fuel gauge retainer remaining open and check that the pressure is applicable.

Without CONSULT-III

- 1. Remove fuel tank. Refer to FL-10.
- 2. Drain fuel from the tank as follows:
- a. Remove fuel gauge retainer.
- b. Drain fuel from the tank using a handy pump into a fuel container.
- Check refueling EVAP vapor cut valve for being stuck to close as follows.
 Blow air into the refueling EVAP vapor cut valve (from the end of EVAP/ORVR line hose), and check that the air flows freely into the tank.
- Check refueling EVAP vapor cut valve for being stuck to open as follows.
- a. Connect vacuum pump to hose end.
- b. Remove fuel gauge retainer with fuel gauge unit.

 Always replace O-ring with new one.
- c. Put fuel tank upside down.

EC

Α

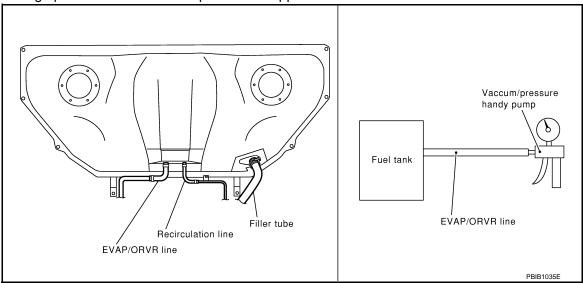
[VQ35DE]

Е

D

F

Н

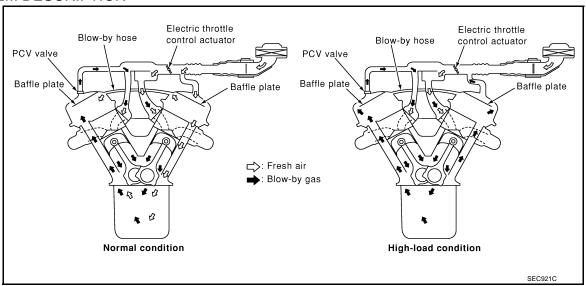

M

Ν

< SERVICE INFORMATION >

[VQ35DE]

d. Apply vacuum pressure to hose end [–13.3 kPa (–100 mmHg, –3.94 inHg)] with fuel gauge retainer remaining open and check that the pressure is applicable.



[VQ35DE]

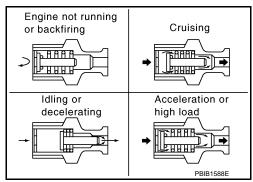
POSITIVE CRANKCASE VENTILATION

Description

SYSTEM DESCRIPTION

This system returns blow-by gas to the intake manifold.

The positive crankcase ventilation (PCV) valve is provided to conductorankcase blow-by gas to the intake manifold.


During partial throttle operation of the engine, the intake manifoldsucks the blow-by gas through the PCV valve.

Normally, the capacity of the valve is sufficient to handle any blow-byand a small amount of ventilating air.

The ventilating air is then drawn from the air inlet tubes into the crankcase. In this process the air passes through the hose connecting air inlet tubes to rocker cover.

Under full-throttle condition, the manifold vacuum is insufficient todraw the blow-by flow through the valve. The flow goes through the hose connectionin the reverse direction.

On vehicles with an excessively high blow-by, the valve does not meetthe requirement. This is because some of the flow will go through the hoseconnection to the air inlet tubes under all conditions.

Component Inspection

PCV (POSITIVE CRANKCASE VENTILATION) VALVE

EC

Α

D

Е

F

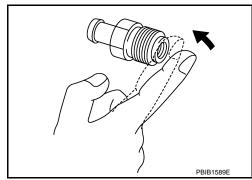
G

Н

K

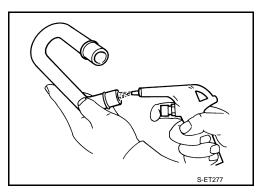
M

NI


INFOID:0000000002954099

POSITIVE CRANKCASE VENTILATION

< SERVICE INFORMATION >


[VQ35DE]

With engine running at idle, remove PCV valve from rocker cover. A properly working valve makes a hissing noise as air passes through it. A strong vacuum should be felt immediately when a finger is placed over valve inlet.

PCV VALVE VENTILATION HOSE

- 1. Check hoses and hose connections for leaks.
- 2. Disconnect all hoses and clean with compressed air. If any hosecannot be freed of obstructions, replace.

IVIS (INFINITI VEHICLE IMMOBILIZER SYSTEM-NATS)

< SERVICE INFORMATION >

[VQ35DE]

IVIS (INFINITI VEHICLE IMMOBILIZER SYSTEM-NATS)

Description INFOID:000000003470232

• If the security indicator lights up with the ignition switch ON or DTC P1610 - P1615 is displayed in "SELF DIAGNOSTIC RESULT" mode, perform the trouble diagnosis for corresponding to the detected DTC. Refer to EC-640, "U1000 - U1010".

- Check that no DTC is displayed in "SELF DIAGNOSIS RESULT" mode of "BCM" before erasing the detected DTC in "ENGINE" mode with CONSULT-III.
- When replacing ECM, refer to EC-706, "Procedure After Replacing ECM".

EC

Α

C

D

Е

F

Н

J

K

L

Ν

Р

0

[VQ35DE]

ON BOARD DIAGNOSTIC (OBD) SYSTEM

Introduction INFOID:000000002954101

The ECM has an on board diagnostic system, which detects malfunctions related to engine sensors or actuators. The ECM also records various emission-related diagnostic information including:

Emission-related diagnostic information	Diagnostic service
Diagnostic Trouble Code (DTC)	Service \$03 of SAE J1979
Freeze Frame data	Service \$02 of SAE J1979
System Readiness Test (SRT) code	Service \$01 of SAE J1979
1st Trip Diagnostic Trouble Code (1st Trip DTC)	Service \$07 of SAE J1979
1st Trip Freeze Frame data	
Test values and Test limits	Service \$06 of SAE J1979
Calibration ID	Service \$09 of SAE J1979

The above information can be checked using procedures listed in the table below.

×: Applicable —: Not applicable

	DTC	1st trip DTC	Freeze Frame data	1st trip Freeze Frame data	SRT code	SRT status	Test value
CONSULT-III	×	×	×	×	×	×	_
GST	×	×	×	_	×	×	×
ECM	×	×*	_	_	_	×	_

^{*:} When DTC and 1st trip DTC simultaneously appear on the display, they cannot be clearly distinguished from each other.

The malfunction indicator lamp (MIL) on the instrument panel lights up when the same malfunction is detected in two consecutive trips (Two trip detection logic), or when the ECM enters fail-safe mode. (Refer to EC-92, <a href="Fail-Safe Chart".)

Two Trip Detection Logic

INFOID:0000000002954102

When a malfunction is detected for the first time, 1st trip DTC and 1st trip Freeze Frame data are stored in the ECM memory. The MIL will not light up at this stage. <1st trip>

If the same malfunction is detected again during the next drive, the DTC and Freeze Frame data are stored in the ECM memory, and the MIL lights up. The MIL lights up at the same time when the DTC is stored. <2nd trip> The "trip" in the "Two Trip Detection Logic" means a driving mode in which self-diagnosis is performed during vehicle operation. Specific on board diagnostic items will cause the ECM to light up or blink the MIL, and store DTC and Freeze Frame data, even in the 1st trip, as shown below.

×: Applicable —: Not applicable

		M	IIL		DTC 1st trip D			DTC	
Items	1st	t trip	2nd	l trip	- 1st trip 2nd trip 1s		1st trip	2nd trip	
	Blinking	Lighting up	Blinking	Lighting up	displaying	displaying	displaying	display- ing	
Misfire (Possible three way catalyst damage) — DTC: P0300 - P0306 is being detected	×	_	_	_	_	_	×	_	
Misfire (Possible three way catalyst damage) — DTC: P0300 - P0306 is being detected	_	_	×	_	_	×	_	_	
One trip detection diagnoses (Refer to EC-55, "Emission-Related Diagnostic Information".)	_	×	_	_	×	_	_	_	
Except above	_	_	_	×	_	×	×	_	

When there is an open circuit on MIL circuit, the ECM cannot warn the driver by lighting up MIL when there is malfunction on engine control system.

< SERVICE INFORMATION >

[VQ35DE]

Therefore, when electrical controlled throttle and part of ECM related diagnoses are continuously detected as NG for 5 trips, ECM warns the driver that engine control system malfunctions and MIL circuit is open by means of operating fail-safe function.

The fail-safe function also operates when above diagnoses except MIL circuit are detected and demands the driver to repair the malfunction.

Engine operating condition in fail-safe mode Engine speed will not rise more than 2,500 rpm due to the fuel cut

Emission-Related Diagnostic Information

INFOID:0000000002954103

EC

D

Е

F

Н

K

Ν

Р

EMISSION-RELATED DIAGNOSTIC INFORMATION ITEMS

×:Applicable —: Not applicable

	DTC	*1		Test val-				
Items (CONSULT-III screen terms)	CONSULT-III GST*2	ECM* ³	SRT code	ue/ Test limit (GST only)	Trip	MIL	Reference page	
CAN COMM CIRCUIT	U1000	1000* ⁴	_	_	1	×	EC-147	
CAN COMM CIRCUIT	U1001	1001*4	_	_	2 (Models with ASCD)		<u>EC-147</u>	
					1 or 2 (Models with ICC)			
CONTROL UNIT(CAN)	U1010	1010	_	_	1	×	EC-149	
NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	P0000	0000	_	_	_	Flas hing *8	_	
INT/V TIM CONT-B1	P0011	0011	_	_	2	×	EC-150	
INT/V TIM CONT-B2	P0021	0021	_	_	2	×	EC-150	
A/F SEN1 HTR (B1)	P0031	0031	_	×	2	×	EC-154	
A/F SEN1 HTR (B1)	P0032	0032	_	×	2	×	EC-154	
HO2S2 HTR (B1)	P0037	0037	_	×	2	×	EC-161	
HO2S2 HTR (B1)	P0038	0038	_	×	2	×	EC-161	
A/F SEN1 HTR (B2)	P0051	0051	_	×	2	×	EC-154	
A/F SEN1 HTR (B2)	P0052	0052	_	×	2	×	EC-154	
HO2S2 HTR (B2)	P0057	0057	_	×	2	×	EC-161	
HO2S2 HTR (B2)	P0058	0058	_	×	2	×	EC-161	
INT/V TIM V/CIR-B1	P0075	0075	_	_	2	×	EC-169	
INT/V TIM V/CIR-B2	P0081	0081	_	_	2	×	EC-169	
MAF SEN/CIRCUIT	P0101	0101	_	_	2	×	EC-176	
MAF SEN/CIRCUIT	P0102	0102	_	_	1	×	EC-185	
MAF SEN/CIRCUIT	P0103	0103	_	_	1	×	EC-185	
IAT SEN/CIRCUIT	P0112	0112	_	_	2	×	EC-192	
IAT SEN/CIRCUIT	P0113	0113	_	_	2	×	EC-192	
ECT SENSOR	P0116	0116	_	_	2	×	EC-210	
ECT SEN/CIRC	P0117	0117	_	_	1	×	EC-199	
ECT SEN/CIRC	P0118	0118	_	_	1	×	EC-199	
TP SEN 2/CIRC	P0122	0122	_	_	1	×	EC-204	
TP SEN 2/CIRC	P0123	0123	_	_	1	×	EC-204	
ECT SENSOR	P0125	0125	_	_	2	×	EC-210	
IAT SENSOR	P0127	0127	_	_	2	×	EC-213	
THERMSTAT FNCTN	P0128	0128	_	_	2	×	EC-216	

< SERVICE INFORMATION >

[VQ35DE]

Items	DTO	C* ¹		Test val- ue/ Test			
(CONSULT-III screen terms)	CONSULT-III GST* ²	ECM*3	SRT code	limit (GST only)	Trip	MIL	Reference page
A/F SENSOR1 (B1)	P0130	0130	_	×	2	×	EC-218
A/F SENSOR1 (B1)	P0131	0131	_	×	2	×	EC-226
A/F SENSOR1 (B1)	P0132	0132	_	×	2	×	EC-234
A/F SENSOR1 (B1)	P0133	0133	×	×	2	×	EC-242
HO2S2 (B1)	P0137	0137	×	×	2	×	EC-251
HO2S2 (B1)	P0138	0138	×	×	2	×	EC-260
HO2S2 (B1)	P0139	0139	×	×	2	×	EC-271
A/F SENSOR1 (B2)	P0150	0150	_	×	2	×	EC-218
A/F SENSOR1 (B2)	P0151	0151	_	×	2	×	EC-226
A/F SENSOR1 (B2)	P0152	0152	_	×	2	×	EC-234
A/F SENSOR1 (B2)	P0153	0153	×	×	2	×	EC-242
HO2S2 (B2)	P0157	0157	×	×	2	×	EC-251
HO2S2 (B2)	P0158	0158	×	×	2	×	EC-260
HO2S2 (B2)	P0159	0159	×	×	2	×	EC-271
FUEL SYS-LEAN-B1	P0171	0171	_	_	2	×	EC-280
FUEL SYS-RICH-B1	P0172	0172	_	_	2	×	EC-292
FUEL SYS-LEAN-B2	P0174	0174	_	_	2	×	EC-280
FUEL SYS-RICH-B2	P0175	0175	_	_	2	×	EC-292
FTT SENSOR	P0181	0181	_	_	2	×	EC-304
FTT SEN/CIRCUIT	P0182	0182	_	_	2	×	EC-308
FTT SEN/CIRCUIT	P0183	0183	_	_	2	×	EC-308
TP SEN 1/CIRC	P0222	0222	_	_	1	×	EC-312
TP SEN 1/CIRC	P0223	0223	_	_	1	×	EC-312
MULTI CYL MISFIRE	P0300	0300	_	_	2	×	EC-318
CYL 1 MISFIRE	P0301	0301	_	_	2	×	EC-318
CYL 2 MISFIRE	P0302	0302	_	_	2	×	EC-318
CYL 3 MISFIRE	P0303	0303	_	_	2	×	EC-318
CYL 4 MISFIRE	P0304	0304	_	_	2	×	EC-318
CYL 5 MISFIRE	P0305	0305	_	_	2	×	EC-318
CYL 6 MISFIRE	P0306	0306	_	_	2	×	EC-318
KNOCK SEN/CIRC-B1	P0327	0327	_	_	2	_	EC-325
KNOCK SEN/CIRC-B1	P0328	0328	_	_	2	_	EC-325
CKP SEN/CIRCUIT	P0335	0335	_	_	2	×	EC-330
CMP SEN/CIRC-B1	P0340	0340	_	_	2	×	EC-335
CMP SEN/CIRC-B2	P0345	0345	_	_	2	×	EC-335
TW CATALYST SYS-B1	P0420	0420	×	×	2	×	EC-343
TW CATALYST SYS-B2	P0430	0430	×	×	2	×	EC-343
EVAP PURG FLOW/MON	P0441	0441	×	×	2	×	EC-347
EVAP SMALL LEAK	P0442	0442	×	×	2	×	EC-352
PURG VOLUME CONT/V	P0443	0443	_	_	2	×	EC-359
PURG VOLUME CONT/V	P0444	0444	_	_	2	×	EC-366
PURG VOLUME CONT/V	P0445	0445	_	_	2	×	EC-366

< SERVICE INFORMATION >

[VQ35DE]

< SERVICE INFORMAT	ION >					[VQJDL]	<u>.1</u>	
	DTC	;* ¹		Test val-				-
Items (CONSULT-III screen terms)	CONSULT-III GST* ²	ECM* ³	SRT code	ue/ Test limit (GST	Trip	MIL	Reference page	А
VENT CONTROL VALVE		0447		only)	2	.,	FC 272	
	P0447	0447	_	_	2	×	EC-372	EC
VENT CONTROL VALVE	P0448	0448	_	_	2	×	EC-378	_
EVAP SYS PRES SEN	P0451	0451	_	_	2	×	<u>EC-384</u>	С
EVAP SYS PRES SEN	P0452	0452	_	_	2	×	<u>EC-387</u>	_
EVAP SYS PRES SEN	P0453	0453	_	_	2	×	EC-393	-
EVAP GROSS LEAK	P0455	0455	_	_	2	×	EC-400	D
EVAP VERY SML LEAK	P0456	0456	×* ⁷	×	2	×	EC-406	_
FUEL LEV SEN SLOSH	P0460	0460	_	_	2	×	EC-413	_
FUEL LEVEL SENSOR	P0461	0461	_	_	2	×	EC-415	Е
FUEL LEVL SEN/CIRC	P0462	0462	_	_	2	×	EC-417	-
FUEL LEVL SEN/CIRC	P0463	0463	_	_	2	×	EC-417	F
VEH SPEED SEN/CIRC*5	P0500	0500	_	_	2	×	EC-419	-
ISC SYSTEM	P0506	0506	_	_	2	×	EC-421	=
ISC SYSTEM	P0507	0507	_	_	2	×	EC-423	G
PW ST P SEN/CIRC	P0550	0550	_	_	2	_	EC-425	-
ECM BACK UP/CIRCUIT	P0603	0603	_	_	2	×	EC-430	Н
ECM	P0605	0605	_	_	1 or 2	× or	EC-434	
SENSOR POWER/CIRC	P0643	0643	_	_	1	×	EC-436	
TCM	P0700	0700	_	_	1	×	<u>AT-102</u>	-
PNP SW/CIRC	P0705	0705	_	_	2	×	<u>AT-103</u>	=
ATF TEMP SEN/CIRC	P0710	0710	_	_	2	×	<u>AT-133</u>	J
TURBINE SENSOR	P0717	0717	_	_	2	×	<u>AT-106</u>	-
VEH SPD SEN/CIR AT*5	P0720	0720	_	_	2	×	<u>AT-108</u>	K
ENGINE SPEED SIG	P0725	0725	_	_	2	_	<u>AT-113</u>	-
TCC SOLENOID/CIRC	P0740	0740	_	_	2	×	<u>AT-125</u>	=
A/T TCC S/V FNCTN	P0744	0744	_	_	2	×	AT-127	L
L/PRESS SOL/CIRC	P0745	0745	_		2	×	AT-129	-
P-N POS SW/CIRCUIT	P0850	0850	_	_	2	×	EC-441	N./
CLOSED LOOP-B1	P1148	1148	_	_	1	×	EC-446	M
CLOSED LOOP-B2	P1168	1168	_	_	 1	×	EC-446	=
TCS C/U FUNCTN	P1211	1211	_	_	2	_	EC-447	N
TCS/CIRC	P1212	1212	_	_	2	_	EC-448	=
ENG OVER TEMP	P1217	1217	_		1	×	EC-449	
FPCM/CIRCUIT	P1220	1220	_	_	2	×	EC-459	0
CTP LEARNING	P1225	1225		_	2	_	EC-466	-
CTP LEARNING	P1226	1226	_	_	2		EC-468	Р
COLD START CONTROL	P1421	1421			2		EC-470	. '
			_	_		×	<u></u>	=
BAT CURRENT SENSOR	P1550	1550	_	_	2	_	EC-472	-
BAT CURRENT SENSOR	P1551	1551	_	_	2		EC-477	-
BAT CURRENT SENSOR	P1552	1552	_	_	2	_	EC-477	=
BAT CURRENT SENSOR	P1553	1553	_	_	2	_	<u>EC-482</u>	

< SERVICE INFORMATION >

[VQ35DE]

	DTO	C* ¹		Test val-			
Items (CONSULT-III screen terms)	CONSULT-III GST* ²	ECM* ³	SRT code	ue/ Test limit (GST only)	Trip	MIL	Reference page
BAT CURRENT SENSOR	P1554	1554	_	_	2	_	EC-487
ASCD SW	P1564	1564	_	_	1	_	EC-493(Models with ICC) EC-500 (Models with ASCD)
ICC COMMAND VALUE*6	P1568	1568	_		1	_	EC-506
ASCD BRAKE SW	P1572	1572	_	_	1	_	EC-507(Models with ICC) EC-515 (Models with ASCD)
ASCD VHL SPD SEN	P1574	1574			1	_	EC-522(Models with ICC) EC-524 (Models with ASCD)
NATS MALFUNCTION	P1610 - P1615	1610 - 1615	_	_	2	_	EC-53
TP SEN/CIRC A/T	P1705	1705	_	_	2	_	<u>AT-131</u>
IN PULY SPEED	P1715	1715	_	_	2	_	EC-526
A/T INTERLOCK	P1730	1730	_	_	1	×	<u>AT-140</u>
I/C SOLENOID/CIRC	P1752	1752	_	_	1	×	<u>AT-144</u>
FR/B SOLENOID/CIRC	P1757	1757	_	_	1	×	<u>AT-146</u>
D/C SOLENOID/CIRC	P1762	1762	_	_	1	×	<u>AT-148</u>
HLR/C SOL/CIRC	P1767	1767	_		1	×	<u>AT-150</u>
LC/B SOLENOID/CIRC	P1772	1772	_	_	1	×	<u>AT-152</u>
LC/B SOLENOID FNCT	P1774	1774	_		1	×	<u>AT-154</u>
BRAKE SW/CIRCUIT	P1805	1805	_	_	2	_	EC-527
ETC MOT PWR	P2100	2100	_	_	1	×	EC-534
ETC FUNCTION/CIRC	P2101	2101	_		1	×	EC-538
ETC MOT PWR	P2103	2103	_	_	1	×	EC-534
ETC MOT	P2118	2118	_		1	×	EC-544
ETC ACTR	P2119	2119	_	_	1	×	EC-548
APP SEN 1/CIRC	P2122	2122	_	_	1	×	EC-550
APP SEN 1/CIRC	P2123	2123	_	-	1	×	EC-550
APP SEN 2/CIRC	P2127	2127	_	_	1	×	EC-555
APP SEN 2/CIRC	P2128	2128	_	_	1	×	EC-555
TP SENSOR	P2135	2135	_	_	1	×	EC-561
APP SENSOR	P2138	2138	_	_	1	×	EC-567
A/F SENSOR1 (B1)	P2A00	2A00	_	×	2	×	EC-574
A/F SENSOR1 (B2)	P2A03	2A03	_	×	2	×	EC-574

^{*1: 1}st trip DTC No. is the same as DTC No.

^{*2:} This number is prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.

^{*4:} The troubleshooting for this DTC needs CONSULT-III.

^{*5:} When the fail-safe operations for both self-diagnoses occur, the MIL illuminates.

^{*6:} Models with ICC.

^{*7:} SRT code will not be set if the self-diagnostic result is NG.

^{*8:} When the ECM is in the mode of displaying SRT status, MIL may flash. For the details, refer to "How to Display SRT Status".

< SERVICE INFORMATION > [VQ35DE]

DTC AND 1ST TRIP DTC

The 1st trip DTC (whose number is the same as the DTC number) is displayed for the latest self-diagnostic result obtained. If the ECM memory was cleared previously, and the 1st trip DTC did not reoccur, the 1st trip DTC will not be displayed.

If a malfunction is detected during the 1st trip, the 1st trip DTC is stored in the ECM memory. The MIL will not light up (two trip detection logic). If the same malfunction is not detected in the 2nd trip (meeting the required driving pattern), the 1st trip DTC is cleared from the ECM memory. If the same malfunction is detected in the 2nd trip, both the 1st trip DTC and DTC are stored in the ECM memory and the MIL lights up. In other words, the DTC is stored in the ECM memory and the MIL lights up when the same malfunction occurs in two consecutive trips. If a 1st trip DTC is stored and a non-diagnostic operation is performed between the 1st and 2nd trips, only the 1st trip DTC will continue to be stored. For malfunctions that blink or light up the MIL during the 1st trip, the DTC and 1st trip DTC are stored in the ECM memory.

Procedures for clearing the DTC and the 1st trip DTC from the ECM memory are described in "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION".

For malfunctions in which 1st trip DTCs are displayed, refer to "EMISSION-RELATED DIAGNOSTIC INFOR-MATION ITEMS". These items are required by legal regulations to continuously monitor the system/component. In addition, the items monitored non-continuously are also displayed on CONSULT-III.

1st trip DTC is specified in Service \$07 of SAE J1979. 1st trip DTC detection occurs without lighting up the MIL and therefore does not warn the driver of a malfunction. However, 1st trip DTC detection will not prevent the vehicle from being tested, for example during Inspection/Maintenance (I/M) tests.

When a 1st trip DTC is detected, check, print out or write down and erase (1st trip) DTC and Freeze Frame data as specified in Work Flow procedure Step 2, refer to EC-86, "Trouble Diagnosis Introduction". Then perform DTC Confirmation Procedure or Overall Function Check to try to duplicate the malfunction. If the malfunction is duplicated, the item requires repair.

How to Read DTC and 1st Trip DTC

DTC and 1st trip DTC can be read by the following methods.

(P) With CONSULT-III

With GST

CONSULT-III or GST (Generic Scan Tool) Examples: P0340, P0850, P1148, etc.

These DTCs are prescribed by SAE J2012.

(CONSULT-III also displays the malfunctioning component or system.)

No Tools

The number of blinks of the MIL in the Diagnostic Test Mode II (Self-Diagnostic Results) indicates the DTC. Example: 0340, 0850, 1148, etc.

These DTCs are controlled by NISSAN.

- 1st trip DTC No. is the same as DTC No.
- Output of a DTC indicates a malfunction. However, GST or the Diagnostic Test Mode II do not indicate whether the malfunction is still occurring or has occurred in the past and has returned to normal. CONSULT-III can identify malfunction status as shown below. Therefore, using CONSULT-III (if available) is recommended.

A sample of CONSULT-III display for DTC and 1st trip DTC is shown below. DTC or 1st trip DTC of a malfunction is displayed in SELF-DIAGNOSTIC RESULTS mode of CONSULT-III. Time data indicates how many times the vehicle was driven after the last detection of a DTC.

If the DTC is being detected currently, the time data will be [0].

If a 1st trip DTC is stored in the ECM, the time data will be [1t].

FREEZE FRAME DATA AND 1ST TRIP FREEZE FRAME DATA

The ECM records the driving conditions such as fuel system status, calculated load value, engine coolant temperature, short term fuel trim, long term fuel trim, engine speed, vehicle speed, absolute throttle position, base fuel schedule and intake air temperature at the moment a malfunction is detected.

Data which are stored in the ECM memory, along with the 1st trip DTC, are called 1st trip freeze frame data. The data, stored together with the DTC data, are called freeze frame data and displayed on CONSULT-III or GST. The 1st trip freeze frame data can only be displayed on the CONSULT-III screen, not on the GST. For details, see <u>EC-116</u>, "CONSULT-III Function (ENGINE)".

Only one set of freeze frame data (either 1st trip freeze frame data or freeze frame data) can be stored in the ECM. 1st trip freeze frame data is stored in the ECM memory along with the 1st trip DTC. There is no priority for 1st trip freeze frame data and it is updated each time a different 1st trip DTC is detected. However, once freeze frame data (2nd trip detection/MIL on) is stored in the ECM memory, 1st trip freeze frame data is no longer stored. Remember, only one set of freeze frame data can be stored in the ECM. The ECM has the following priorities to update the data.

EC

D

Е

F

G

Н

J.

K

IVI

N

IV

0

Р

2008 M35/M45

Priority	Items					
1	Freeze frame data	Misfire — DTC: P0300 - P0306 Fuel Injection System Function — DTC: P0171, P0172, P0174, P0175				
2		Except the above items (Includes A/T related items)				
3	1st trip freeze frame da	ata				

For example, the EGR malfunction (Priority: 2) was detected and the freeze frame data was stored in the 2nd trip. After that when the misfire (Priority: 1) is detected in another trip, the freeze frame data will be updated from the EGR malfunction to the misfire. The 1st trip freeze frame data is updated each time a different malfunction is detected. There is no priority for 1st trip freeze frame data. However, once freeze frame data is stored in the ECM memory, 1st trip freeze data is no longer stored (because only one freeze frame data or 1st trip freeze frame data can be stored in the ECM). If freeze frame data is stored in the ECM memory and freeze frame data with the same priority occurs later, the first (original) freeze frame data remains unchanged in the ECM memory.

Both 1st trip freeze frame data and freeze frame data (along with the DTCs) are cleared when the ECM memory is erased. Procedures for clearing the ECM memory are described in "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION".

SYSTEM READINESS TEST (SRT) CODE

System Readiness Test (SRT) code is specified in Service \$01 of SAE J1979.

As part of an enhanced emissions test for Inspection & Maintenance (I/M), certain states require the status of SRT be used to indicate whether the ECM has completed self-diagnosis of major emission systems and components. Completion must be verified in order for the emissions inspection to proceed.

If a vehicle is rejected for a State emissions inspection due to one or more SRT items indicating "INCMP", use the information in this Service Manual to set the SRT to "CMPLT".

In most cases the ECM will automatically complete its self-diagnosis cycle during normal usage, and the SRT status will indicate "CMPLT" for each application system. Once set as "CMPLT", the SRT status remains "CMPLT" until the self-diagnosis memory is erased.

Occasionally, certain portions of the self-diagnostic test may not be completed as a result of the customer's normal driving pattern; the SRT will indicate "INCMP" for these items.

NOTE:

The SRT will also indicate "INCMP" if the self-diagnosis memory is erased for any reason or if the ECM memory power supply is interrupted for several hours.

If, during the state emissions inspection, the SRT indicates "CMPLT" for all test items, the inspector will continue with the emissions test. However, if the SRT indicates "INCMP" for one or more of the SRT items the vehicle is returned to the customer untested.

NOTE:

If MIL is ON during the state emissions inspection, the vehicle is also returned to the customer untested even though the SRT indicates "CMPLT" for all test items. Therefore, it is important to check SRT ("CMPLT") and DTC (No DTCs) before the inspection.

SRT Item

The table below shows required self-diagnostic items to set the SRT to "CMPLT".

SRT item (CONSULT-III indication)	Performance Priority*	Required self-diagnostic items to set the SRT to "CMPLT"	Corresponding DTC No.
CATALYST	2	Three way catalyst function	P0420, P0430
EVAP SYSTEM	2	EVAP control system purge flow monitoring	P0441
	1	EVAP control system	P0442
	2	EVAP control system	P0456
HO2S	2	Air fuel ratio (A/F) sensor 1	P0133, P0153
		Heated oxygen sensor 2	P0137, P0157
		Heated oxygen sensor 2	P0138, P0158
		Heated oxygen sensor 2	P0139, P0159

^{*:} If completion of several SRTs is required, perform driving patterns (DTC confirmation procedure), one by one based on the priority for models with CONSULT-III.

< SERVICE INFORMATION >

[VQ35DE]

SRT is set as "CMPLT" after self-diagnosis has been performed one or more times. Completion of SRT is done regardless of whether the result is OK or NG. The set timing is different between OK and NG results and is shown in the table below.

				Example				
Self-diagno	sis result	Diagnosis	Diagnosis Ignition cycle					
		Diagnosis	\leftarrow ON \rightarrow C	$OFF \leftarrow ON \rightarrow$	$OFF \leftarrow ON \rightarrow$	$OFF \leftarrow ON \rightarrow$		
All OK	Case 1	P0400	OK (1)	— (1)	OK (2)	— (2)		
		P0402	OK (1)	— (1)	— (1)	OK (2)		
		P1402	OK (1)	OK (2)	— (2)	— (2)		
		SRT of EGR	"CMPLT"	"CMPLT"	"CMPLT"	"CMPLT"		
	Case 2	P0400	OK (1)	—(1)	— (1)	— (1)		
		P0402	— (0)	— (0)	OK (1)	— (1)		
		P1402	OK (1)	OK (2)	— (2)	— (2)		
		SRT of EGR	"INCMP"	"INCMP"	"CMPLT"	"CMPLT"		
NG exists	Case 3	P0400	OK	OK	_	_		
		P0402	_	_	_	_		
		P1402	NG	_	NG	NG (Consecutive NG)		
		(1st trip) DTC	1st trip DTC	_	1st trip DTC	DTC (= MIL ON)		
		SRT of EGR	"INCMP"	"INCMP"	"INCMP"	"CMPLT"		

OK: Self-diagnosis is carried out and the result is OK.

NG: Self-diagnosis is carried out and the result is NG.

-: Self-diagnosis is not carried out.

When all SRT related self-diagnoses showed OK results in a single cycle (Ignition OFF-ON-OFF), the SRT will indicate "CMPLT". \rightarrow Case 1 above

When all SRT related self-diagnoses showed OK results through several different cycles, the SRT will indicate "CMPLT" at the time the respective self-diagnoses have at least one OK result. → Case 2 above

If one or more SRT related self-diagnoses showed NG results in 2 consecutive cycles, the SRT will also indicate "CMPLT". → Case 3 above

The table above shows that the minimum number of cycles for setting SRT as "INCMP" is one (1) for each self-diagnosis (Case 1 & 2) or two (2) for one of self-diagnoses (Case 3). However, in preparation for the state emissions inspection, it is unnecessary for each self-diagnosis to be executed twice (Case 3) for the following reasons:

- The SRT will indicate "CMPLT" at the time the respective self-diagnoses have one (1) OK result.
- The emissions inspection requires "CMPLT" of the SRT only with OK self-diagnosis results.
- When, during SRT driving pattern, 1st trip DTC (NG) is detected prior to "CMPLT" of SRT, the self-diagnosis memory must be erased from ECM after repair.
- If the 1st trip DTC is erased, all the SRT will indicate "INCMP".

NOTE:

SRT can be set as "CMPLT" together with the DTC(s). Therefore, DTC check must always be carried out prior to the state emission inspection even though the SRT indicates "CMPLT".

SRT Service Procedure

If a vehicle has failed the state emissions inspection due to one or more SRT items indicating "INCMP", review the flowchart diagnostic sequence on the next page.

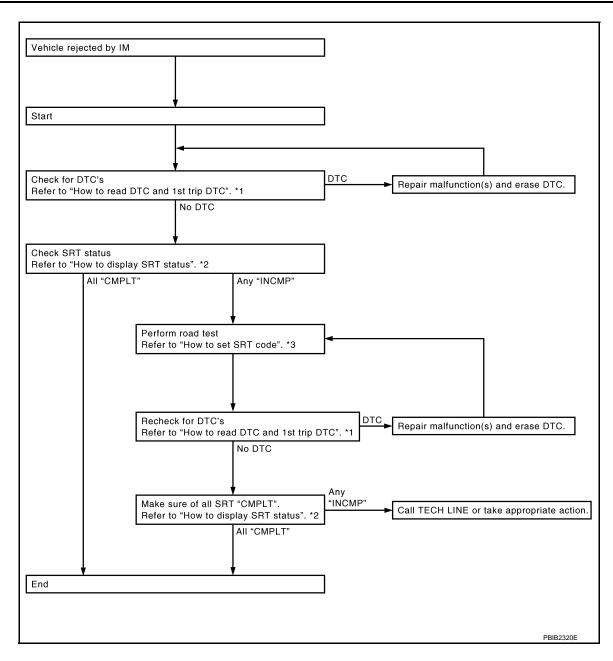
EC

D

Е

F

Ы


I

K

M

Ν

Ρ

*1 "How to Read DTC and 1st Trip DTC" *2 "How to Display SRT Status" *3 "H

*3 "How to Set SRT Code"

How to Display SRT Status

(P) WITH CONSULT-III

Selecting "SRT STATUS" in "DTC CONFIRMATION" mode with CONSULT-III.

For items whose SRT codes are set, a "CMPLT" is displayed on the CONSULT-III screen; for items whose SRT codes are not set, "INCMP" is displayed.

A sample of CONSULT-III display for SRT code is shown in the figure.

"INCMP" means the self-diagnosis is incomplete and SRT is not set. "CMPLT" means the self-diagnosis is complete and SRT is set.

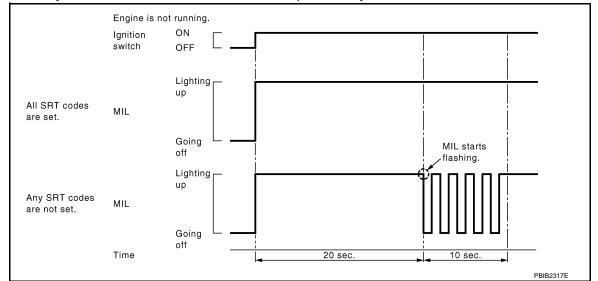
NOTE:

Though displayed on the CONSULT-III screen, "HO2S HTR" is not SRT item.

WITH GST

Selecting Service \$01 with GST (Generic Scan Tool)

NO TOOLS


A SRT code itself can not be displayed while only SRT status can be.

- 1. Turn ignition switch ON and wait 20 seconds.
- 2. SRT status is indicated as shown below.

< SERVICE INFORMATION >

· When all SRT codes are set, MIL lights up continuously.

When any SRT codes are not set, MIL will flash periodically for 10 seconds.

How to Set SRT Code

To set all SRT codes, self-diagnosis for the items indicated above must be performed one or more times. Each diagnosis may require a long period of actual driving under various conditions.

(P) WITH CONSULT-III

Perform corresponding DTC Confirmation Procedure one by one based on Performance Priority in the table on "SRT Item".

M WITHOUT CONSULT-III

The most efficient driving pattern in which SRT codes can be properly set is explained on the next page. The driving pattern should be performed one or more times to set all SRT codes.

EC

Α

[VQ35DE]

D

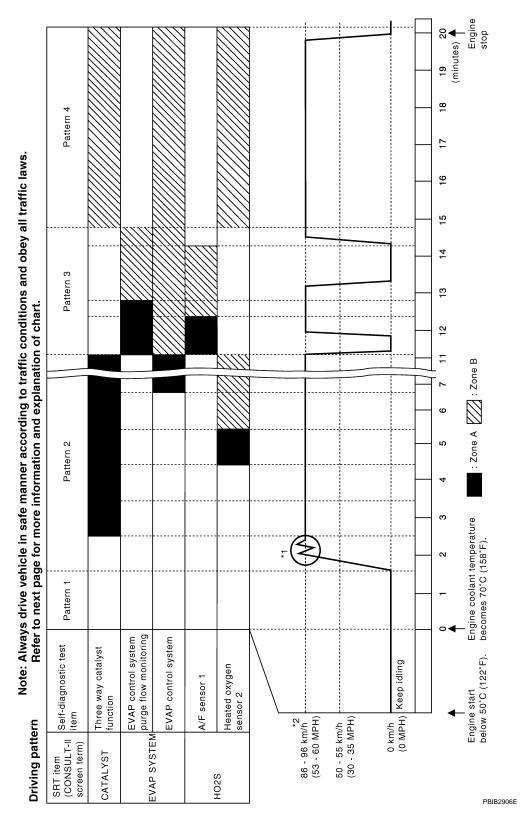
Е

F

Н

J

K


L

M

Ν

Ρ

Driving Pattern

- The time required for each diagnosis varies with road surface conditions, weather, altitude, individual driving habits, etc.
 - Zone A refers to the range where the time, required for the diagnosis under normal conditions*, is the shortest.
 - Zone B refers to the range where the diagnosis can still be performed if the diagnosis is not completed within zone A.
- *: Normal conditions refer to the following:

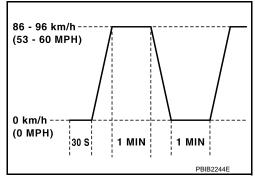
< SERVICE INFORMATION >

- Sea level
- Flat road
- Ambient air temperature: 20 30°C (68 86°F)
- Diagnosis is performed as quickly as possible under normal conditions.
 Under different conditions [For example: ambient air temperature other than 20 30°C (68 86°F)], diagnosis may also be performed.

Pattern 1:

- The engine is started at the engine coolant temperature of -10 to 35°C (14 to 95°F) (where the voltage between the ECM terminal 73 and ground is 3.0 - 4.3V).
- The engine must be operated at idle speed until the engine coolant temperature is greater than 70°C (158°F) (where the voltage between the ECM terminal 73 and ground is lower than 1.4V).
- The engine is started at the fuel tank temperature of warmer than 0°C (32°F) (where the voltage between the ECM terminal 107 and ground is less than 4.1V).

Pattern 2:


• When steady-state driving is performed again even after it is interrupted, each diagnosis can be conducted. In this case, the time required for diagnosis may be extended.

Pattern 3:

- Operate vehicle following the driving pattern shown in the figure.
- Release the accelerator pedal during decelerating vehicle speed from 90 km/h (56 MPH) to 0 km/h (0 MPH).

Pattern 4:

- The accelerator pedal must be held very steady during steadystate driving.
- If the accelerator pedal is moved, the test must be conducted all over again.
- *1: Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH), then release the accelerator pedal and keep it released for more than 10 seconds. Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH) again.
- *2: Checking the vehicle speed with GST is advised.

Suggested Transmission Gear Position

Set the selector lever in the D position with the overdrive switch turned ON.

TEST VALUE AND TEST LIMIT (GST ONLY — NOT APPLICABLE TO CONSULT-III)

The following is the information specified in Service \$06 of SAE J1979.

The test value is a parameter used to determine whether a system/circuit diagnostic test is OK or NG while being monitored by the ECM during self-diagnosis. The test limit is a reference value which is specified as the maximum or minimum value and is compared with the test value being monitored.

These data (test value and test limit) are specified by Test ID (TID) and Component ID (CID) and can be displayed on the GST screen.

Item	Self-diagnostic test item	DTC	Test value (GST display)		Test limit	Conversion
item	Gen-diagnostic test item	DIC	TID	CID	163t IIIIIt	Conversion
	Three way catalyst function (Bank 1)	P0420	01H	01H	Max.	1/128
CATALYST	Three way catalyst function (Bank 1)	P0420	02H	81H	Min.	1
CATALIST	Three way catalyst function (Bank 2)	P0430	03H	02H	Max.	1/128
	Tiffee way catalyst function (Bank 2)	P0430	04H	CID 01H Max. 81H Min. 02H Max. 82H Min. 03H Max. 83H Min.	1	
	EVAP control system (Small leak)	P0442	05H	03H	Max.	1/128 mm ²
EVAP SYSTEM	EVAP control system purge flow monitoring	P0441	06H	83H	Min.	20 mV
2 1 2 1 2	EVAP control system (Very small leak)	P0456	07H	03H	Max.	1/128 mm ²

Revision: 2009 February **EC-65** 2008 M35/M45

EC

Α

[VQ35DE]

D

Е

G

Н

U

K

M

N

0

le	Self-diagnostic test item	DTC	Test value (GST display)		T P 2	
Item			TID	CID	Test limit	Conversion
	Air fuel ratio (A/F) sensor 1 (Bank 1)	P0131	41H	8EH	Min.	5mV
		P0132	42H	0EH	Max.	5mV
		P2A00	43H	0EH	Max.	0.002
		P2A00	44H	8EH	Min.	0.002
		P0133	45H	8EH	Min.	0.002
		P0130	46H	0EH	Max.	5mV
		P0130	47H	8EH	Min.	5mV
		P0133	48H	8EH	Min.	0.002
		P0151	4CH	8FH	Min.	5mV
		P0152	4DH	0FH	Max.	5mV
		P2A03	4EH	0FH	Max.	0.002
11000	Air final ratio (A/E) annound (Bardy O)	P2A03	4FH	8FH	Min.	0.002
HO2S	Air fuel ratio (A/F) sensor 1 (Bank 2)	P0153	50H	8FH	Min.	0.002
		P0150	51H	0FH	Max.	5mV
		P0150	52H	8FH	Min.	5mV
		P0153	53H	8FH	Min.	0.002
		P0139	19H	86H	Min.	10mV/500 ms
	Heated oxygen sensor 2 (Bank 1)	P0137	1AH	86H	Min.	10 mV
		P0138	1BH	06H	Max.	10 mV
		P0138	1CH	06H	Max.	10mV
	Heated oxygen sensor 2 (Bank 2)	P0159	21H	87H	Min.	10 mV/500 ms
		P0157	22H	87H	Min.	10 mV
		P0158	23H	07H	Max.	10 mV
		P0158	24H	07H	Max.	10mV
	A/F sensor 1 heater (Bank 1)	P0032	57H	10H	Max.	5 mV
		P0031	58H	90H	Min.	5 mV
	A/F sensor 1 heater (Bank 2)	P0052	59H	11H	Max.	5 mV
HO2S HTR		P0051	5AH	91H	Min.	5 mV
погопік	Hooted average concer 2 hooter (Porth 4)	P0038	2DH	0AH	Max.	20 mV
	Heated oxygen sensor 2 heater (Bank 1)	P0037	2EH	8AH	Min.	20 mV
	Heated oxygen sensor 2 heater (Bank 2)	P0058	2FH	0BH	Max.	20 mV
		P0057	30H	8BH	Min.	20 mV

HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION

How to Erase DTC and 1st Trip DTC

(II) With CONSULT-III

NOTE:

- If the ignition switch stays ON after repair work, be sure to turn ignition OFF once. Wait at least 10 seconds and then turn it ON (engine stopped) again.
- If the DTC is not for A/T related items (see EC-18. "U1000 U1010"), skip step 1.
- Erase DTC in TCM. Refer to AT-40, "OBD-II Diagnostic Trouble Code (DTC)".
- 2. Select "ENGINE" with CONSULT-III.
- 3. Select "SELF-DIAG RESULTS".
- 4. Touch "ERASE". (DTC in ECM will be erased.)

With GST

< SERVICE INFORMATION > [VQ35DE]

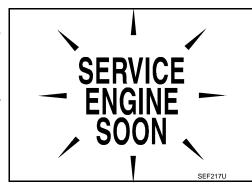
NOTE:

- If the ignition switch stays ON after repair work, be sure to turn ignition switch OFF once. Wait at least 10 seconds and then turn it ON (engine stopped) again.
- If the DTC is not for A/T related items (see EC-18, "U1000 U1010"), skip step 1.
- 1. Erase DTC in TCM. Refer to AT-40, "OBD-II Diagnostic Trouble Code (DTC)" (The DTC in TCM will be erased)
- Select Service \$04 with GST (Generic Scan Tool).

No Tools

NOTE:

- If the ignition switch stays ON after repair work, be sure to turn ignition switch OFF once. Wait at least 10 seconds and then turn it ON (engine stopped) again.
- If the DTC is not for A/T related items (see EC-18, "U1000 U1010"), skip step 1.
- 1. Erase DTC in TCM. Refer to AT-40, "OBD-II Diagnostic Trouble Code (DTC)".
- Erase DTC in ECM. Refer to HOW TO ERASE DIAGNOSTIC TEST MODE II (SELF-DIAGNOSTIC RESULTS).
- If the battery is disconnected, the emission-related diagnostic information will be lost within 24 hours.
- The following data are cleared when the ECM memory is erased.
- Diagnostic trouble codes
- 1st trip diagnostic trouble codes
- Freeze frame data
- 1st trip freeze frame data
- System readiness test (SRT) codes
- Test values


Actual work procedures are explained using a DTC as an example. Be careful so that not only the DTC, but all of the data listed above, are cleared from the ECM memory during work procedures.

Malfunction Indicator Lamp (MIL)

DESCRIPTION

The MIL is located on the instrument panel.

- The MIL will light up when the ignition switch is turned ON without the engine running. This is a bulb check.
 If the MIL does not light up, refer to <u>DI-34</u> or see <u>EC-636</u>.
- When the engine is started, the MIL should go off.
 If the MIL remains on, the on board diagnostic system has detected an engine system malfunction.

ON BOARD DIAGNOSTIC SYSTEM FUNCTION

The on board diagnostic system has the following three functions.

EC

D

Е

F

0

Н

INFOID:0000000002954104

K

L

N

M

0

Diagnostic Test Mode	KEY and ENG. Status	Function	Explanation of Function
Mode I	Ignition switch in ON position Engine stopped	BULB CHECK	This function checks the MIL bulb for damage (blown, open circuit, etc.). If the MIL does not come on, check MIL circuit.
	Engine running	MALFUNCTION WARNING	This is a usual driving condition. When a malfunction is detected twice in two consecutive driving cycles (two trip detection logic), the MIL will light up to inform the driver that a malfunction has been detected. The following malfunctions will light up or blink the MIL in the 1st trip. • Misfire (Possible three way catalyst damage) • One trip detection diagnoses
Mode II	Ignition switch in ON position Engine stopped	SELF-DIAGNOSTIC RESULTS	This function allows DTCs and 1st trip DTCs to be read.

When there is an open circuit on MIL circuit, the ECM cannot warn the driver by lighting up MIL when there is malfunction on engine control system.

Therefore, when electrical controlled throttle and part of ECM related diagnoses are continuously detected as NG for 5 trips, ECM warns the driver that engine control system malfunctions and MIL circuit is open by means of operating fail-safe function.

The fail-safe function also operates when above diagnoses except MIL circuit are detected and demands the driver to repair the malfunction.

Engine operating condition in fail-safe mode	Engine speed will not rise more than 2,500 rpm due to the fuel cut

MIL Flashing Without DTC

When any SRT codes are not set, MIL may flash without DTC. For the details, refer to <u>EC-55</u>, "Emission-Related Diagnostic Information".

HOW TO SWITCH DIAGNOSTIC TEST MODE

NOTE:

- It is better to count the time accurately with a clock.
- It is impossible to switch the diagnostic mode when an accelerator pedal position sensor circuit has a malfunction.
- Always ECM returns to Diagnostic Test Mode I after ignition switch is turned OFF.

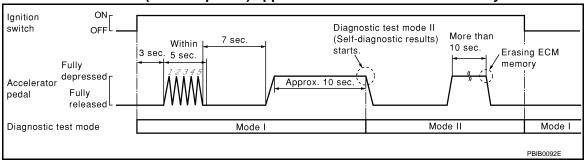
How to Set Diagnostic Test Mode II (Self-diagnostic Results)

- 1. Confirm that accelerator pedal is fully released, turn ignition switch ON and wait 3 seconds.
- 2. Repeat the following procedure quickly five times within 5 seconds.
- a. Fully depress the accelerator pedal.
- Fully release the accelerator pedal.
- Wait 7 seconds, fully depress the accelerator pedal and keep it for approx. 10 seconds until the MIL starts blinking.

NOTE:

< SERVICE INFORMATION >

[VQ35DE]


Do not release the accelerator pedal for 10 seconds if MIL may start blinking on the halfway of this 10 seconds. This blinking is displaying SRT status and is continued for another 10 seconds. For the details, refer to EC-55, "Emission-Related Diagnostic Information".

Fully release the accelerator pedal.

ECM has entered to Diagnostic Test Mode II (Self-diagnostic results).

NOTE:

Wait until the same DTC (or 1st trip DTC) appears to confirm all DTCs certainly.

How to Erase Diagnostic Test Mode II (Self-diagnostic Results)

- Set ECM in Diagnostic Test Mode II (Self-diagnostic results). Refer to "How to Set Diagnostic Test Mode II (Self-diagnostic Results)".
- Fully depress the accelerator pedal and keep it for more than 10 seconds.The emission-related diagnostic information has been erased from the backup memory in the ECM.
- Fully release the accelerator pedal, and confirm the DTC 0000 is displayed.

DIAGNOSTIC TEST MODE I — BULB CHECK

In this mode, the MIL on the instrument panel should stay ON. If it remains OFF, check the bulb. Refer to $\underline{\text{DI-34}}$ or see $\underline{\text{EC-636}}$.

DIAGNOSTIC TEST MODE I — MALFUNCTION WARNING

MIL	Condition	
ON	When the malfunction is detected.	
OFF	No malfunction.	

This DTC number is clarified in Diagnostic Test Mode II (SELF-DIAGNOSTIC RESULTS)

DIAGNOSTIC TEST MODE II — SELF-DIAGNOSTIC RESULTS

In this mode, the DTC and 1st trip DTC are indicated by the number of blinks of the MIL as shown below. The DTC and 1st trip DTC are displayed at the same time. If the MIL does not illuminate in diagnostic test mode I (Malfunction warning), all displayed items are 1st trip DTCs. If only one code is displayed when the MIL illuminates in diagnostic test mode II (SELF-DIAGNOSTIC RESULTS), it is a DTC; if two or more codes are displayed, they may be either DTCs or 1st trip DTCs. DTC No. is same as that of 1st trip DTC. These uniden-

EC

D

Е

F

Н

K

M

Ν

0

Ρ

tified codes can be identified by using the CONSULT-III or GST. A DTC will be used as an example for how to read a code.

A particular trouble code can be identified by the number of four-digit numeral flashes. The "zero" is indicated by the number of ten flashes. The "A" is indicated by the number of eleven flash. The length of time the 1,000th-digit numeral flashes on and off is 1.2 seconds consisting of an ON (0.6-second) - OFF (0.6-second) cycle.

The 100th-digit numeral and lower digit numerals consist of a 0.3-second ON and 0.3-second OFF cycle.

A change from one digit numeral to another occurs at an interval of 1.0-second OFF. In other words, the later numeral appears on the display 1.3 seconds after the former numeral has disappeared.

A change from one trouble code to another occurs at an interval of 1.8-second OFF.

In this way, all the detected malfunctions are classified by their DTC numbers. The DTC 0000 refers to no malfunction. (See EC-18)

How to Erase Diagnostic Test Mode II (Self-diagnostic Results)

The DTC can be erased from the back up memory in the ECM by depressing accelerator pedal. Refer to "How to Erase Diagnostic Test Mode II (Self-diagnostic Results)"

- If the battery is disconnected, the DTC will be lost from the backup memory within 24 hours.
- Be careful not to erase the stored memory before starting trouble diagnoses.

OBD System Operation Chart

INFOID:0000000002954105

RELATIONSHIP BETWEEN MIL, 1ST TRIP DTC, DTC, AND DETECTABLE ITEMS

- When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data are stored in the ECM memory.
- When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data are stored in the ECM memory, and the MIL will come on. For details, refer to EC-54, "Two Trip Detection Logic".
- The MIL will go off after the vehicle is driven 3 times (driving pattern B) with no malfunction. The drive is counted only when the recorded driving pattern is met (as stored in the ECM). If another malfunction occurs while counting, the counter will reset.
- The DTC and the freeze frame data will be stored until the vehicle is driven 40 times (driving pattern A) without the same malfunction recurring (except for Misfire and Fuel Injection System). For Misfire and Fuel Injection System, the DTC and freeze frame data will be stored until the vehicle is driven 80 times (driving pattern).

< SERVICE INFORMATION >

[VQ35DE]

C) without the same malfunction recurring. The "TIME" in "SELF-DIAGNOSTIC RESULTS" mode of CONSULT-III will count the number of times the vehicle is driven.

The 1st trip DTC is not displayed when the self-diagnosis results in OK for the 2nd trip.

SUMMARY CHART

Items	Fuel Injection System	Misfire	Other	
MIL (goes off)	3 (pattern B)	3 (pattern B)	3 (pattern B)	
DTC, Freeze Frame Data (no display)	80 (pattern C)	80 (pattern C)	40 (pattern A)	
1st Trip DTC (clear)	1 (pattern C), *1	1 (pattern C), *1	1 (pattern B)	
1st Trip Freeze Frame Data (clear)	*1, *2	*1, *2	1 (pattern B)	

For details about patterns B and C under "Fuel Injection System" and "Misfire", see "EXPLANATION FOR DRIVING PATTERNS FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"".

For details about patterns A and B under Other, see "EXPLANATION FOR DRIVING PATTERNS FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"".

RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS FOR "MISFIRE" <EXHAUST QUALITY DETERIORATION>, "FUEL INJECTION SYSTEM"

EC

Α

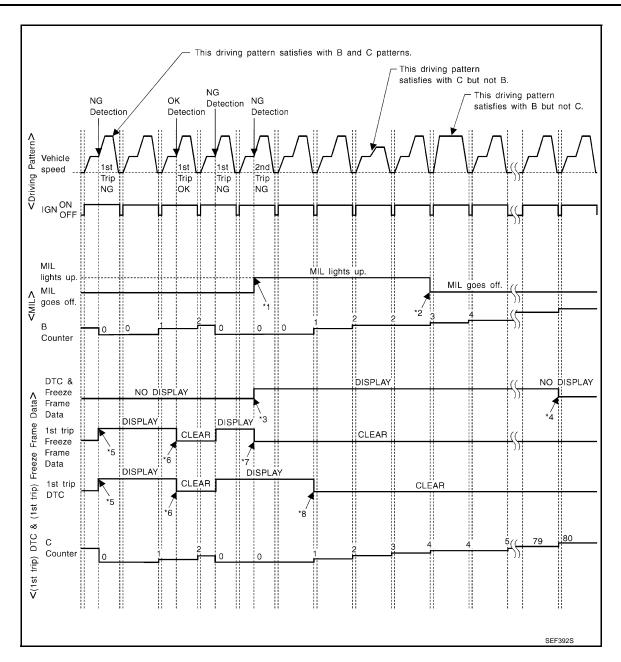
.0

D

Е

F

Н


ВЛ

Ν

0

^{*1:} Clear timing is at the moment OK is detected.

^{*2:} Clear timing is when the same malfunction is detected in the 2nd trip.

- *1: When the same malfunction is detected in two consecutive trips, MIL will light up.
- *4: The DTC and the freeze frame data will not be displayed any longer after vehicle is driven 80 times (pattern C) without the same malfunction. (The DTC and the freeze frame data still remain in ECM.)
- *7: When the same malfunction is detected in the 2nd trip, the 1st trip freeze frame data will be cleared.

- *2: MIL will go off after vehicle is driven 3 times (pattern B) without any malfunctions.
- *5: When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data will be stored in ECM.
- *8: 1st trip DTC will be cleared when vehicle is driven once (pattern C) without the same malfunction after DTC is stored in ECM.
- *3: When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data will be stored in ECM.
- *6: The 1st trip DTC and the 1st trip freeze frame data will be cleared at the moment OK is detected.

EXPLANATION FOR DRIVING PATTERNS FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

<Driving Pattern B>

Driving pattern B means the vehicle operation as follows:

ON BOARD DIAGNOSTIC (OBD) SYSTEM

[VQ35DE] < SERVICE INFORMATION >

All components and systems should be monitored at least once by the OBD system.

- The B counter will be cleared when the malfunction is detected once regardless of the driving pattern.
- The B counter will be counted up when driving pattern B is satisfied without any malfunction.
- The MIL will go off when the B counter reaches 3. (*2 in "OBD SYSTEM OPERATION CHART")

<Driving Pattern C>

Driving pattern C means the vehicle operation as follows:

The following conditions should be satisfied at the same time:

Engine speed: (Engine speed in the freeze frame data) ±375 rpm

Calculated load value: (Calculated load value in the freeze frame data) x (1±0.1) [%]

Engine coolant temperature (T) condition:

- When the freeze frame data shows lower than 70°C (158°F), T should be lower than 70°C (158°F).
- When the freeze frame data shows higher than or equal to 70°C (158°F), T should be higher than or equal to 70°C (158°F).

Example:

If the stored freeze frame data is as follows:

Engine speed: 850 rpm, Calculated load value: 30%, Engine coolant temperature: 80°C (176°F)

To be satisfied with driving pattern C, the vehicle should run under the following conditions:

Engine speed: 475 - 1,225 rpm, Calculated load value: 27 - 33%, Engine coolant temperature: more than 70°C (158°F)

- The C counter will be cleared when the malfunction is detected regardless of vehicle conditions above.
- The C counter will be counted up when vehicle conditions above is satisfied without the same malfunction.
- The DTC will not be displayed after C counter reaches 80.
- The 1st trip DTC will be cleared when C counter is counted once without the same malfunction after DTC is stored in ECM.

RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS <u>EXCEPT</u> FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

EC

Α

D

Е

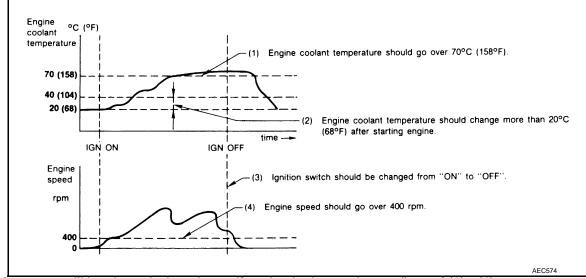

F

K

L

N

Р


- *1: When the same malfunction is detected in two consecutive trips, MIL will light up.
- *4: The DTC and the freeze frame data will not be displayed any longer after vehicle is driven 40 times (pattern A) without the same malfunction. (The DTC and the freeze frame data still remain in ECM.)
- *7: When the same malfunction is detected in the 2nd trip, the 1st trip freeze frame data will be cleared.

- *2: MIL will go off after vehicle is driven 3 *3: When the same malfunction is detimes (pattern B) without any malfunctions.
- *5: When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data will be stored in ECM.
- tected in two consecutive trips, the DTC and the freeze frame data will be stored in ECM.
- *6: 1st trip DTC will be cleared after vehicle is driven once (pattern B) without the same malfunction.

EXPLANATION FOR DRIVING PATTERNS EXCEPT FOR "MISFIRE < EXHAUST QUALITY DETE-RIORATION>", "FUEL INJECTION SYSTEM"

[VQ35DE]

<Driving Pattern A>

- The A counter will be cleared when the malfunction is detected regardless of (1) (4).
- The A counter will be counted up when (1) (4) are satisfied without the same malfunction.
- The DTC will not be displayed after the A counter reaches 40.

<Driving Pattern B>

Driving pattern B means the vehicle operation as follows:

All components and systems should be monitored at least once by the OBD system.

- The B counter will be cleared when the malfunction is detected once regardless of the driving pattern.
- The B counter will be counted up when driving pattern B is satisfied without any malfunctions.
- The MIL will go off when the B counter reaches 3 (*2 in OBD SYSTEM OPERATION CHART).

Α

EC

C

D

Е

F

G

Н

J

Κ

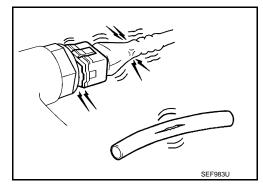
L

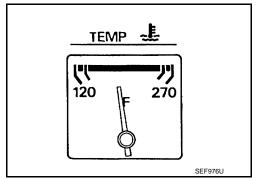
M

Ν

0

Р


2008 M35/M45


BASIC SERVICE PROCEDURE

Basic Inspection

1.INSPECTION START

- 1. Check service records for any recent repairs that may indicate a related malfunction, or a current need for scheduled maintenance.
- 2. Open engine hood and check the following:
- Harness connectors for improper connections
- Wiring harness for improper connections, pinches and cut
- Vacuum hoses for splits, kinks and improper connections
- Hoses and ducts for leaks
- Air cleaner clogging
- Gasket
- 3. Confirm that electrical or mechanical loads are not applied.
- Headlamp switch is OFF.
- Air conditioner switch is OFF.
- Rear window defogger switch is OFF.
- Steering wheel is in the straight-ahead position, etc.
- Start engine and warm it up until engine coolant temperature indicator points the middle of gauge. Ensure engine stays below 1,000 rpm.

- 5. Run engine at about 2,000 rpm for about 2 minutes under no load.
- 6. Make sure that no DTC is displayed with CONSULT-III or GST.

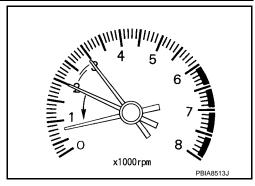
OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. REPAIR OR REPLACE

Repair or replace components as necessary according to corresponding Diagnostic Procedure.

>> GO TO 3


3. CHECK TARGET IDLE SPEED

(P) With CONSULT-III

1. Run engine at about 2,000 rpm for about 2 minutes under no load.

[VQ35DE]

Rev engine (2,000 to 3,000 rpm) two or three times under no load, then run engine at idle speed for about 1 minute.

Read idle speed in "DATA MONITOR" mode with CONSULT-III. Refer to EC-80, "Idle Speed and Ignition Timing Check".

 650 ± 50 rpm (in P or N position)

Without CONSULT-III

- Run engine at about 2,000 rpm for about 2 minutes under no load.
- 2. Rev engine (2,000 to 3,000 rpm) two or three times under no load, then run engine at idle speed for about 1 minute.
- Check idle speed.

Refer to EC-80, "Idle Speed and Ignition Timing Check".

 650 ± 50 rpm (in P or N position)

OK or NG

OK >> GO TO 10. NG >> GO TO 4.

f 4.PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING

- Stop engine.
- Perform EC-82, "Accelerator Pedal Released Position Learning".

>> GO TO 5.

${f 5}.$ PERFORM THROTTLE VALVE CLOSED POSITION LEARNING

Perform EC-82, "Throttle Valve Closed Position Learning".

>> GO TO 6.

6.PERFORM IDLE AIR VOLUME LEARNING

Refer to EC-82, "Idle Air Volume Learning".

Is Idle Air Volume Learning carried out successfully?

Yes or No

Yes >> GO TO 7.

No >> 1. Follow the instruction of Idle Air Volume Learning.

2. GO TO 4.

7.CHECK TARGET IDLE SPEED AGAIN

(P) With CONSULT-III

- Start engine and warm it up to normal operating temperature.
- Read idle speed in "DATA MONITOR" mode with CONSULT-III. Refer to EC-80, "Idle Speed and Ignition Timing Check".

 650 ± 50 rpm (in P or N position)

Without CONSULT-III

EC-77 Revision: 2009 February 2008 M35/M45

Α

EC

D

Е

F

Н

K

M

N

< SERVICE INFORMATION >

- Start engine and warm it up to normal operating temperature.
- Check idle speed.

Refer to EC-80, "Idle Speed and Ignition Timing Check".

650 ± 50 rpm (in P or N position)

OK or NG

OK >> GO TO 10. NG >> GO TO 8.

f 8.DETECT MALFUNCTIONING PART

Check the Following.

- Check camshaft position sensor (PHASE) and circuit. Refer to <u>EC-335</u>.
- Check crankshaft position sensor (POS) and circuit. Refer to <u>EC-330</u>.

OK or NG

OK >> GO TO 9.

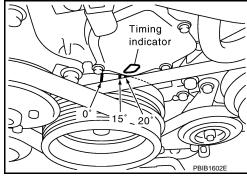
>> 1. Repair or replace. NG

2. GO TO 4.

9. CHECK ECM FUNCTION

- Substitute another known-good ECM to check ECM function. (ECM may be the cause of an incident, but this is a rare case.)
- Perform initialization of IVIS (NATS) system and registration of all IVIS (NATS) ignition key IDs. Refer to BL-221, "ECM Re-Communicating Function".

>> GO TO 4.


10. CHECK IGNITION TIMING

- Run engine at idle.
- Check ignition timing with a timing light. Refer to EC-80, "Idle Speed and Ignition Timing Check".

$15 \pm 5^{\circ}$ BTDC (in P or N position)

OK or NG

OK >> GO TO 19. NG >> GO TO 11.

11. PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING

- Stop engine.
- Perform EC-82, "Accelerator Pedal Released Position Learning".

>> GO TO 12.

12.perform throttle valve closed position learning

Perform EC-82, "Throttle Valve Closed Position Learning".

>> GO TO 13.

13. PERFORM IDLE AIR VOLUME LEARNING

Refer to EC-82, "Idle Air Volume Learning".

Is Idle Air Volume Learning carried out successfully?

Yes or No

Yes >> GO TO 14.

Revision: 2009 February

No >> 1. Follow the instruction of Idle Air Volume Learning.

EC-78

BASIC SERVICE PROCEDURE

< SERVICE INFORMATION >

[VQ35DE]

2. GO TO 4.

14. CHECK TARGET IDLE SPEED AGAIN

Α

(II) With CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- 2. Read idle speed in "DATA MONITOR" mode with CONSULT-III. Refer to <u>EC-80, "Idle Speed and Ignition Timing Check".</u>

EC

650 ± 50 rpm (in P or N position)

(R) Without CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- Check idle speed.

Refer to EC-80, "Idle Speed and Ignition Timing Check".

Е

D

650 \pm 50 rpm (in P or N position)

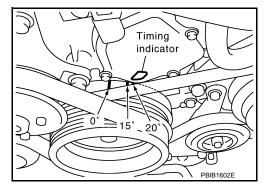
OK or NG

OK >> GO TO 15. NG >> GO TO 17.

15. CHECK IGNITION TIMING AGAIN

1. Run engine at idle.

G


Н

Check ignition timing with a timing light.
 Refer to <u>EC-80</u>, "Idle Speed and Ignition Timing Check".

$15 \pm 5^{\circ}$ BTDC (in P or N position)

OK or NG

OK >> GO TO 19. NG >> GO TO 16.

16. CHECK TIMING CHAIN INSTALLATION

Check timing chain installation. Refer to EM-65.

OK or NG

OK >> GO TO 17.

NG

>> 1. Repair the timing chain installation.

2. GO TO 4.

17. DETECT MALFUNCTIONING PART

Check the following.

- Check camshaft position sensor (PHASE) and circuit. Refer to EC-335.
- Check crankshaft position sensor (POS) and circuit. Refer to <u>EC-330</u>.

OK or NG

OK >> GO TO 18.

NG >> 1. Repair or replace.

2. GO TO 4.

18. CHECK ECM FUNCTION

F

M

- Substitute another known-good ECM to check ECM function. (ECM may be the cause of an incident, but this is a rare case.)
- 2. Perform initialization of IVIS (NATS) system and registration of all IVIS (NATS) ignition key IDs. Refer to BL-221, "ECM Re-Communicating Function".

>> GO TO 4.

Revision: 2009 February

19. INSPECTION END

Did you replace ECM, referring this Basic Inspection procedure?

Yes or No

Yes >> 1. Perform <u>EC-81, "VIN Registration"</u>.

2. INSPECTION END

No >> INSPECTION END

Idle Speed and Ignition Timing Check

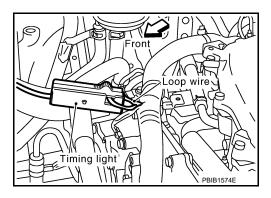
INFOID:0000000002954107

IDLE SPEED

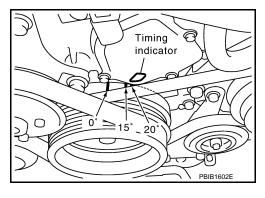
(P)With CONSULT-III

Check idle speed in "DATA MONITOR" mode with CONSULT-III.

With GST

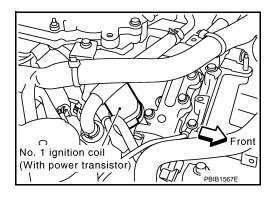

Check idle speed with Service \$01 GST.

IGNITION TIMING

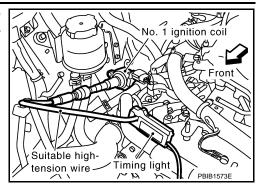

Any of following two methods may be used.

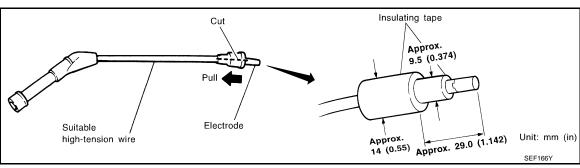
Method A

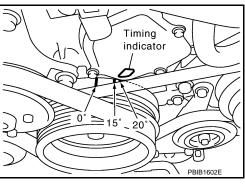
1. Attach timing light to loop wire as shown.



2. Check ignition timing.


Method B


1. Remove No. 1 ignition coil.


[VQ35DE]

Connect No. 1 ignition coil and No. 1 spark plug with suitable high-tension wire as shown, and attach timing light clamp to this wire.

Check ignition timing.

Procedure After Replacing ECM

When replacing ECM, the following procedure must be performed.

- Perform initialization of IVIS (NATS) system and registration of all IVIS (NATS) ignition key IDs. Refer to BL-221, "ECM Re-Communicating Function".
- Perform <u>EC-81, "VIN Registration"</u>.
- Perform <u>EC-82</u>, "<u>Accelerator Pedal Released Position Learning</u>".
- Perform EC-82, "Throttle Valve Closed Position Learning".
- Perform EC-82, "Idle Air Volume Learning".

VIN Registration

INFOID:0000000002954109

DESCRIPTION

VIN Registration is an operation to registering VIN in ECM. It must be performed each time ECM is replaced.

Accurate VIN which is registered in ECM may be required for Inspection & Maintenance (I/M).

OPERATION PROCEDURE

(P) With CONSULT-III

- 1. Check the VIN of the vehicle and note it. Refer to GI-45.
- 2. Turn ignition switch ON and engine stopped.
- Select "VIN REGISTRATION" in "WORK SUPPORT" mode. 3.
- Follow the instruction of CONSULT-III display.

EC-81 2008 M35/M45 Revision: 2009 February

EC

Α

D

F

Н

J

INFOID:0000000002954108

M

Ν

Р

BASIC SERVICE PROCEDURE

< SERVICE INFORMATION >

[VQ35DE]

Accelerator Pedal Released Position Learning

INFOID:0000000002954110

DESCRIPTION

Accelerator Pedal Released Position Learning is an operation to learn the fully released position of the accelerator pedal by monitoring the accelerator pedal position sensor output signal. It must be performed each time harness connector of accelerator pedal position sensor or ECM is disconnected.

OPERATION PROCEDURE

- 1. Make sure that accelerator pedal is fully released.
- Turn ignition switch ON and wait at least 2 seconds.
- Turn ignition switch OFF and wait at least 10 seconds.
- 4. Repeat step 2 and 3 for 4 times.

Throttle Valve Closed Position Learning

INFOID:0000000002954111

DESCRIPTION

Throttle Valve Closed Position Learning is an operation to learn the fully closed position of the throttle valve by monitoring the throttle position sensor output signal. It must be performed each time harness connector of electric throttle control actuator or ECM is disconnected.

OPERATION PROCEDURE

- 1. Make sure that accelerator pedal is fully released.
- 2. Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.Make sure that throttle valve moves during above 10 seconds by confirming the operating sound.

Idle Air Volume Learning

INFOID:0000000002954112

DESCRIPTION

Idle Air Volume Learning is an operation to learn the idle air volume that keeps each engine within the specific range. It must be performed under any of the following conditions:

- Each time electric throttle control actuator or ECM is replaced.
- Idle speed or ignition timing is out of specification.

PREPARATION

Before performing Idle Air Volume Learning, make sure that all of the following conditions are satisfied. Learning will be cancelled if any of the following conditions are missed for even a moment.

- Battery voltage: More than 12.9V (At idle)
- Engine coolant temperature: 70 105°C (158 221°F)
- Transmission range switch: ON
- Electric load switch: OFF

(Air conditioner, headlamp, rear window defogger)

On vehicles equipped with daytime light systems, if the parking brake is applied before the engine is started the headlamp will not be illuminated.

- Steering wheel: Neutral (Straight-ahead position)
- Vehicle speed: Stopped
- Transmission: Warmed-up
- With CONSULT-III: Drive vehicle until "ATF TEMP SE 1" in "DATA MONITOR" mode of "TRANSMISSION" system indicates less than 0.9V.
- Without CONSULT-III: Drive vehicle for 10 minutes.

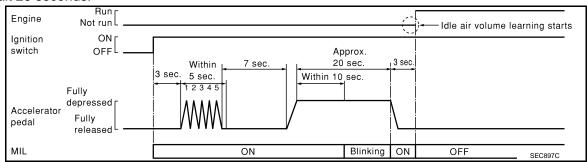
OPERATION PROCEDURE

(P) With CONSULT-III

- 1. Perform EC-82, "Accelerator Pedal Released Position Learning".
- Perform EC-82, "Throttle Valve Closed Position Learning".
- 3. Start engine and warm it up to normal operating temperature.
- 4. Check that all items listed under the topic PREPARATION (previously mentioned) are in good order.
- Select "IDLE AIR VOL LEARN" in "WORK SUPPORT" mode.

BASIC SERVICE PROCEDURE

< SERVICE INFORMATION >


- [VQ35DE] Touch "START" and wait 20 seconds.
- Make sure that "CMPLT" is displayed on CONSULT-III screen. If "CMPLT" is not displayed, Idle Air Volume Learning will not be carried out successfully. In this case, find the cause of the incident by referring to the DIAGNOSTIC PROCEDURE below.
- 8. Rev up the engine two or three times and make sure that idle speed and ignition timing are within the specifications.

ITEM	SPECIFICATION
Idle speed	650 ± 50 rpm (in P or N position)
Ignition timing	15 ± 5° BTDC (in P or N position)

Without CONSULT-III

NOTE:

- It is better to count the time accurately with a clock.
- It is impossible to switch the diagnostic mode when an accelerator pedal position sensor circuit has a malfunction.
- Perform EC-82, "Accelerator Pedal Released Position Learning". 1.
- 2. Perform EC-82, "Throttle Valve Closed Position Learning".
- 3. Start engine and warm it up to normal operating temperature.
- Check that all items listed under the topic PREPARATION (previously mentioned) are in good order.
- 5. Turn ignition switch OFF and wait at least 10 seconds.
- Confirm that accelerator pedal is fully released, turn ignition switch ON and wait 3 seconds.
- 7. Repeat the following procedure quickly five times within 5 seconds.
- а Fully depress the accelerator pedal.
- b. Fully release the accelerator pedal.
- Wait 7 seconds, fully depress the accelerator pedal and keep it for approx. 20 seconds until the MIL stops blinking and turned ON.
- Fully release the accelerator pedal within 3 seconds after the MIL turned ON.
- 10. Start engine and let it idle.
- 11. Wait 20 seconds

12. Rev up the engine two or three times and make sure that idle speed and ignition timing are within the specifications.

ITEM	SPECIFICATION
Idle speed	650 ± 50 rpm (in P or N position)
Ignition timing	15 ± 5° BTDC (in P or N position)

13. If idle speed and ignition timing are not within the specification, Idle Air Volume Learning will not be carried out successfully. In this case, find the cause of the incident by referring to the DIAGNOSTIC PROCE-DURE below.

DIAGNOSTIC PROCEDURE

If idle air volume learning cannot be performed successfully, proceed as follows:

- 1. Check that throttle valve is fully closed.
- Check PCV valve operation.

EC

D

Е

F

Н

M

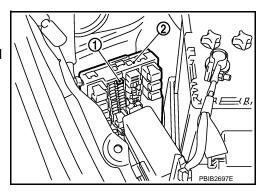
Ν

< SERVICE INFORMATION >

- 3. Check that downstream of throttle valve is free from air leakage.
- 4. When the above three items check out OK, engine component parts and their installation condition are questionable. Check and eliminate the cause of the incident. It is useful to perform EC-132.
- 5. If any of the following conditions occur after the engine has started, eliminate the cause of the incident and perform Idle Air Volume Learning all over again:
- Engine stalls.
- Erroneous idle.

Fuel Pressure Check

INFOID:0000000002954113


FUEL PRESSURE RELEASE

(P) With CONSULT-III

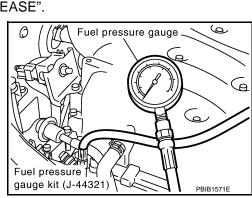
- 1. Turn ignition switch ON.
- 2. Perform "FUEL PRESSURE RELEASE" in "WORK SUPPORT" mode with CONSULT-III.
- 3. Start engine.
- 4. After engine stalls, crank it two or three times to release all fuel pressure.
- 5. Turn ignition switch OFF.

Without CONSULT-III

- 1. Remove fuel pump fuse (1) located in IPDM E/R (2).
- 2. Start engine.
- 3. After engine stalls, crank it two or three times to release all fuel pressure.
- 4. Turn ignition switch OFF.
- 5. Reinstall fuel pump fuse after servicing fuel system.

FUEL PRESSURE CHECK

CAUTION:


Before disconnecting fuel line, release fuel pressure from fuel line to eliminate danger.

- Prepare pans or saucers under the disconnected fuel line because the fuel may spill out. The fuel
 pressure cannot be completely released because Y50 models do not have fuel return system.
- Use Fuel Pressure Gauge Kit (J-44321) to check fuel pressure.
- Release fuel pressure to zero. Refer to "FUEL PRESSURE RELEASE".
- 2. Install the inline fuel quick disconnected fitting between fuel damper and fuel injector tube.
- 3. Connect the fuel pressure test gauge (quick connector adapter hose) to the inline fuel quick disconnected fitting.
- 4. Turn ignition switch ON and check for fuel leakage.
- Start engine and check for fuel leakage.
- 6. Read the indication of fuel pressure gauge.

At idling: Approximately 350 kPa (3.57 kg/cm², 51 psi)

- 7. If result is unsatisfactory, go to next step.
- 8. Check the following.
 - Fuel hoses and fuel tubes for clogging
 - Fuel filter for clogging
 - Fuel pump
 - Fuel pressure regulator for clogging

If OK, replace fuel pressure regulator.

BASIC SERVICE PROCEDURE

< SERVICE INFORMATION > [VQ35DE]

If NG, repair or replace.

Α

EC

С

D

Е

F

G

Н

1

J

Κ

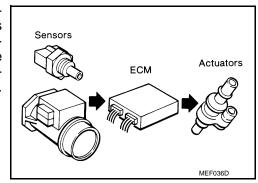
L

M

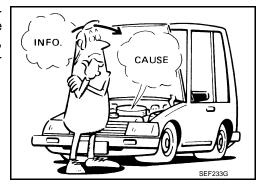
Ν

0

Ρ

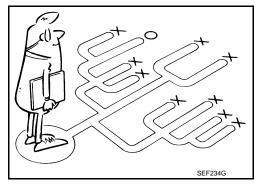

TROUBLE DIAGNOSIS

Trouble Diagnosis Introduction

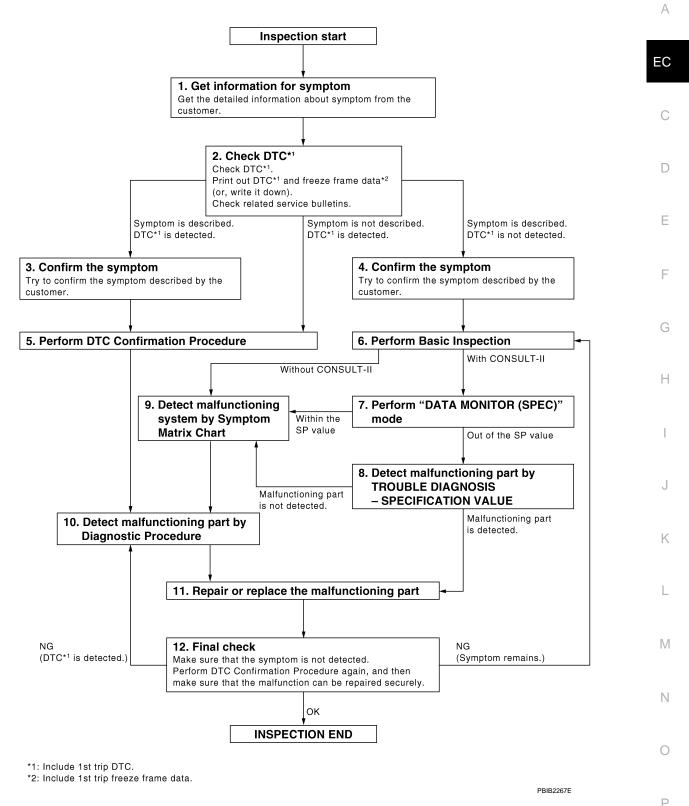

INFOID:0000000002954114

INTRODUCTION

The engine has an ECM to control major systems such as fuel control, ignition control, idle air control system, etc. The ECM accepts input signals from sensors and instantly drives actuators. It is essential that both input and output signals are proper and stable. At the same time, it is important that there are no malfunctions such as vacuum leaks, fouled spark plugs, or other malfunctions with the engine.


It is much more difficult to diagnose an incident that occurs intermittently rather than continuously. Most intermittent incidents are caused by poor electric connections or improper wiring. In this case, careful checking of suspected circuits may help prevent the replacement of good parts.

A visual check only may not find the cause of the incidents. A road test with CONSULT-III (or GST) or a circuit tester connected should be performed. Follow the Work Flow on "WORK FLOW".


Before undertaking actual checks, take a few minutes to talk with a customer who approaches with a driveability complaint. The customer can supply good information about such incidents, especially intermittent ones. Find out what symptoms are present and under what conditions they occur. A Diagnostic Worksheet like the example on "Worksheet Sample" should be used.

Start your diagnosis by looking for conventional malfunctions first. This will help troubleshoot driveability malfunctions on an electronically controlled engine vehicle.

WORK FLOW

Overall Sequence

Detailed Flow

1.GET INFORMATION FOR SYMPTOM

Get the detailed information from the customer about the symptom (the condition and the environment when the incident/malfunction occurred) using the "DIAGNOSTIC WORKSHEET".

>> GO TO 2.

2.CHECK DTC *1

- 1. Check DTC*1.
- 2. Perform the following procedure if DTC*1 is displayed.
- Record DTC*1 and freeze frame data*2. (Print them out with CONSULT-III or GST.)
- Erase DTC*¹. (Refer to EC-55, "Emission-Related Diagnostic Information".)
- Study the relationship between the cause detected by DTC*¹ and the symptom described by the customer. (Symptom Matrix Chart is useful. Refer to <u>EC-93</u>, "Symptom Matrix Chart".)
- 3. Check related service bulletins for information.

Is any symptom described and any DTC detected?

Symptom is described, DTC*1 is displayed>>GO TO 3.

Symptom is described, DTC*1 is not displayed>>GO TO 4.

Symptom is not described, DTC*1 is displayed>>GO TO 5.

${f 3.}$ CONFIRM THE SYMPTOM

Try to confirm the symptom described by the customer (except MIL ON).

DIAGNOSIS WORK SHEET is useful to verify the incident.

Verify relation between the symptom and the condition when the symptom is detected.

>> GO TO 5.

4. CONFIRM THE SYMPTOM

Try to confirm the symptom described by the customer.

DIAGNOSIS WORK SHEET is useful to verify the incident.

Verify relation between the symptom and the condition when the symptom is detected.

>> GO TO 6.

5. PERFORM DTC CONFIRMATION PROCEDURE

Perform DTC Confirmation Procedure for the displayed DTC*1, and then make sure that DTC*1 is detected again.

If two or more DTCs*¹ are detected, refer to <u>EC-90, "DTC Inspection Priority Chart"</u> and determine trouble diagnosis order.

NOTE:

- Freeze frame data*2 is useful if the DTC*1 is not detected.
- Perform Overall Function Check if DTC Confirmation Procedure is not included on Service Manual. This simplified check procedure is an effective alternative though DTC*1 cannot be detected during this check.
 If the result of Overall Function Check is NG, it is the same as the detection of DTC*1 by DTC Confirmation Procedure.

Is DTC*1 detected?

Yes >> GO TO 10.

No >> Check according to EC-140.

6. PERFORM BASIC INSPECTION

Perform EC-76, "Basic Inspection".

With CONSULT-III>>GO TO 7. Without CONSULT-III>>GO TO 9.

.PERFORM DATA MONITOR MODE

(II) With CONSULT-III

Make sure that "MAS A/F SE-B1", "B/FUEL SCHDL", and "A/F ALPHA-B1", "A/F ALPHA-B2" are within the SP value using CONSULT-III "SPEC" "DATA MONITOR" mode. Refer to EC-133, "Diagnosis Procedure".

Are they within the SP value?

Yes >> GO TO 9.

Revision: 2009 February **EC-88** 2008 M35/M45

TROUBLE DIAGNOSIS [VQ35DE] < SERVICE INFORMATION > No >> GO TO 8. 8.DETECT MALFUNCTIONING PART BY TROUBLE DIAGNOSIS - SPECIFICATION VALUE Detect malfunctioning part according to EC-132. Is malfunctioning part detected? Yes >> GO TO 11. No >> GO TO 9. 9. DETECT MALFUNCTIONING SYSTEM BY SYMPTOM MATRIX CHART Detect malfunctioning system according to EC-93. "Symptom Matrix Chart" based on the confirmed symptom in step 4, and determine the trouble diagnosis order based on possible causes and symptom. >> GO TO 10. 10. DETECT MALFUNCTIONING PART BY DIAGNOSTIC PROCEDURE Inspect according to Diagnostic Procedure of the system. NOTE: The Diagnostic Procedure in EC section described based on open circuit inspection. A short circuit inspection is also required for the circuit check in the Diagnostic Procedure. For details, refer to Circuit Inspection in GI-26, "How to Perform Efficient Diagnosis for an Electrical Incident". Is malfunctioning part detected? Yes >> GO TO 11. >> Monitor input data from related sensors or check voltage of related ECM terminals using CON-No SULT-III. Refer to EC-126, "CONSULT-III Reference Value in Data Monitor Mode", EC-108, "ECM Н Terminal and Reference Value".

11. REPAIR OR REPLACE THE MALFUNCTIONING PART

- Repair or replace the malfunctioning part.
- Reconnect parts or connectors disconnected during Diagnostic Procedure again after repair and replace-2.
- Check DTC. If DTC is displayed, erase it, refer to EC-55, "Emission-Related Diagnostic Information".

>> GO TO 12.

12. FINAL CHECK

When DTC was detected in step 2, perform DTC Confirmation Procedure or Overall Function Check again, and then make sure that the malfunction have been repaired securely.

When symptom was described from the customer, refer to confirmed symptom in step 3 or 4, and make sure that the symptom is not detected.

OK or NG

NG (DTC*1 is detected)>>GO TO 10.

NG (Symptom remains)>>GO TO 6. OK

- >> 1. Before returning the vehicle to the customer, make sure to erase unnecessary DTC*1 in ECM and TCM (Transmission Control Module). (Refer to EC-55, "Emission-Related Diagnostic Information" and AT-40, "OBD-II Diagnostic Trouble Code (DTC)".)
 - 2. If the completion of SRT is needed, drive vehicle under the specific driving pattern. Refer to EC-55, "Emission-Related Diagnostic Information".
 - 3. INSPECTION END

*1: Include 1st trip DTC.

*2: Include 1st trip freeze frame data.

DIAGNOSTIC WORKSHEET

Description

EC

Α

Е

D

K

M

Ν

Р

< SERVICE INFORMATION >

There are many operating conditions that lead to the malfunction of engine components. A good grasp of such conditions can make troubleshooting faster and more accurate.

In general, each customer feels differently about a incident. It is important to fully understand the symptoms or conditions for a customer complaint.

Utilize a diagnostic worksheet like the one on the next page in order to organize all the information for troubleshooting.

Some conditions may cause the MIL to come on steady or blink and DTC to be detected. Examples:

- Vehicle ran out of fuel, which caused the engine to misfire.
- Fuel filler cap was left off or incorrectly screwed on, allowing fuel to evaporate into the atmosphere.

KEY POINTS

WHAT Vehicle & engine model
WHEN Date, Frequencies
WHERE..... Road conditions
HOW Operating conditions,
Weather conditions,
Symptoms

SEF907L

Worksheet Sample

Customer nar	ne MR/MS	Model & Year	VIN								
Engine #		Trans.	Mileage								
Incident Date		Manuf. Date	In Service Date								
Fuel and fuel	filler cap	☐ Vehicle ran out of fuel causing misfire ☐ Fuel filler cap was left off or incorrectly screwed on.									
	☐ Startability	☐ Impossible to start ☐ No combustion ☐ Partial combustion ☐ Partial combustion affected by throttle position ☐ Partial combustion NOT affected by throttle position ☐ Possible but hard to start ☐ Others [
Symptoms	□ Idling	☐ No fast idle ☐ Unstable ☐ H☐ Others [High idle ☐ Low idle								
,	☐ Driveability	☐ Stumble ☐ Surge ☐ Knock ☐ Lack of power ☐ Intake backfire ☐ Exhaust backfire ☐ Others []									
	☐ Engine stall	☐ At the time of start ☐ While idling ☐ While accelerating ☐ While dece ☐ Just after stopping ☐ While loadi	lerating								
Incident occur	rrence	☐ Just after delivery ☐ Recently☐ In the morning ☐ At night ☐ In the daytime									
Frequency		☐ All the time ☐ Under certain conditions ☐ Sometimes									
Weather cond	litions	☐ Not affected									
	Weather	☐ Fine ☐ Raining ☐ Snowing	☐ Others []								
	Temperature	☐ Hot ☐ Warm ☐ Cool ☐	Cold ☐ Humid °F								
		☐ Cold ☐ During warm-up ☐	After warm-up								
Engine condit	ions	Engine speed0 2,000	4,000 6,000 8,000 rpm								
Road conditio	ins	☐ In town ☐ In suburbs ☐ Hig	hway 🗌 Off road (up/down)								
Driving condit	ions	□ Not affected □ At starting □ While idling □ At racing □ While accelerating □ While cruising □ While decelerating □ While turning (RH/LH) Vehicle speed □ □ □ □ □ □									
		0 10 20 30 40 50 60 MPH									
Malfunction in	idicator lamp	☐ Turned on ☐ Not turned on									

MTBL0017

DTC Inspection Priority Chart

INFOID:0000000002954115

If some DTCs are displayed at the same time, perform inspections one by one based on the following priority chart.

NOTE:

TROUBLE DIAGNOSIS

< SERVICE INFORMATION >

[VQ35DE]

• If DTC U1000 or U1001 is displayed with other DTC, first perform the trouble diagnosis for DTC U1000, U1001. Refer to <u>EC-147</u>.

• If DTC U1010 is displayed with other DTC, first perform the trouble diagnosis for DTC U1010. Refer to EC-149.

riority	Detected items (DTC)
1	U1000 U1001 CAN communication line U1010 CAN communication
	 P0101 P0102 P0103 Mass air flow sensor P0112 P0113 P0127 Intake air temperature sensor
	 P0116 P0117 P0118 P0125 Engine coolant temperature sensor P0122 P0123 P0222 P0223 P1225 P1226 P2135 Throttle position sensor
	P0128 Thermostat function P0181 P0182 P0183 Fuel tank temperature sensor
	P0327 P0328 Knock sensor
	 P0335 Crankshaft position sensor (POS) P0340 P0345 Camshaft position sensor (PHASE)
	 P0460 P0461 P0462 P0463 Fuel level sensor P0500 Vehicle speed sensor
	P0643 Sensor power supply
	P0605 ECMP0700 TCM
	 P0705 P0850 Transmission range switch P1550 P1551 P1552 P1553 P1554 Battery current sensor
	• P1610 - P1615 NATS
2	 P2122 P2123 P2127 P2128 P2138 Accelerator pedal position sensor P0031 P0032 P0051 P0052 Air fuel ratio (A/F) sensor 1 heater
_	 P0037 P0038 P0057 P0058 Heated oxygen sensor 2 heater
	 P0075 P0081 Intake valve timing control solenoid valve P0130 P0131 P0132 P0133 P0150 P0151 P0152 P0153 P2A00 P2A03 Air fuel ratio (A/F) sensor 1
	 P0137 P0138 P0139 P0157 P0158 P0159 Heated oxygen sensor 2 P0441 EVAP control system purge flow monitoring
	 P0443 P0444 P0445 EVAP canister purge volume control solenoid valve P0447 P0448 EVAP canister vent control valve
	P0451 P0452 P0453 EVAP control system pressure sensor
	 P0550 Power steering pressure sensor P0603 ECM power supply
	 P0710 P0717 P0720 P0725 P0740 P0744 P0745 P1705 P1715 P1730 P1752 P1754 P1757 P1759 P1762 P1764 P1767 P1769 P1772 P1774 A/T related sensors, solenoid valves and switches
	P1217 Engine over temperature (OVERHEAT)
	P1220 Fuel pump control moduleP1805 Brake switch
	P2100 P2103 Throttle control motor relay P2101 Electric throttle control function
	P2118 Throttle control motor
3	 P0011 P0021 Intake valve timing control P0171 P0172 P0174 P0175 Fuel injection system function
	• P0300 - P0306 Misfire
	 P0420 P0430 Three way catalyst function P0442 P0456 EVAP control system (SMALL LEAK, VERY SMALL LEAK)
	 P0455 EVAP control system (GROSS LEAK) P0506 P0507 Idle speed control system
	P1148 P1168 Closed loop control P1211 TCS control unit
	P1212 TCS communication line
	 P1421 Cold start control P1564 ICC steering switch/ASCD steering switch
	 P1568 ICC command value* P1572 ICC brake switch/ASCD brake switch
	P1574 ICC vehicle speed sensor/ASCD vehicle speed sensor
	P2119 Electric throttle control actuator

^{*:} With ICC models

Fail-Safe Chart

When the DTC listed below is detected, the ECM enters fail-safe mode and the MIL lights up.

DTC No.	Detected items	Engine opera	ating condition in fail-safe mode							
P0102 P0103	Mass air flow sensor circuit	Engine speed will not rise more that	n 2,400 rpm due to the fuel cut.							
P0117 P0118	Engine coolant tempera- ture sensor circuit		determined by ECM based on the following condition. colant temperature decided by ECM.							
		Condition	Engine coolant temperature decided (CONSULT-III display)							
		Just as ignition switch is turned ON or START	40°C (104°F)							
		Approx. 4 minutes or more after engine starting	80°C (176°F)							
		Except as shown above	40 - 80°C (104 - 176°F) (Depends on the time)							
		When the fail-safe system for engin fan operates while engine is runnin	e coolant temperature sensor is activated, the cooling g.							
P0122 P0123 P0222 P0223 P2135	Throttle position sensor	The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees. The ECM regulates the opening speed of the throttle valve to be slower than the normal condition. So, the acceleration will be poor.								
P0643	Sensor power supply	ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.								
P2100 P2103	Throttle control motor relay	ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.								
P2101	Electric throttle control function	ECM stops the electric throttle cont fixed opening (approx. 5 degrees) by	rol actuator control, throttle valve is maintained at a by the return spring.							
P2118	Throttle control motor	ECM stops the electric throttle cont fixed opening (approx. 5 degrees) by	rol actuator control, throttle valve is maintained at a by the return spring.							
P2119	Electric throttle control actuator	malfunction:)	tor does not function properly due to the return spring ctuator by regulating the throttle opening around the not rise more than 2,000 rpm.							
			in fail-safe mode is not in specified range:) ontrol actuator by regulating the throttle opening to 20							
		engine stalls.	ve is stuck open:) down gradually by fuel cut. After the vehicle stops, the sition, and engine speed will not exceed 1,000 rpm or							
P2122 P2123 P2127 P2128 P2138	Accelerator pedal position sensor	order for the idle position to be with	le control actuator in regulating the throttle opening in in +10 degrees. eed of the throttle valve to be slower than the normal							

[•] When there is an open circuit on MIL circuit, the ECM cannot warn the driver by lighting up MIL when there is malfunction on engine control system.

Therefore, when electrical controlled throttle and part of ECM related diagnoses are continuously detected as NG for 5 trips, ECM warns the driver that engine control system malfunctions and MIL circuit is open by means of operating fail-safe function.

The fail-safe function also operates when above diagnoses except MIL circuit are detected and demands the driver to repair the malfunction.

TROUBLE DIAGNOSIS

< SERVICE INFORMATION >

[VQ35DE]

Α

EC

D

Е

F

G

Н

Κ

L

Engine operating condition in fail-safe mode

Engine speed will not rise more than 2,500 rpm due to the fuel cut

Symptom Matrix Chart

INFOID:0000000002954117

SYSTEM — BASIC ENGINE CONTROL SYSTEM

							S\	/MPT	MC						
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page
Warranty symptom code		AA	AB	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	НА	
Fuel	Fuel pump circuit	1	1	2	3	2		2	2			3		2	EC-600
	Fuel pressure regulator system	3	3	4	4	4	4	4	4	4		4			EC-84
	Fuel injector circuit	1	1	2	3	2		2	2			2			EC-594
	Evaporative emission system	3	3	4	4	4	4	4	4	4		4			EC-40
Air	Positive crankcase ventilation system	3	3	4	4	4	4	4	4	4		4	1		EC-51
	Incorrect idle speed adjustment						1	1	1	1		1			EC-76
	Electric throttle control actuator	1	1	2	3	3	2	2	2	2		2		2	EC- 538,EC- 534,EC- 544,EC- 548
Ignition	Incorrect ignition timing adjustment	3	3	1	1	1		1	1			1			EC-76
	Ignition circuit	1	1	2	2	2		2	2			2			EC-614
Main po	wer supply and ground circuit	2	2	3	3	3		3	3		2	3			EC-141

M

0

Р

EC-93 Revision: 2009 February 2008 M35/M45

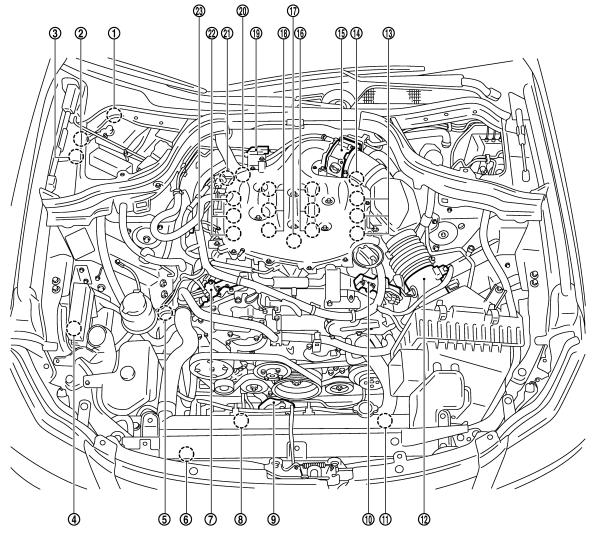
Ν

						S`	YMPT	ОМ						
	HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page
Warranty symptom code	AA	AB	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	НА	
Mass air flow sensor circuit				2										EC-176, EC-185
Engine coolant temperature sensor circuit	1					3			3					EC-199, EC-210
Air fuel ratio (A/F) sensor 1 circuit		1	2	3	2		2	2			2			EC-218, EC-226, EC-234, EC-242, EC-574
Throttle position sensor circuit						2			2					EC-204, EC-312, EC-466, EC-468, EC-561
Accelerator pedal position sensor circuit			3	2	1	2			2					EC- 550,EC- 555,EC- 567,EC- 436
Knock sensor circuit			2								3			EC-325
Crankshaft position sensor (POS) circuit	2	2												EC-330
Camshaft position sensor (PHASE) circuit	3	2												EC-335
Vehicle speed signal circuit		2	3		3						3			EC-419
Power steering pressure sensor circuit		2					3	3						EC-425
ECM	2	2	3	3	3	3	3	3	3	3	3			EC-430, EC-434
Intake valve timing control solenoid valve circuit		3	2		1	3	2	2	3		3			EC-169
PNP switch circuit			3		3		3	3			3			EC-441
Refrigerant pressure sensor circuit		2				3			3		4			EC-626
Electrical load signal circuit							3							EC-592
Air conditioner circuit ABS actuator and electric unit (control unit)	2	2	3	3	3	3	3	3	3		3		2	ATC-36 BRC-12

^{1 - 6:} The numbers refer to the order of inspection.

(continued on next page)

SYSTEM — ENGINE MECHANICAL & OTHER


							S	/MPT	OM						А	
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page	E(
Warranty s	ymptom code	AA	AB	AC	AD	AE	AF	AG	AH	AJ	AK	AL	AM	НА		F
Fuel	Fuel tank														FL-10	
	Fuel piping	5		5	5	5		5	5	-		5			EM-46	-
	Vapor lock		5												_	
	Valve deposit		5												_	-
	Poor fuel (Heavy weight gasoline, Low octane)	5		5	5	5		5	5			5			_	-
Air	Air duct														<u>EM-18</u>	-
	Air cleaner														<u>EM-18</u>	-
	Air leakage from air duct (Mass air flow sensor — electric throttle control actuator)		5	5		5		5	5			5			<u>EM-18</u>	-
	Electric throttle control actuator	5			5		5			5					EM-20	
	Air leakage from intake manifold/ Collector/Gasket														EM-25	<u> </u>
Cranking	Battery	_	_											_	<u>SC-4</u>	
	Generator circuit	1	1	1		1		1	1					1	SC-19	=
	Starter circuit	3								-		1			<u>SC-8</u>	L
	Signal plate	6													EM-123	=
	PNP switch	4													AT-103	
Engine	Cylinder head	_	-	5	-	5		5	-			5			EM 404	- 11
	Cylinder head gasket	5	5	Э	5	э		Э	5		4	Э	3		<u>EM-101</u>	
	Cylinder block															1
	Piston												4			
	Piston ring	6	6	6	6	6		6	6			6			EM-123	
	Connecting rod	0	0	0	0	0		0	0			0			<u>EIVI-123</u>	
	Bearing															
	Crankshaft						L							L		F
Valve	Timing chain														<u>EM-65</u>	-
mecha- nism	Camshaft														EM-84	-
	Intake valve timing control	5	5	5	5	5		5	5			5			<u>EM-65</u>	=
-	Intake valve												3		<u>EM-84</u>	-
	Exhaust valve															•

							S١	/MPT	OM						
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page
Warranty	symptom code	AA	AB	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	НА	
Exhaust	Exhaust manifold/Tube/Muffler/ Gasket	5	5	5	5	5		5	5			5			EM-27, EX-
	Three way catalyst														<u> </u>
Lubrica- tion	Oil pan/Oil strainer/Oil pump/Oil filter/Oil gallery/Oil cooler	5	5	5	5	5		5	5			5			EM-30, LU- 15, LU-8, LU-12
	Oil level (Low)/Filthy oil														<u>LU-5</u>
Cooling	Radiator/Hose/Radiator filler cap														<u>CO-13</u> , <u>CO-17</u>
	Thermostat									5					<u>CO-28</u>
	Water pump	5	5	5	5	5		5	5		4	5			<u>CO-23</u>
	Water gallery	3	3	3	5	3		3	5		_	3			CO-30
	Cooling fan			ļ											<u>CO-21</u>
	Coolant level (Low)/Contaminated coolant									5					<u>CO-10</u>
IVIS (INFI NATS)	NITI Vehicle Immobilizer System —	1	1												EC-53 or BL-217

^{1 - 6:} The numbers refer to the order of inspection.

Engine Control Component Parts Location

INFOID:0000000002954118

PBIB2781E

- 1. IPDM E/R
- 4. Cooling fan relay
- Intake valve timing control solenoid valve (bank 1)
- Intake valve timing control solenoid valve (bank 2)
- Ignition coil (with power transistor) and spark plug (bank 2)
- 16. Fuel injector (bank 2)
- 19. EVAP canister purge volume control 20. solenoid valve
- Ignition coil (with power transistor) and spark plug (bank 1)

- ICC brake hold relay (ICC models only)
- 5. Power steering pressure sensor
- 8. Cooling fan motor-2
- 11. Cooling fan motor-1
- Camshaft position sensor (PHASE) (Bank 2)
- 17. Knock sensor
- 20. Camshaft position sensor (PHASE) (Bank 1)
- 23. EVAP service port

- 3. Battery current sensor
- 6. Refrigerant pressure sensor
- 9. Cooling fan control module
- Mass air flow sensor (with built in intake air temperature sensor)
- Electric throttle control actuator (with built in throttle position sensor, throttle control motor)
- 18. Fuel injector (bank 1)
- 21. Engine coolant temperature sensor

EC

Α

D

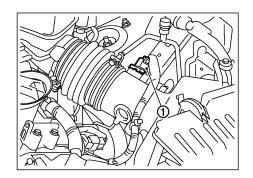
Е

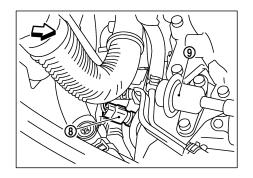
F

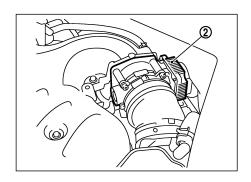
G

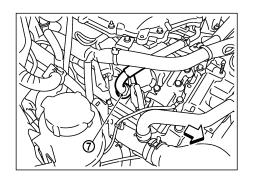
Н

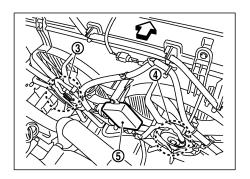
K

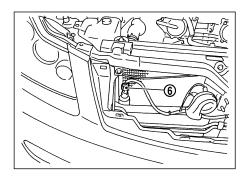

M

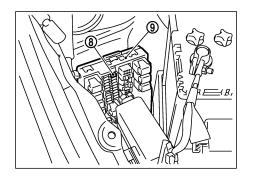

Ν


0


O


Р





PBIB3351E

- ⟨
 □ : Vehicle front
- Mass air flow sensor (with built in intake air temperature sensor)
- 4. Cooling fan motor-2
- 7. PCV valve

- Electric throttle control actuator (with built in throttle position sensor, throttle control motor)
- 5. Cooling fan control module
- 8. Engine coolant temperature sensor 9. harness connector
- Cooling fan motor-1
- 6. Refrigerant pressure sensor harness connector
- 9. Fuel dumper

Α

С

D

Е

F

G

Н

J

Κ

L

M

Ν

. Knock sensor

4.

Fuel injector harness connector

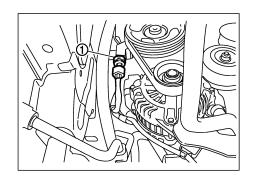
7. Camshaft position sensor (PHASE) 8. (Bank 2)

2. Fuel damper

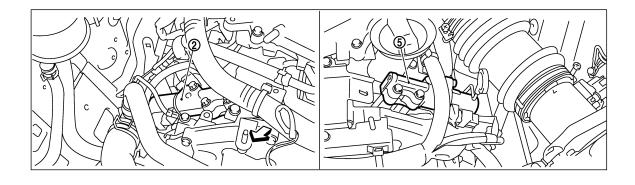
5. Condenser

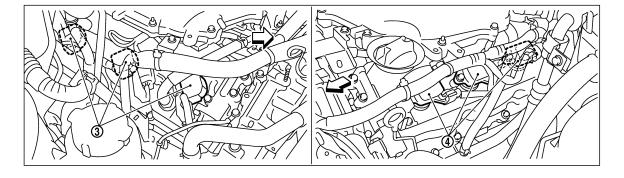
. Fuel pump fuse

 Camshaft position sensor (PHASE) (Bank 1)

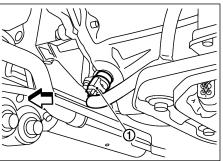

PBIB2788E

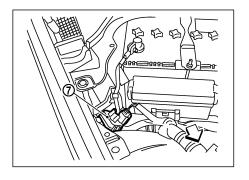

6. Fuel damper


9. IPDM E/R


0

Ρ




PBIB2789E

⟨ □ : Vehicle front

- 1. Power steering pressure sensor
- Ignition coil harness connector (Bank 2)
- 7. EVAP canister purge volume control solenoid valve
- Intake valve timing control solenoid 3. valve
- Intake valve timing control solenoid 6. valve
- Ignition coil harness connector (Bank 1)
- 6. EVAP service port

Α

EC

D

Е

F

G

Н

Κ

L

M

⟨
□ : Vehicle front

7.

Crankshaft position sensor (POS)

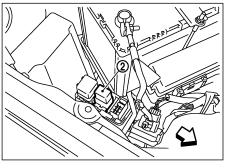
2. ICC brake hold relay (ICC models only)

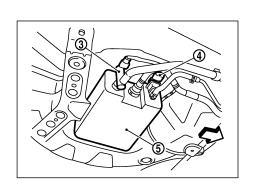
EVAP control system pressure sen- 5. EVAP canister

Battery current sensor

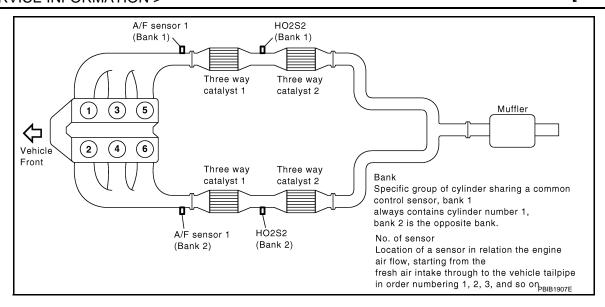
EVAP canister vent control valve

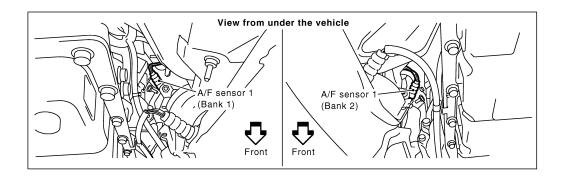
PBIB2790E

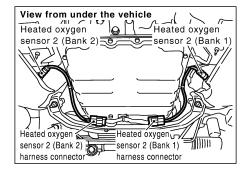

Cooling fan relay

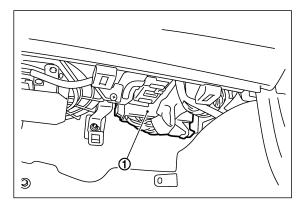

0

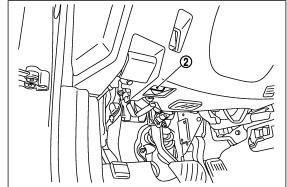
Ν

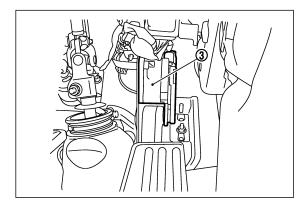

Р

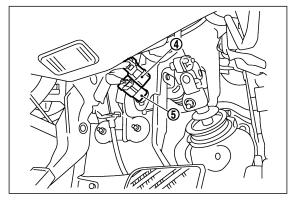

W L		
B		
	0	

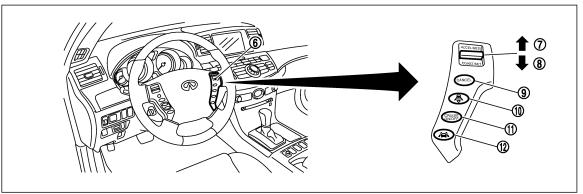



Revision: 2009 February








PBIB2188E

JMBIA1088ZZ

- 1. ECM
- 4. Stop lamp switch
- 7. RESUME/ACCELERATE switch
- 10. DISTANCE switch (ICC models only)

- 2. Data link connector
- 5. ICC brake switch (models with ICC)
 ASCD brake switch (models with ASCD)
- 8. SET/COAST switch
- 11. MAIN switch

- 3. Accelerator pedal position sensor
- 6. ICC steering switch (models with ICC)
 ASCD steering switch (models with ASCD)
- 9. CANCEL switch
- 12. LDP ON switch

Α

EC

С

D

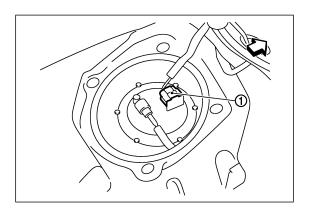
Е

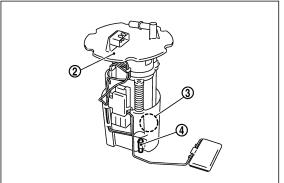
F

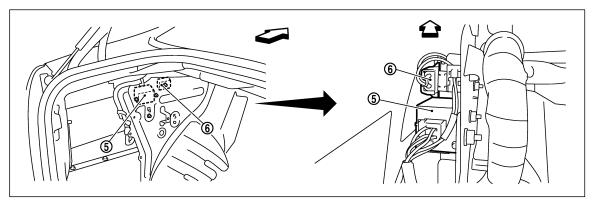
G

Н

K


L


M


Ν

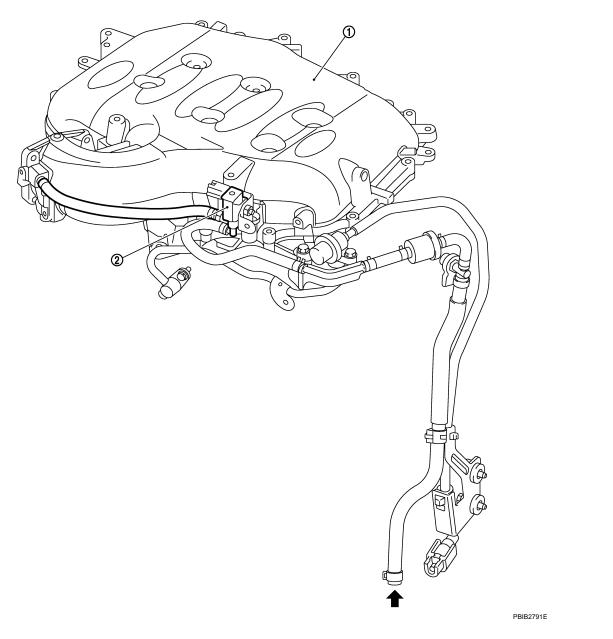
0

Р

PBIB2681E

$\ \ \ \ \ \ \ \ \ \ \$: Vehicle front

- 1. Fuel level sensor unit and fuel pump 2. Fuel level sensor unit and fuel pump 3. Fuel pressure regulator harness connector


- 4. Fuel tank temperature sensor
- 5. FPCM

6. Dropping resistor

[VQ35DE]

Vacuum Hose Drawing

INFOID:0000000002954119

cle front == : From EVAP canister

1. Intake manifold collector

2. EVAP canister purge volume control solenoid valve

NOTE:

Do not use soapy water or any type of solvent while installing vacuum hoses or purge hoses.

Refer to EC-31, "Schematic" for Vacuum Control System.

EC

Α

D

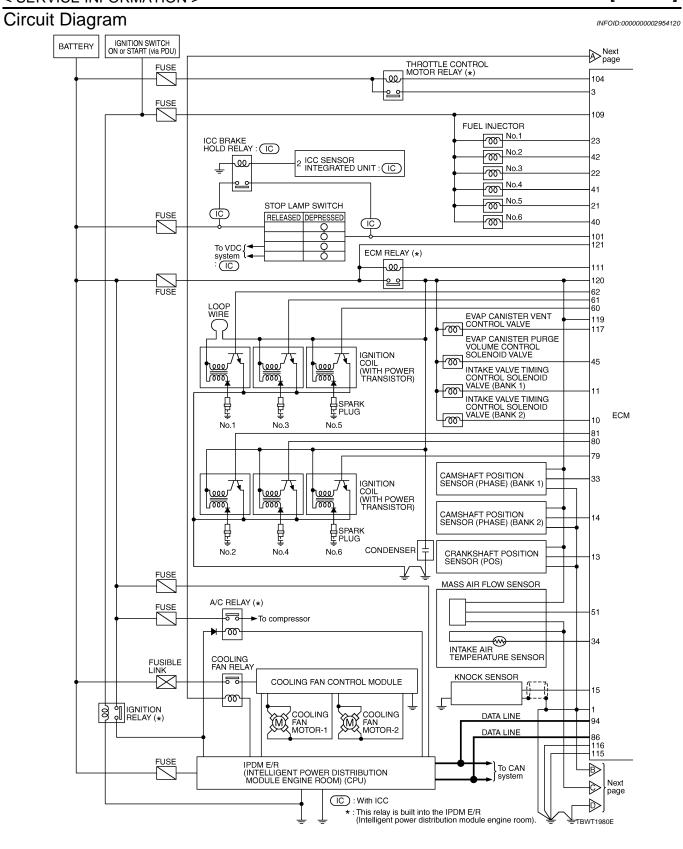
Е

F

G

Н

J

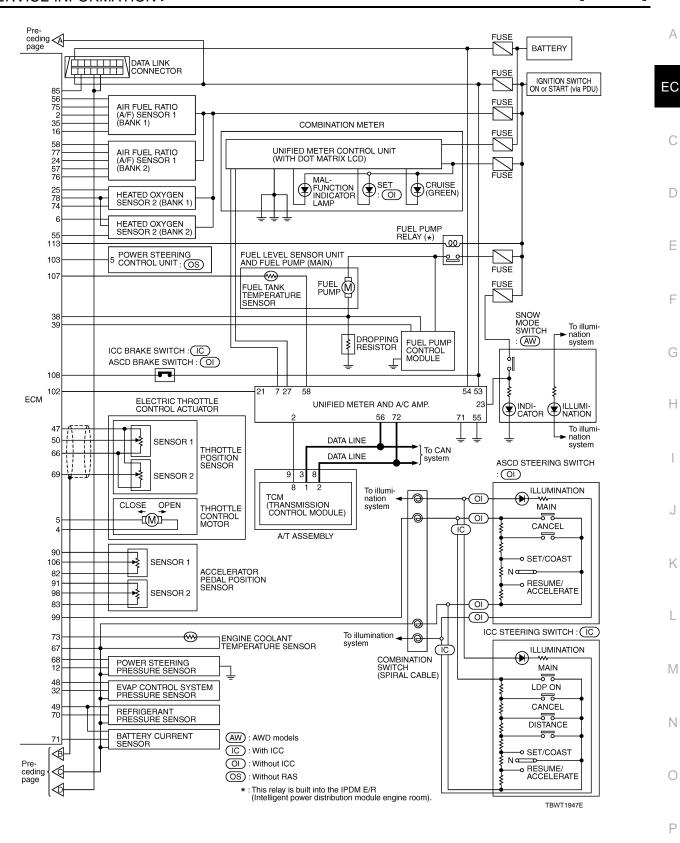

K

L

Ν

0

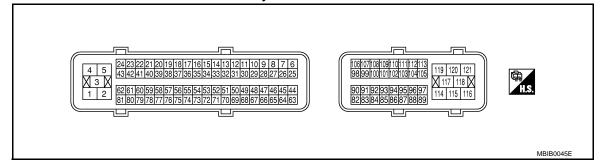
Р



Α

Е

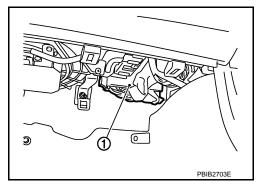
F


Р

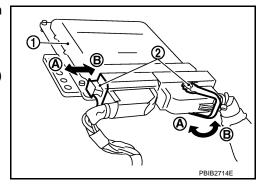
EC-107 Revision: 2009 February 2008 M35/M45

ECM Harness Connector Terminal Layout

INFOID:0000000002954121



ECM Terminal and Reference Value


INFOID:0000000002954122

PREPARATION

- ECM (1) is located behind the passenger side instrument lower panel. For this inspection, remove passenger side instrument lower panel.
- 2. Remove ECM harness connector.

- 3. When disconnecting ECM harness connector, loosen (A) it with levers (2) as far as they will go as shown in the figure.
 - ECM (1)
 - Fasten (B)
- Connect a break-out box (SST) and Y-cable adapter (SST) between the ECM and ECM harness connector.
 - Use extreme care not to touch 2 pins at one time.
 - Data is for comparison and may not be exact.

ECM INSPECTION TABLE

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECMs transistor. Use a ground other than ECM terminals, such as the ground.

[VQ35DE]

< SERVICE INFORMATION >

	1				
TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	A
1	В	ECM ground	[Engine is running] • Idle speed	Body ground	EC
2	SB	A/F sensor 1 heater (bank 1)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V★ 10.0V/Div 10 ms/Div T PBIB1584E	C D
3	R	Throttle control motor relay power supply	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)	_
4	W	Throttle control motor (Close)	[Ignition switch: ON] • Engine stopped • Selector lever: D • Accelerator pedal: Fully released	0 - 14V★	F G
5	В	Throttle control motor (Open)	[Ignition switch: ON] • Engine stopped • Selector lever: D • Accelerator pedal: Fully depressed	0 - 14V★ 5 V/Div 1 ms/Div T PBIB1105E	J
6	R/L	Heated oxygen sensor 2 heater (bank 2)	 [Engine is running] Engine speed: Below 3,600 rpm after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - 1.0V	K L
			[Ignition switch: ON]Engine stopped[Engine is running]Engine speed: Above 3,600 rpm	BATTERY VOLTAGE (11 - 14V)	M
			[Engine is running] • Warm-up condition • Idle speed	BATTERY VOLTAGE (11 - 14V)	Ν
10	W/G	/G Intake valve timing control solenoid valve (bank 2)	[Engine is running]Warm-up conditionWhen revving engine up to 2,000rpm quickly	7 - 12V★	O

< SERV	/ICE IIVE	ORMATION >		[VQSSDL]
TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Engine is running] • Warm-up condition • Idle speed	BATTERY VOLTAGE (11 - 14V)
11	W/R	Intake valve timing control solenoid valve (bank 1)	[Engine is running]Warm-up conditionWhen revving engine up to 2,000rpm quickly	7 - 12V★ 2010.0 V/DIV PBIB1790E
12	R/G	Power steering pressure	[Engine is running]Steering wheel: Being turned	0.5 - 4.5V
12	N/G	sensor	[Engine is running] • Steering wheel: Not being turned	0.4 - 0.8V
13	W	Crankshaft position sensor (POS)	[Engine is running] • Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle	1.0 - 2.0V★
10			[Engine is running] • Engine speed: 2,000 rpm	1.0 - 2.0V★
14	L	Camshaft position sensor (PHASE) (bank 2)	 [Engine is running] Warm-up condition Idle speed NOTE: The pulse cycle changes depending on rpm at idle 	1.0 - 4.0V★ 2> 5.0 V/Div 20 ms/Div T PBIB1039E
14			[Engine is running] • Engine speed: 2,000 rpm	1.0 - 4.0V★ >> 5.0 V/Div 20 ms/Div PBIB1040E
15	W	Knock sensor	[Engine is running] • Idle speed	Approximately 2.5V

< SERVICE INFORMATION >

[VQ35DE]

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
16	G/W			Approximately 3.1V
35	BR/W		[Engine is running]	Approximately 2.6V
56	G	A/F sensor 1 (bank 1)	Warm-up condition Idle speed	Approximately 2.3V
75	GR		10.0 5	Approximately 2.3V
23 R/I 40 V/I 41 P/I	W R/Y R/B	Fuel injector No. 5 Fuel injector No. 3 Fuel injector No. 1 Fuel injector No. 6 Fuel injector No. 4 Fuel injector No. 2	 [Engine is running] Warm-up condition Idle speed NOTE: The pulse cycle changes depending on rpm at idle 	BATTERY VOLTAGE (11 - 14V)★
	V/R P/L R/W		[Engine is running]Warm-up conditionEngine speed: 2,000 rpm	BATTERY VOLTAGE (11 - 14V)★ → 10.0V/Div 50 ms/Div PBIB0043E
24	0	A/F sensor 1 heater (bank 2)	[Engine is running]Warm-up conditionIdle speed	Approximately 5V★ ≥ 10.0V/Div 10 ms/Div T PBIB1584E
25	P/B	Heated oxygen sensor 2 heater (bank 1)	 [Engine is running] Engine speed: Below 3,600 rpm after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load [Ignition switch: ON] Engine stopped [Engine is running] Engine speed: Above 3,600 rpm 	0 - 1.0V BATTERY VOLTAGE (11 - 14V)
32	R/G	EVAP control system pressure sensor	[Ignition switch: ON]	Approximately 1.8 - 4.8V

Р

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
33	LG	Camshaft position sensor (PHASE) (bank 1)	[Engine is running] • Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle	
35			[Engine is running] • Engine speed: 2,000 rpm	1.0 - 4.0V★ >> 5.0 V/Div 20 ms/Div PBIB1040E
34	Y/G	Intake air temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with intake air temperature.
			[When cranking engine]	Approximately 0V
38	G/R	Fuel pump control module (FPCM) check	[Engine is running] • Warm-up condition • Idle speed	4 - 6V
			[When cranking engine]	0 - 0.5V
39	B/R	Fuel pump control module (FPCM)	[Engine is running] • Warm-up condition • Idle speed	8 - 12V
45	V	EVAP canister purge volume	 [Engine is running] Idle speed Accelerator pedal: Not depressed even slightly, after engine starting 	BATTERY VOLTAGE (11 - 14V)★ Interpretation of the property o
45	V	control solenoid valve	 [Engine is running] Engine speed: About 2,000 rpm (More than 100 seconds after starting engine) 	BATTERY VOLTAGE (11 - 14V)★ 10.0 V/DIV 50 ms/DIV IT SEC991C
47	G	Sensor power supply (Throt- tle position sensor)	[Ignition switch: ON]	Approximately 5V
48	B/R	Sensor power supply (EVAP control system pressure sensor)	[Ignition switch: ON]	Approximately 5V
49	BY	Sensor power supply (Refrigerant pressure sensor, Battery current sensor)	[Ignition switch: ON]	Approximately 5V

< SERVICE INFORMATION >

[VQ35DE]

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
50	 [Ignition switch: ON] Engine stopped Selector lever: D Accelerator pedal: Fully released 		Engine stoppedSelector lever: D	More than 0.36V
30	W	Throttle position sensor 1	[Ignition switch: ON]Engine stoppedSelector lever: DAccelerator pedal: Fully depressed	Less than 4.75V
51	W	Mass air flow sensor	[Engine is running]Warm-up conditionIdle speed	0.9 - 1.2V
JI	VV	wass all HOW SEHSUI	[Engine is running]Warm-up conditionEngine speed: 2,500 rpm	1.6 - 1.9V
55	W	Heated oxygen sensor 2 (bank 2)	 [Engine is running] Revving engine from idle to 3,000 rpm quickly after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V
57	GR/L			Approximately 2.6V
58	LG/B	A/E concer 1 (book 2)	[Engine is running] • Warm-up condition • Idle speed	Approximately 2.3V
76	W/L	A/F sensor 1 (bank 2)		Approximately 3.1V
77	Υ			Approximately 2.3V
60 61 62	V/W P Y/R	Ignition signal No. 5 Ignition signal No. 3 Ignition signal No. 1	 [Engine is running] Warm-up condition Idle speed NOTE: The pulse cycle changes depending on rpm at idle 	0 - 0.2V★
79 80 81	GR/R GR/B G/R	Ignition signal No. 6 Ignition signal No. 4 Ignition signal No. 2	[Engine is running]Warm-up conditionEngine speed: 2,000 rpm	0.1 - 0.4V★
66	В	Sensor ground (Throttle position sensor)	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
67	B/W	Sensor ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
68	L/Y	Sensor power supply (Power steering pressure sensor)	[Ignition switch: ON]	Approximately 5V

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
69			[Ignition switch: ON] • Engine stopped • Selector lever: D • Accelerator pedal: Fully released	Less than 4.75V	
09	K	Throttle position sensor 2	[Ignition switch: ON]Engine stoppedSelector lever: DAccelerator pedal: Fully depressed	More than 0.36V	
70	L/R	Refrigerant pressure sensor	 [Engine is running] Warm-up condition Both A/C switch and blower fan motor switch: ON (Compressor operates) 	1.0 - 4.0V	
71	L/R	Battery current sensor	[Engine is running] • Battery: Fully charged* • Idle speed	Approximately 2.6 - 3.5V	
73	Y/B	Engine coolant temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with engine coolant temperature.	
74	w	Heated oxygen sensor 2 (bank 1)	 [Engine is running] Revving engine from idle to 3,000 rpm quickly after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V	
78	В	Sensor ground (Heated oxygen sensor)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V	
82	W	Sensor ground (APP sensor 1)	[Engine is running]Warm-up conditionIdle speed	Approximately 0V	
83	Р	Sensor ground (APP sensor 2)	[Engine is running]Warm-up conditionIdle speed	Approximately 0V	
85	V	Data link connector	[Ignition switch: ON] • CONSULT-III or GST: Disconnected	Approximately 5V - Battery voltage (11 - 14V)	
86	Р	CAN communication line	[Ignition switch: ON]	Approximately 1.1 - 2.3V Output voltage varies with the communication status.	
90	L	Sensor power supply (APP sensor 1)	[Ignition switch: ON]	Approximately 5V	
91	BR	Sensor power supply (APP sensor 2)	[Ignition switch: ON]	Approximately 5V	
94	L	CAN communication line	[Ignition switch: ON]	Approximately 2.6 - 3.2V Output voltage varies with the communication status.	
00	Б	Accelerator pedal position	[Ignition switch: ON] • Engine stopped • Accelerator pedal: Fully released	0.20 - 0.55V	
98	R	sensor 2	[Ignition switch: ON] • Engine stopped • Accelerator pedal: Fully depressed	1.85 - 2.40V	

< SERVICE INFORMATION >

[VQ35DE]

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Ignition switch: ON] • ICC steering switch: OFF	Approximately 4.3V
			[Ignition switch: ON] • MAIN switch: Pressed	Approximately 0V
			[Ignition switch: ON] • CANCEL switch: Pressed	Approximately 1.9V
99	Υ	ICC steering switch (models with ICC system)	[Ignition switch: ON] • RESUME/ACCELERATE switch: Pressed	Approximately 3.8V
			[Ignition switch: ON] • SET/COAST switch: Pressed	Approximately 3.3V
			[Ignition switch: ON] • DISTANCE switch: Pressed	Approximately 2.6V
			[Ignition switch: ON] • LDP ON switch: Pressed	Approximately 1.1V
			[Ignition switch: ON] • ASCD steering switch: OFF	Approximately 4V
			[Ignition switch: ON] • MAIN switch: Pressed	Approximately 0V
99	Υ	ASCD steering switch (models with ASCD system)	[Ignition switch: ON] • CANCEL switch: Pressed	Approximately 1V
			[Ignition switch: ON] • RESUME/ACCELERATE switch: Pressed	Approximately 3V
			[Ignition switch: ON] • SET/COAST switch: Pressed	Approximately 2V
101	WD 0. 1		[Ignition switch: OFF] • Brake pedal: Fully released	Approximately 0V
101	V/R	Stop lamp switch	[Ignition switch: OFF] • Brake pedal: Slightly depressed	BATTERY VOLTAGE (11 - 14V)
100	6	DND quitab	[Ignition switch: ON] • Selector lever: P or N	Approximately 0V
102	G	PNP switch	[Ignition switch: ON] • Selector lever: Except above	BATTERY VOLTAGE (11 - 14V)
104	0	Throttle control motor relay	[Ignition switch: OFF]	BATTERY VOLTAGE (11 - 14V)
			[Ignition switch: ON]	0 - 1.0V
106	LG	Accelerator pedal position	[Ignition switch: ON] • Engine stopped • Accelerator pedal: Fully released	0.4 - 1.1V
100	LG	sensor 1	[Ignition switch: ON]Engine stoppedAccelerator pedal: Fully depressed	3.7 - 4.8V
107	V/W	Fuel tank temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with fuel tank temperature.
400	DE	ICC brake switch (models with ICC system)	[Ignition switch: ON] • Brake pedal: Slightly depressed	Approximately 0V
108	BR	ASCD brake switch (models with ASCD system)	[Ignition switch: ON] • Brake pedal: Fully released	BATTERY VOLTAGE (11 - 14V)
			[Ignition switch: OFF]	0V
109	L	Ignition switch	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)		
111	SB	ECM relay (Self shut-off)	[Engine is running] [Ignition switch: OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V		
		(Sell Stiut-Oil)	[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)		
113	GR	Fuel pump relay	[Ignition switch: ON] • For 1 second after turning ignition switch ON [Engine is running]			
113	GR	Fuel pump relay	 [Ignition switch: ON] More than 1 second after turning ignition switch ON 			
115 116	B B	ECM ground	[Engine is running] • Idle speed	Body ground		
117	GR/L	EVAP canister vent control valve	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)		
119 120	R R	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)		
121	L	Power supply for ECM (Back-up)	[Ignition switch: OFF]	BATTERY VOLTAGE (11 - 14V)		

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

CONSULT-III Function (ENGINE)

INFOID:0000000002954123

FUNCTION

Diagnostic test mode	Function
Work support	This mode enables a technician to adjust some devices faster and more accurately by following the indications on the CONSULT-III unit.
Self-diagnostic results	Self-diagnostic results such as 1st trip DTC, DTCs and 1st trip freeze frame data or freeze frame data can be read and erased quickly.*
Data monitor	Input/Output data in the ECM can be read.
Active test	Diagnostic Test Mode in which CONSULT-III drives some actuators apart from the ECMs and also shifts some parameters in a specified range.
DTC & SRT confirmation	The status of system monitoring tests and the self-diagnosis status/result can be confirmed.
Function test	This mode is used to inform customers when their vehicle condition requires periodic maintenance.
ECU part number	ECM part number can be read.

^{*:} The following emission-related diagnostic information is cleared when the ECM memory is erased.

- Diagnostic trouble codes
- 1st trip diagnostic trouble codes
- · Freeze frame data
- 1st trip freeze frame data
- · System readiness test (SRT) codes
- Test values

ENGINE CONTROL COMPONENT PARTS/CONTROL SYSTEMS APPLICATION

^{*:} Before measuring the terminal voltage, confirm that the battery is fully charged. Refer to SC-4. "How to Handle Battery".

			DIAGNOSTIC TEST MODE							
					AGNOSTIC SULTS	DATA		DTC & SRT CONFIRMATION		
	Item		WORK SUPPORT	DTC*1	FREEZE FRAME DATA*2	MONI- TOR	ACTIVE TEST	SRT STA- TUS	DTC WORK SUP- PORT	
		Crankshaft position sensor (POS)		×	×	×				
		Camshaft position sensor (PHASE)		×	×	×				
		Mass air flow sensor		×		×				
		Engine coolant temperature sensor		×	×	×	×			
		Air fuel ratio (A/F) sensor 1		×		×		×	×	
		Heated oxygen sensor 2		×		×		×	×	
		Wheel sensor		×	×	×				
		Accelerator pedal position sensor		×		×				
တ		Throttle position sensor		×	×	×				
ARI		Fuel tank temperature sensor		×		×	×			
<u> </u>		EVAP control system pressure sensor		×		×				
Ä		Intake air temperature sensor		×	×	×				
PО		Knock sensor		×						
S	INPUT	Refrigerant pressure sensor				×				
ENGINE CONTROL COMPONENT PARTS	Z	Closed throttle position switch (accelerator pedal position sensor signal)				×				
Ö		Air conditioner switch				×				
¥		Transmission range switch		×		×				
5		Stop lamp switch		×		×				
ω		Power steering pressure sensor		×		×				
		Battery voltage				×				
		Load signal				×				
		Fuel level sensor		×		×				
		Battery current sensor		×		×				
		ICC steering switch		×		×				
		ASCD steering switch		×		×				
		ICC brake switch		×		×				
		ASCD brake switch		×		×				

С

Α

D

F

Е

G

Н

.

K

L

N

 \mathbb{N}

0

Ρ

			DIAGNOSTIC TEST MODE							
			_	AGNOSTIC SULTS	DATA		DTC 8			
	ltem		DTC*1	FREEZE FRAME DATA*2	MONI- TOR	ACTIVE TEST	SRT STA- TUS	DTC WORK SUP- PORT		
	Fuel injector				×	×				
	Power transistor (Ignition timing)				×	×				
	Throttle control motor relay		×		×					
3TS	Throttle control motor		×					-		
ENGINE CONTROL COMPONENT PARTS	EVAP canister purge volume control solenoid valve		×		×	×		×		
NE	FPCM		×		×	×				
MP F	Air conditioner relay				×					
8 5	Fuel pump relay Cooling fan relay	×			×	×				
2 Z	Cooling fan relay		×		×	×		-		
NT	Air fuel ratio (A/F) sensor 1 heater		×		×		×* ³	·		
ECC	Heated oxygen sensor 2 heater		×		×		×* ³			
<u>S</u>	EVAP canister vent control valve	×	×		×	×				
Ä	Intake valve timing control solenoid valve		×		×	×				
	Alternator				×	×				
	Calculated load value			×	×					

X: Applicable

WORK SUPPORT MODE

Work Item

WORK ITEM	CONDITION	USAGE
FUEL PRESSURE RELEASE	FUEL PUMP WILL STOP BY TOUCHING "START" DUR- ING IDLING. CRANK A FEW TIMES AFTER ENGINE STALLS.	When releasing fuel pressure from fuel line
IDLE AIR VOL LEARN	THE IDLE AIR VOLUME THAT KEEPS THE ENGINE WITHIN THE SPECIFIED RANGE IS MEMORIZED IN ECM.	When learning the idle air volume
SELF-LEARNING CONT	THE COEFFICIENT OF SELF-LEARNING CONTROL MIXTURE RATIO RETURNS TO THE ORIGINAL COEF- FICIENT.	When clearing the coefficient of self-learning control value

^{*1:} This item includes 1st trip DTCs.

^{*2:} This mode includes 1st trip freeze frame data or freeze frame data. The items appear on CONSULT-III screen in freeze frame data mode only if a 1st trip DTC or DTC is detected. For details, refer to EC-55, "Emission-Related Diagnostic Information".

^{*3:} Always "CMPLT" is displayed.

< SERVICE INFORMATION >

[VQ35DE]

Α

EC

D

Е

F

G

Н

J

K

L

M

Ν

Р

WORK ITEM	CONDITION	USAGE
EVAP SYSTEM CLOSE	CLOSE THE EVAP CANISTER VENT CONTROL VALVE IN ORDER TO MAKE EVAP SYSTEM CLOSE UNDER THE FOLLOWING CONDITIONS. • IGN SW ON • ENGINE NOT RUNNING • AMBIENT TEMPERATURE IS ABOVE 0°C (32°F). • NO VACUUM AND NO HIGH PRESSURE IN EVAP SYSTEM • FUEL TANK TEMP. IS MORE THAN 0°C (32°F). • WITHIN 10 MINUTES AFTER STARTING "EVAP SYSTEM CLOSE" UNDER THE CONDITION EXCEPT ABOVE, CONSULTIII WILL DISCONTINUE IT AND DISPLAY APPROPRIATE INSTRUCTION. NOTE: WHEN STARTING ENGINE, CONSULT-III MAY DISPLAY "BATTERY VOLTAGE IS LOW. CHARGE BATTERY", EVEN IN USING CHARGED BATTERY.	When detecting EVAP vapor leak point of EVAP system
VIN REGISTRATION	IN THIS MODE VIN IS REGISTERED IN ECM	When registering VIN in ECM
TARGET IDLE RPM ADJ*	IDLE CONDITION	When setting target idle speed
TARGET IGN TIM ADJ*	IDLE CONDITION	When adjusting target ignition timing

^{*:} This function is not necessary in the usual service procedure.

SELF-DIAG RESULTS MODE

Self Diagnostic Item

Regarding items of DTC and 1st trip DTC, refer to EC-55, "Emission-Related Diagnostic Information".)

Freeze Frame Data and 1st Trip Freeze Frame Data

Freeze frame data item*	Description	
DIAG TROUBLE CODE [PXXXX]	The engine control component part/control system has a trouble code, it is displayed as PXXXX. (Refer to EC-55, "Emission-Related Diagnostic Information".)	
FUEL SYS-B1	"Fuel injection system status" at the moment a malfunction is detected is displayed.	
FUEL SYS-B2	One mode in the following is displayed. Mode2: Open loop due to detected system malfunction Mode3: Open loop due to driving conditions (power enrichment, deceleration enleanment) Mode4: Closed loop - using oxygen sensor(s) as feedback for fuel control Mode5: Open loop - has not yet satisfied condition to go to closed loop	
CAL/LD VALUE [%]	The calculated load value at the moment a malfunction is detected is displayed.	
COOLANT TEMP [°C] or [°F]	The engine coolant temperature at the moment a malfunction is detected is displayed.	
L-FUEL TRM-B1 [%]	"Long-term fuel trim" at the moment a malfunction is detected is displayed.	
L-FUEL TRM-B2 [%]	 The long-term fuel trim indicates much more gradual feedback compensation to the base fuel schedule than short-term fuel trim. 	
S-FUEL TRM-B1 [%]	"Short-term fuel trim" at the moment a malfunction is detected is displayed.	
S-FUEL TRM-B2 [%]	 The short-term fuel trim indicates dynamic or instantaneous feedback compensation to the base fuel sched- ule. 	
ENGINE SPEED [rpm]	The engine speed at the moment a malfunction is detected is displayed.	
VEHICL SPEED [km/h] or [mph]	The vehicle speed at the moment a malfunction is detected is displayed.	
ABSOL TH-P/S [%]	The throttle valve opening angle at the moment a malfunction is detected is displayed.	

Freeze frame data item*	Description	
B/FUEL SCHDL [msec]	The base fuel schedule at the moment a malfunction is detected is displayed.	
INT/A TEMP SE [°C] or [°F]	The intake air temperature at the moment a malfunction is detected is displayed.	

^{*:} The items are the same as those of 1st trip freeze frame data.

DATA MONITOR MODE

Monitored Item

			×: Applicable
Monitored item [Unit]	Unit	Description	Remarks
ENG SPEED	rpm	Indicates the engine speed computed from the signal of the crankshaft position sensor (POS) and camshaft position sensor (PHASE).	 Accuracy becomes poor if engine speed drops below the idle rpm. If the signal is interrupted while the engine is running, an abnormal value may be indicated.
MAS A/F SE-B1	V	The signal voltage of the mass air flow sensor is displayed.	When the engine is stopped, a certain value is indicated.
B/FUEL SCHDL	msec	"Base fuel schedule" indicates the fuel injection pulse width programmed into ECM, prior to any learned on board correction.	
A/F ALPHA-B1			When the engine is stopped, a certain val-
A/F ALPHA-B2	%	The mean value of the air-fuel ratio feedback correction factor per cycle is indicated.	ue is indicated.This data also includes the data for the airfuel ratio learning control.
COOLAN TEMP/S	°C or °F	The engine coolant temperature (determined by the signal voltage of the engine coolant tem- perature sensor) is displayed.	When the engine coolant temperature sensor is open or short-circuited, ECM en- ters fail-safe mode. The engine coolant temperature determined by the ECM is displayed.
A/F SEN1 (B1)		The A/F signal computed from the input signal	
A/F SEN1 (B2)	V	of the air fuel ratio (A/F) sensor 1 is displayed.	
HO2S2 (B1)	V	The signal voltage of the heated oxygen sensor	
HO2S2 (B2)	V	2 is displayed.	
HO2S2 MNTR (B1)		Display of heated oxygen sensor 2 signal:	
HO2S2 MNTR (B2)	RICH/LEAN	RICH: means the amount of oxygen after three way catalyst is relatively small. LEAN: means the amount of oxygen after three way catalyst is relatively large.	When the engine is stopped, a certain value is indicated.
VHCL SPEED SE	km/h or mph	The vehicle speed computed from the vehicle speed signal sent from combination meter is displayed.	
BATTERY VOLT	V	The power supply voltage of ECM is displayed.	
ACCEL SEN 1		The accelerator pedal position sensor signal	ACCEL SENS 2 signal is converted be
ACCEL SEN 2	V	voltage is displayed.	ECM internally. Thus, they differs from ECM terminal voltage signal.
THRTL SEN 1		The throttle position sensor signal voltage is	THRTL SEN 2 signal is converted by ECM
THRTL SEN 2	V	displayed.	internally. Thus, they differs from ECM terminal voltage signal.
FUEL T/TMP SE	°C or °F	The fuel temperature (determined by the signal voltage of the fuel tank temperature sensor) is displayed.	

< SERVICE INFORMATION >

[VQ35DE]

Monitored item [Unit]	Unit	Description	Remarks
INT/A TEMP SE	°C or °F	The intake air temperature (determined by the signal voltage of the intake air temperature sensor) is indicated.	
EVAP SYS PRES	V	The signal voltage of EVAP control system pressure sensor is displayed.	
FPCM DR VOLT	V	The voltage between fuel pump and FPCM is displayed.	
FUEL LEVEL SE	V	The signal voltage of the fuel level sensor is displayed.	
START SIGNAL	ON/OFF	Indicates start signal status [ON/OFF] computed by the ECM according to the signals of engine speed and battery voltage.	After starting the engine, [OFF] is dis- played regardless of the starter signal.
CLSD THL POS	ON/OFF	Indicates idle position [ON/OFF] computed by ECM according to the accelerator pedal posi- tion sensor signal.	
AIR COND SIG	ON/OFF	Indicates [ON/OFF] condition of the air conditioner switch as determined by the air conditioner signal.	
P/N POSI SW	ON/OFF	Indicates [ON/OFF] condition from the park/ neutral position (PNP) switch signal.	
PW/ST SIGNAL	ON/OFF	[ON/OFF] condition of the power steering system (determined by the signal voltage of the power steering pressure sensor signal) is indicated.	
LOAD SIGNAL	ON/OFF	Indicates [ON/OFF] condition from the electrical load signal. ON: Rear window defogger switch is ON and/or lighting switch is in 2nd position. OFF: Both rear window defogger switch and lighting switch are OFF.	
IGNITION SW	ON/OFF	Indicates [ON/OFF] condition from ignition switch signal.	
HEATER FAN SW	ON/OFF	Indicates [ON/OFF] condition from the heater fan switch signal.	
BRAKE SW	ON/OFF	Indicates [ON/OFF] condition from the stop lamp switch signal.	
INJ PULSE-B1	msec	Indicates the actual fuel injection pulse width	When the engine is stopped, a certain
INJ PULSE-B2	msec	compensated by ECM according to the input signals.	computed value is indicated.
IGN TIMING	BTDC	Indicates the ignition timing computed by ECM according to the input signals.	When the engine is stopped, a certain value is indicated.
CAL/LD VALUE	%	"Calculated load value" indicates the value of the current air flow divided by peak air flow.	
MASS AIRFLOW	g-m/s	Indicates the mass air flow computed by ECM according to the signal voltage of the mass air flow sensor.	
PURG VOL C/V	%	 Indicates the EVAP canister purge volume control solenoid valve control value computed by the ECM according to the input signals. The opening becomes larger as the value increases. 	
INT/V TIM (B1) INT/V TIM (B2)	°CA	Indicates [°CA] of intake camshaft advanced angle.	

Monitored item [Unit]	Unit	Description	Remarks
INT/V SOL (B1) INT/V SOL (B2)	%	 The control value of the intake valve timing control solenoid valve (determined by ECM according to the input signals) is indicated. The advance angle becomes larger as the value increases. 	
AIR COND RLY	ON/OFF	The air conditioner relay control condition (determined by ECM according to the input signals) is indicated.	
FUEL PUMP RLY	ON/OFF	Indicates the fuel pump relay control condition determined by ECM according to the input signals.	
FPCM	HI/LOW	The control condition of the fuel pump control module (FPCM) (determined by the ECM ac- cording to the input signal) is indicated.	
VENT CONT/V	ON/OFF	The control condition of the EVAP canister vent control valve (determined by ECM according to the input signals) is indicated. ON: Closed OFF: Open	
THRTL RELAY	ON/OFF	Indicates the throttle control motor relay control condition determined by the ECM according to the input signals.	
HO2S2 HTR (B1)	ON/OFF	Indicates [ON/OFF] condition of heated oxygen	
HO2S2 HTR (B2)	ON/OFF	sensor 2 heater determined by ECM according to the input signals.	
I/P PULLY SPD	rpm	Indicates the engine speed computed from the turbine revolution sensor signal.	
VEHICLE SPEED	km/h or mph	The vehicle speed computed from the vehicle speed signal sent from TCM is displayed.	
IDL A/V LEARN	YET/CMPLT	Display the condition of idle air volume learning YET: Idle Air Volume Learning has not been performed yet. CMPLT: Idle Air Volume Learning has already been performed successfully.	
TRVL AFTER MIL	km or mile	Distance traveled while MIL is activated.	
A/F S1 HTR (B1)		Air fuel ratio (A/F) sensor 1 heater control value computed by ECM according to the input sig-	
A/F S1 HTR (B2)	%	nals. • The current flow to the heater becomes larger as the value increases.	
AC PRESS SEN	V	The signal voltage from the refrigerant pressure sensor is displayed.	
VHCL SPEED SE	km/h or mph	The vehicle speed computed from the vehicle speed signal sent from combination meter is displayed.	
MAIN SW	ON/OFF	Indicates [ON/OFF] condition from MAIN switch signal.	
CANCEL SW	ON/OFF	Indicates [ON/OFF] condition from CANCEL switch signal.	
RESUME/ACC SW	ON/OFF	Indicates [ON/OFF] condition from RESUME/ ACCELERATE switch signal.	
SET SW	ON/OFF	Indicates [ON/OFF] condition from SET/ COAST switch signal.	
BRAKE SW1	ON/OFF	Indicates [ON/OFF] condition from ASCD brake switch signal.	

< SERVICE INFORMATION >

[VQ35DE]

Α

D

Е

F

Monitored item [Unit]	Unit	Description	Remarks	
BRAKE SW2	ON/OFF	Indicates [ON/OFF] condition of stop lamp switch signal.		
DIST SW	ON/OFF	Indicates [ON/OFF] condition from DISTANCE switch signal.		•
CRUISE LAMP	ON/OFF	Indicates [ON/OFF] condition of CRUISE lamp determined by the ECM according to the input signals.		
FAN DUTY	%	Indicates a command value for cooling fan. The value is calculated by ECM based on input signals.		
AC EVA TEMP	°C	Indicates A/C evaporator temperature sent from "unified meter and A/C amp.".		
AC EVA TARGET	°C	Indicates target A/C evaporator temperature sent from "unified meter and A/C amp.".		
ALT DUTY	%	Indicates the duty ratio of the power generation command value. The ratio is calculated by ECM based on the battery current sensor signal.		
BAT CUR SEN	mV	The signal voltage of battery current sensor is displayed.		
ALT DUTY SIG	ON/OFF	The control condition of the power generation voltage variable control (determined by ECM according to the input signals) is indicated. ON: Power generation voltage variable control is active. OFF: Power generation voltage variable control is inactive.		
A/F ADJ-B1		Indicates the correction of factor stored in ECM.		
A/F ADJ-B2	_	The factor is calculated from the difference be- tween the target air-fuel ratio stored in ECM and the air-fuel ratio calculated from A/F sensor 1 signal.		

NOTE:

Any monitored item that does not match the vehicle being diagnosed is deleted from the display automatically.

ACTIVE TEST MODE

Test Item

TEST ITEM	CONDITION	JUDGEMENT	CHECK ITEM (REMEDY)	
FUEL INJEC- TION	Engine: Return to the original trouble condition Change the amount of fuel injection using CONSULT-III.	If trouble symptom disappears, see CHECK ITEM.	Harness and connectors Fuel injector Air fuel ratio (A/F) sensor 1	
IGNITION TIM- ING	 Engine: Return to the original trouble condition Timing light: Set Retard the ignition timing using CONSULT-III. 	If trouble symptom disappears, see CHECK ITEM.	Perform Idle Air Volume Learning.	(
POWER BAL- ANCE	 Engine: After warming up, idle the engine. A/C switch OFF Selector lever: P or N Cut off each injector signal one at a time using CONSULT-III. 	Engine runs rough or dies.	Harness and connectors Compression Fuel injector Power transistor Spark plug Ignition coil	

TEST ITEM	CONDITION	JUDGEMENT	CHECK ITEM (REMEDY)
ENG COOLANT TEMP	Engine: Return to the original trouble condition Change the engine coolant temperature using CONSULT-III.	If trouble symptom disappears, see CHECK ITEM.	Harness and connectors Engine coolant temperature sensor Fuel injector
FUEL PUMP RE- LAY	Ignition switch: ON (Engine stopped) Turn the fuel pump relay "ON" and "OFF" using CONSULT-III and listen to operating sound.	Fuel pump relay makes the operating sound.	Harness and connectors Fuel pump relay
PURG VOL CONT/V	Engine: After warming up, run engine at 1,500 rpm. Change the EVAP canister purge volume control solenoid valve opening percent using CONSULT-III.	Engine speed changes according to the opening percent.	Harness and connectors Solenoid valve
FUEL/T TEMP SEN	Change the fuel tank temperature	using CONSULT-III.	
VENT CON- TROL/V	Ignition switch: ON (Engine stopped) Turn solenoid valve "ON" and "OFF" with the CONSULT-III and listen to operating sound.	Solenoid valve makes an operating sound.	Harness and connectors Solenoid valve
FPCM	Engine: Returns to the original trouble condition Select "LOW" and "HI" with CONSULT-III.	If trouble symptom disappears, see CHECK ITEM.	Harness and connectors FPCM
V/T ASSIGN AN- GLE	Engine: Return to the original trouble condition Change intake valve timing using CONSULT-III.	If trouble symptom disappears, see CHECK ITEM.	Harness and connectors Intake valve timing control solenoid valve
FAN DUTY CONTROL*	Ignition switch: ON Change duty ratio using CON-SULT-III.	Cooling fan speed changes.	 Harness and connectors Cooling fan motor Cooling fan relay Cooling fan control module IPDM E/R
ALTERNATOR DUTY	Engine: Idle Change duty ratio using CON- SULT-III.	Battery voltage changes.	Harness and connectors IPDM E/R Alternator

^{*:} Leaving cooling fan OFF with CONSULT-III while engine is running may cause the engine to overheat.

DTC & SRT CONFIRMATION MODE

SRT STATUS Mode

For details, refer to EC-55. "Emission-Related Diagnostic Information".

SRT WORK SUPPORT Mode

This mode enables a technician to drive a vehicle to set the SRT while monitoring the SRT status.

DTC WORK SUPPORT Mode

Test mode	Test item	Corresponding DTC No.	Reference page
	EVP SML LEAK P0442/P1442*	P0442	EC-352
	EVF SIVIL LLAR F 0442/F 1442	P0455	EC-400
EVAPORATIVE SYSTEM	EVP V/S LEAK P0456/P1456*	P0456	EC-406
	PURG VOL CN/V P1444	P0443	EC-359
	PURG FLOW P0441	P0441	EC-347

< SERVICE INFORMATION >

[VQ35DE]

Α

EC

D

Е

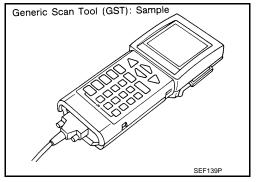
F

Ν

Test mode	Test item	Corresponding DTC No.	Reference page
	A/F SEN1 (B1) P1278/P1279	P0133	EC-242
A/F SEN1	A/F SEN1 (B1) P1276	P0130	EC-218
A/F SEINT	A/F SEN1 (B2) P1288/P1289	P0153	EC-242
	A/F SEN1 (B2) P1286	P0150	EC-218
	HO2S2 (B1) P1146	P0138	EC-260
	HO2S2 (B1) P1147	P0137	EC-251
HOSES	HO2S2 (B1) P0139	P0139	EC-271
HO2S2	HO2S2 (B2) P1166	P0158	EC-260
	HO2S2 (B2) P1167	P0157	EC-251
	HO2S2 (B2) P0159	P0159	EC-271

^{*:} DTC P1442 and P1456 does not apply to Y50 models but appears in DTC Work Support Mode screens.

Generic Scan Tool (GST) Function

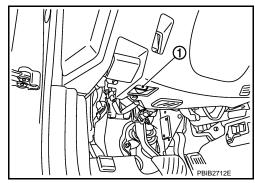

INFOID:0000000002954124

DESCRIPTION

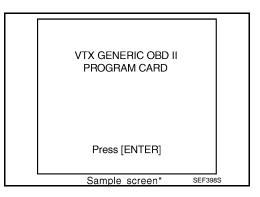
Generic Scan Tool (OBDII scan tool) complying with SAE J1978 has 8 different functions explained below.

ISO9141 is used as the protocol.

The name "GST" or "Generic Scan Tool" is used in this service manual.


FUNCTION

Di	agnostic Service	Function
Service \$01	READINESS TESTS	This diagnostic service gains access to current emission-related data values, including analog inputs and outputs, digital inputs and outputs, and system status information.
Service \$02	(FREEZE DATA)	This diagnostic service gains access to emission-related data value which were stored by ECM during the freeze frame. For details, refer to EC-55, "Emission-Related Diagnostic Information".
Service \$03	DTCs	This diagnostic service gains access to emission-related power train trouble codes which were stored by ECM.
Service \$04	CLEAR DIAG INFO	This diagnostic service can clear all emission-related diagnostic information. This includes: • Clear number of diagnostic trouble codes (Service \$01) • Clear diagnostic trouble codes (Service \$03) • Clear trouble code for freeze frame data (Service \$01) • Clear freeze frame data (Service \$02) • Reset status of system monitoring test (Service \$01) • Clear on board monitoring test results (Service \$06 and \$07)
Service \$06	(ON BOARD TESTS)	This diagnostic service accesses the results of on board diagnostic monitoring tests of specific components/systems that are not continuously monitored.
Service \$07	(ON BOARD TESTS)	This diagnostic service enables the off board test drive to obtain test results for emission-related powertrain components/systems that are continuously monitored during normal driving conditions.


Diagnostic Service		Function	
Service \$08	_	This diagnostic service can close EVAP system in ignition switch ON position (Engine stopped). When this diagnostic service is performed, EVAP canister vent control valve can be closed. In the following conditions, this diagnostic service cannot function. Low ambient temperature Low battery voltage Engine running Ignition switch OFF Low fuel temperature Too much pressure is applied to EVAP system	
Service \$09	(CALIBRATION ID)	This diagnostic service enables the off-board test device to request specific vehicle information such as Vehicle Identification Number (VIN) and Calibration IDs.	

INSPECTION PROCEDURE

- 1. Turn ignition switch OFF.
- 2. Connect "GST" to data link connector (1), which is located under LH dash panel near the hood opener handle.

- 3. Turn ignition switch ON.
- 4. Enter the program according to instruction on the screen or in the operation manual.
 - (*: Regarding GST screens in this section, sample screens are shown.)

Perform each diagnostic mode according to each service procedure.

For further information, see the GST Operation Manual of the tool maker.

OBD II FUNCTIONS

F0: DATA LIST
F1: FREEZE DATA
F2: DTCS
F3: SNAPSHOT
F4: CLEAR DIAG INFO
F5: O2 TEST RESULTS
F6: READINESS TESTS
F7: ON BOARD TESTS
F8: EXPAND DIAG PROT
F9: UNIT CONVERSION

Sample screen*

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002954125

SEF416S

Remarks:

- Specification data are reference values.
- Specification data are output/input values which are detected or supplied by the ECM at the connector.

< SERVICE INFORMATION >

[VQ35DE]

i.e. Adjust ignition timing with a timing light before monitoring IGN TIMING, because the monitor may show the specification data in spite of the ignition timing not being adjusted to the specification data. This IGN TIMING monitors the data calculated by the ECM according to the signals input from the camshaft position sensor and other ignition timing related sensors.

MONITOR ITEM	position sensor and other ignition timing	SPECIFICATION	
ENG SPEED	Run engine and compare CONSU	Almost the same speed as the tachometer indication.	
MAS A/F SE-B1	See <u>EC-132</u> .		
B/FUEL SCHDL	See <u>EC-132</u> .		
A/F ALPHA-B1 A/F ALPHA-B2	See <u>EC-132</u> .		
COOLAN TEMP/S	Engine: After warming up		More than 70°C (158°F)
A/F SEN1 (B1) A/F SEN1 (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	Fluctuates around 1.5 V
HO2S2 (B1) HO2S2 (B2)	Revving engine from idle to 3,000 rpm quickly after the following conditions are met		0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S2 MNTR (B1) HO2S2 MNTR (B2)	 Engine: After warming up Keeping engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 		$LEAN \longleftrightarrow RICH$
VHCL SPEED SE	Turn drive wheels and compare CONSULT-III value with the speedometer indication.		Almost the same speed as speedometer indication
BATTERY VOLT	Ignition switch: ON (Engine stopped)	ed)	11 - 14V
ACCEL SEN 1	Ignition switch: ON	Accelerator pedal: Fully released	0.4 - 1.1V
ACCEL SEN 2*1	(Engine stopped)	Accelerator pedal: Fully depressed	3.7 - 4.8V
TP SEN 1-B1	Ignition switch: ON	Accelerator pedal: Fully released	More than 0.36V
TP SEN 1-B2* ¹	(Engine stopped) • Selector lever: D	Accelerator pedal: Fully depressed	Less than 4.75V
EVAP SYS PRES	Ignition switch: ON		Approx. 1.8 - 4.8V
START SIGNAL	• Ignition switch: $ON \rightarrow START \rightarrow ON$		$OFF \to ON \to OFF$
CLSD THL POS	Ignition switch: ON (Engine stopped)	Accelerator pedal: Fully released	ON
CLOD THE FOO		Accelerator pedal: Slightly depressed	OFF
	Engine: After warming up, idle the engine	Air conditioner switch: OFF	OFF
AIR COND SIG		Air conditioner switch: ON (Compressor operates.)	ON
P/N POSI SW	Ignition switch: ON	Selector lever: P or N	ON
P/N POSI SW		Selector lever: Except above	OFF
DW/CT CIONAL	Engine: After warming up, idle the engine	Steering wheel: Not being turned	OFF
PW/ST SIGNAL		Steering wheel: Being turned	ON
LOAD SIGNAL	Ignition switch: ON	Rear window defogger switch: ON and/or Lighting switch: 2nd position	ON
		Rear window defogger switch and lighting switch: OFF	OFF
IGNITION SW	• Ignition switch: $ON \rightarrow OFF \rightarrow ON$		$ON \to OFF \to ON$
HEATED FAN CVA	Engine: After warming up, idle the	Heater fan switch: ON	ON
HEATER FAN SW	engine	Heater fan switch: OFF	OFF
DDAKE OW	a lonition quitale ON	Brake pedal: Fully released	OFF
BRAKE SW	Ignition switch: ON	Brake pedal: Slightly depressed	ON
	Engine: After warming up	Idle	2.0 - 3.0 msec
INJ PULSE-B1 INJ PULSE-B2	Selector lever: P or NAir conditioner switch: OFFNo load	2,000 rpm	1.9 - 2.9 msec

^{*} Specification data may not be directly related to their components signals/values/operations.

[VQ35DE]

MONITOR ITEM	CONDITION		SPECIFICATION
	Engine: After warming up Selector lever: P or N	Idle	13° - 18° BTDC
IGN TIMING	Air conditioner switch: OFF No load	2,000 rpm	25° - 45° BTDC
	Engine: After warming up Selector lever Block N	Idle	5% - 35%
CAL/LD VALUE	Selector lever: P or NAir conditioner switch: OFFNo load	2,500 rpm	5% - 35%
	Engine: After warming up	Idle	2.0 - 6.0 g·m/s
MASS AIRFLOW	Selector lever: P or NAir conditioner switch: OFFNo load	2,500 rpm	7.0 - 20.0 g·m/s
PURG VOL C/V	Engine: After warming up Selector lever: P or N Air conditioner switch: OFF	Idle (Accelerator pedal: Not depressed even slightly, after engine starting.)	0%
	No load	2,000 rpm	_
INITA/ TIM (D4)	Engine: After warming upSelector lever: P or N	Idle	–5° - 5°CA
INT/V TIM (B1) INT/V TIM (B2)	Selector lever: P or N Air conditioner switch: OFF No load	When revving engine up to 2,000 rpm quickly	Approx. 0° - 30°CA
	Engine: After warming up	Idle	0% - 2%
INT/V SOL (B1) INT/V SOL (B2)	Selector lever: P or NAir conditioner switch: OFFNo load	When revving engine up to 2,000 rpm quickly	Approx. 0% - 50%
	Engine: After warming up, idle the engine	Air conditioner switch: OFF	OFF
AIR COND RLY		Air conditioner switch: ON (Compressor operates)	ON
FUEL PUMP RLY	For 1 seconds after turning ignition Engine running or cranking	ON	
	Except above	OFF	
	Engine: Cranking	HI	
FPCM	 Engine: Idle Engine coolant temperature: More than 10°C (50°F) 		LOW
VENT CONT/V	Ignition switch: ON		OFF
THRTL RELAY	Ignition switch: ON		ON
HO2S2 HTR (B1) HO2S2 HTR (B2)	 Engine speed: Below 3,600 rpm after the following conditions are met. Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 		ON
	Engine speed: Above 3,600 rpm	OFF	
I/P PULLY SPD	Vehicle speed: More than 20 km/h (12 MPH)		Almost the same speed as the tachometer indication
VEHICLE SPEED	Turn drive wheels and compare CONSULT-III value with the speedometer indication.		Almost the same speed as the speedometer indication
TRVL AFTER MIL	Ignition switch: ON	Vehicle has traveled after MIL has turned ON.	0 - 65,535 km (0 - 40,723 miles)
A/F S1 HTR (B1) A/F S1 HTR (B2)	Engine: After warming up, idle the engine		0 - 100%
AC PRESS SEN	Engine: Idle Both A/C switch and blower fan switch: ON (Compressor operates)		1.0 - 4.0V
VHCL SPEED SE	Turn drive wheels and compare CONSULT-III value with the speedometer indication.		Almost the same speed as the speedometer indication
SET VHCL SPD	Engine: Running ASCD: Operating		The preset vehicle speed is displayed

< SERVICE INFORMATION >

[VQ35DE]

MONITOR ITEM	CONDITION		SPECIFICATION
MAINI CVA/	- Indition on the CNI	MAIN switch: Pressed	ON
MAIN SW	Ignition switch: ON	MAIN switch: Released	OFF
CANCEL SW		CANCEL switch: Pressed	ON
	Ignition switch: ON	CANCEL switch: Released	OFF
RESUME/ACC SW	Ignition switch: ON	RESUME/ACCELERATE switch: Pressed	ON
		RESUME/ACCELERATE switch: Released	OFF
CET CW	a Ignition quitable ON	SET/COAST switch: Pressed	ON
SET SW	Ignition switch: ON	SET/COAST switch: Released	OFF
BRAKE SW1		Brake pedal: Fully released	ON
(ICC/ASCD brake switch)	Ignition switch: ON	Brake pedal: Slightly depressed	OFF
BRAKE SW2	Ignition switch: ON	Brake pedal: Fully released	OFF
(Stop lamp switch)		Brake pedal: Slightly depressed	ON
DIST SW	Ignition switch: ON	DISTANCE switch: Pressed	ON
DIST 3W		DISTANCE switch: Released	OFF
CRUISE LAMP	Ignition switch: ON	MAIN switch: Pressed at the 1st time \rightarrow at the 2nd time	$ON \to OFF$
	MAIN switch: ON	ASCD: Operating	ON
SET LAMP	When vehicle speed: Between 40 km/h (25 MPH) and 144 km/h (89 MPH)	ASCD: Not operating	OFF
FAN DUTY	Engine: Running		0 - 100%
AC EVA TEMP	Engine: Idle Both A/C switch and blower fan switch: ON (Compressor operates)		
AC EVA TARGET	Engine: Idle Both A/C switch and blower fan switch: ON (Compressor operates)		
ALT DUTY	Engine: Idle		0 - 80%
BAT CUR SEN	 Engine speed: Idle Battery: Fully charged*² Selector lever: P or N Air conditioner switch: OFF No load 		Approx. 2,600 - 3,500mV
ALT DUTY OLD	Power generation voltage variable control: Operating		ON
ALT DUTY SIG	Power generation voltage variable control: Not operating		OFF

^{*1:} Accelerator pedal position sensor 2 signal and throttle position sensor 2 signal are converted by ECM internally. Thus, they differ from ECM terminals voltage signal.

Major Sensor Reference Graph in Data Monitor Mode

INFOID:0000000002954126

The following are the major sensor reference graphs in "DATA MONITOR" mode.

CLSD THL POS, ACCEL SEN 1, THRTL SEN 1

Below is the data for "CLSD THL POS", "ACCEL SEN 1" and "THRTL SEN 1" when depressing the accelerator pedal with the ignition switch ON and with selector lever in D position.

Revision: 2009 February **EC-129** 2008 M35/M45

С

Α

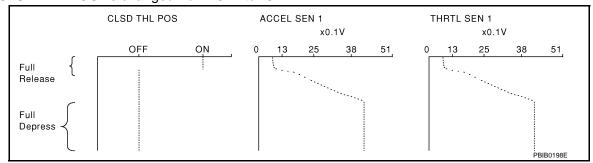
D

Е

Ы

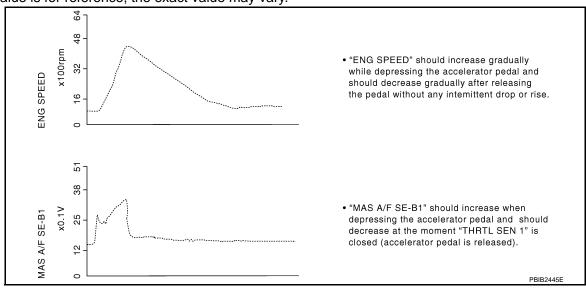
J

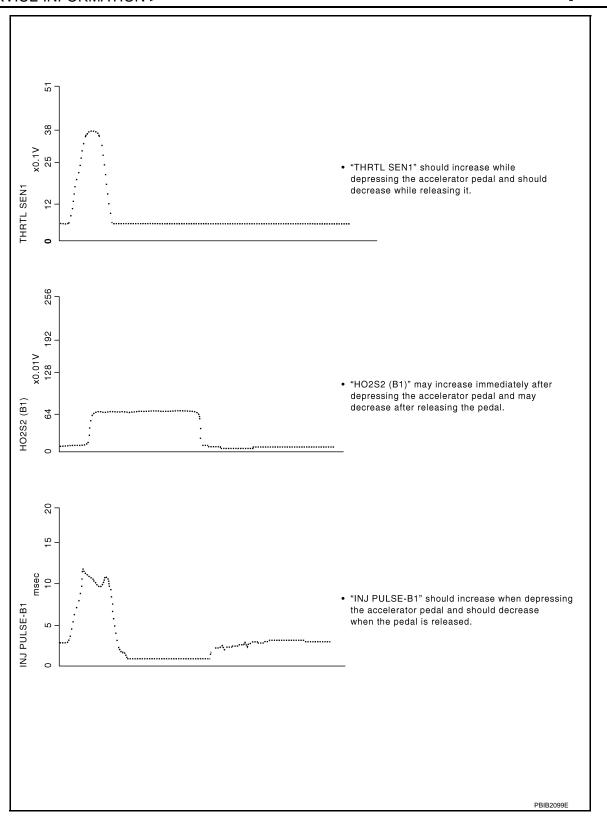
K


L

Ν

0


^{*2:} Before measuring the terminal voltage, confirm that the battery is fully charged. Refer to SC-4, "How to Handle Battery".


The signal of "ACCEL SEN 1" and "THRTL SEN 1" should rise gradually without any intermittent drop or rise after "CLSD THL POS" is changed from "ON" to "OFF".

ENG SPEED, MAS A/F SE-B1, THRTL SEN 1, HO2S2 (B1), INJ PULSE-B1

Below is the data for "ENG SPEED", "MAS A/F SE-B1", "THRTL SEN 1", "HO2S2 (B1)" and "INJ PULSE-B1" when revving engine quickly up to 4,800 rpm under no load after warming up engine sufficiently. Each value is for reference, the exact value may vary.

Α

EC

C

D

Е

F

G

Н

U

Κ

L

M

Ν

0

Р

TROUBLE DIAGNOSIS - SPECIFICATION VALUE

< SERVICE INFORMATION >

[VQ35DE]

TROUBLE DIAGNOSIS - SPECIFICATION VALUE

Description INFOID:000000002954127

The specification (SP) value indicates the tolerance of the value that is displayed in "SPEC" in "DATA MONITOR" mode of CONSULT-III during normal operation of the Engine Control System. When the value in "SPEC" in "DATA MONITOR" mode is within the SP value, the Engine Control System is confirmed OK. When the value in "SPEC" in "DATA MONITOR" mode is NOT within the SP value, the Engine Control System may have one or more malfunctions.

The SP value is used to detect malfunctions that may affect the Engine Control System, but will not light the MIL.

The SP value will be displayed for the following three items:

- B/FUEL SCHDL (The fuel injection pulse width programmed into ECM prior to any learned on board correction)
- A/F ALPHA-B1/B2 (The mean value of air-fuel ratio feedback correction factor per cycle)
- MAS A/F SE-B1 (The signal voltage of the mass air flow sensor)

Testing Condition

INFOID:0000000002954128

- Vehicle driven distance: More than 5,000 km (3,107 miles)
- Barometric pressure: 98.3 104.3 kPa (1.003 1.064 kg/cm², 14.25 15.12 psi)
- Atmospheric temperature: 20 30°C (68 86°F)
- Engine coolant temperature: 75 95°C (167 203°F)
- Transmission: Warmed-up
- After the engine is warmed up to normal operating temperature, drive vehicle until "ATF TEMP SE 1" (A/T fluid temperature sensor signal) indicates more than 60°C (140°F).
- Electrical load: Not applied
- Rear window defogger switch, air conditioner switch, lighting switch are OFF. Steering wheel is straight ahead.
- Engine speed: Idle

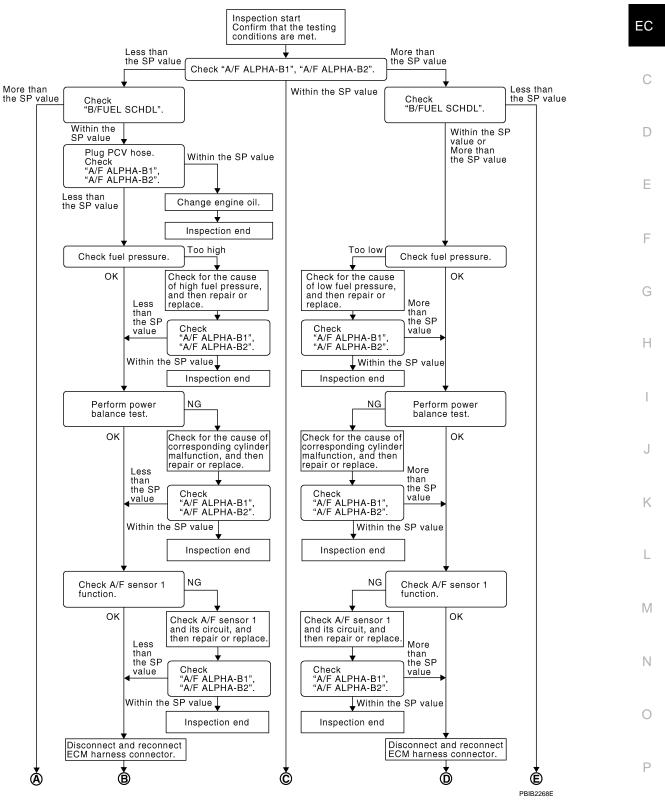
Inspection Procedure

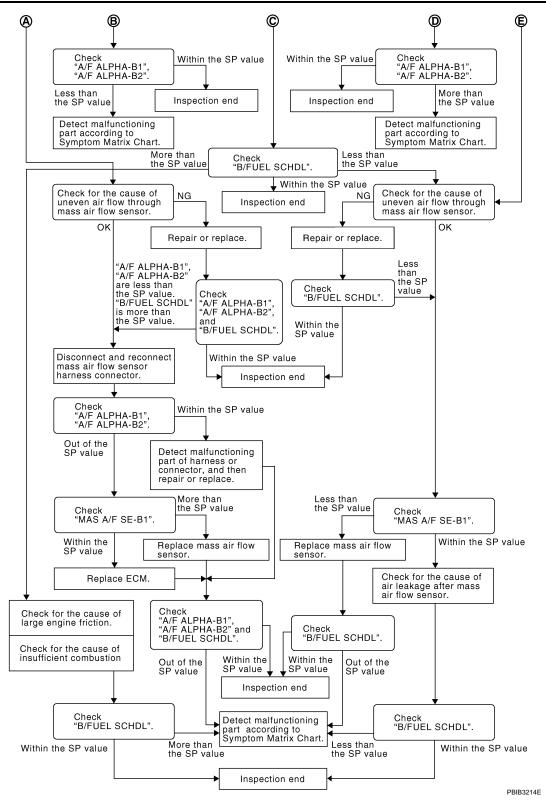
INFOID:0000000002954129

NOTE:

Perform "SPEC" in "DATA MONITOR" mode in maximum scale display.

- 1. Perform EC-76, "Basic Inspection".
- 2. Confirm that the testing conditions indicated above are met.
- Select "B/FUEL SCHDL", "A/F ALPHA-B1", "A/F ALPHA-B2" and "MAS A/F SE-B1" in "SPEC" of "DATA MONITOR" mode with CONSULT-III.
- 4. Make sure that monitor items are within the SP value.
- 5. If NG, go to EC-133, "Diagnosis Procedure".


[VQ35DE]


Diagnosis Procedure

INFOID:0000000002954130

Α

OVERALL SEQUENCE

DETAILED PROCEDURE

1.CHECK "A/F ALPHA-B1", "A/F ALPHA-B2"

- 1. Start engine.
- Confirm that the testing conditions are met. Refer to <u>EC-132, "Testing Condition"</u>.
- Select "A/F ALPHA-B1", "A/F ALPHA-B2" in "SPEC" of "DATA MONITOR" mode, and make sure that the each indication is within the SP value.
 NOTE:

TROUBLE DIAGNOSIS - SPECIFICATION VALUE

< SERVICE INFORMATION >

[VQ35DE]

Check "A/F ALPHA-B1", "A/F ALPHA-B2" for approximately 1 minute because they may fluctuate. It is NG if the indication is out of the SP value even a little.

OK or NG

OK >> GO TO 17.

NG (Less than the SP value)>>GO TO 2.

NG (More than the SP value)>>GO TO 3.

2.CHECK "B/FUEL SCHDL"

Select "B/FUEL SCHDL" in "SPEC" of "DATA MONITOR" mode, and make sure that the indication is within the SP value.

OK or NG

>> GO TO 4. OK

NG (More than the SP value)>>GO TO 19.

3.CHECK "B/FUEL SCHDL"

Select "B/FUEL SCHDL" in "SPEC" of "DATA MONITOR" mode, and make sure that the indication is within the SP value.

OK or NG

OK >> GO TO 6.

NG (More than the SP value)>>GO TO 6.

NG (Less than the SP value)>>GO TO 25.

4.CHECK "A/F ALPHA-B1", "A/F ALPHA-B2"

Stop the engine.

- Disconnect PCV hose, and then plug it.
- Start engine.

4. Select "A/F ALPHA-B1", "A/F ALPHA-B2" in "SPEC" of "DATA MONITOR" mode, and make sure that the each indication is within the SP value.

OK or NG

OK >> GO TO 5.

NG >> GO TO 6.

5.CHANGE ENGINE OIL

1. Stop the engine.

2. Change engine oil.

NOTE:

This symptom may occur when a large amount of gasoline is mixed with engine oil because of driving conditions (such as when engine oil temperature does not rise enough since a journey distance is too short during winter). The symptom will not be detected after changing engine oil or changing driving condition.

>> INSPECTION END

6.CHECK FUEL PRESSURE

Check fuel pressure. (Refer to EC-84, "Fuel Pressure Check".)

OK or NG

>> GO TO 9. OK

NG (Fuel pressure is too high)>>Replace fuel pressure regulator, refer to EC-84, "Fuel Pressure Check". GO

NG (Fuel pressure is too low)>>GO TO 7.

.DETECT MALFUNCTIONING PART

- Check the following.
- Clogged and bent fuel hose and fuel tube
- Clogged fuel filter
- Fuel pump and its circuit (Refer to EC-600.)
- If NG, repair or replace the malfunctioning part. (Refer to EC-84, "Fuel Pressure Check".) If OK, replace fuel pressure regulator.

EC

Α

D

Е

F

Н

K

L

M

N

Р

EC-135

[VQ35DE]

>> GO TO 8.

8.CHECK "A/F ALPHA-B1", "A/F ALPHA-B2"

- Start engine.
- Select "A/F ALPHA-B1", "A/F ALPHA-B2" in "SPEC" of "DATA MONITOR" mode, and make sure that the each indication is within the SP value.

OK or NG

OK >> INSPECTION END

NG >> GO TO 9.

9.PERFORM POWER BALANCE TEST

- Perform "POWER BALANCE" in "ACTIVE TEST" mode.
- Make sure that the each cylinder produces a momentary engine speed drop.

OK or NG

OK >> GO TO 12. NG >> GO TO 10.

10.DETECT MALFUNCTIONING PART

- Check the following.
- Ignition coil and its circuit (Refer to EC-614.)
- Fuel injector and its circuit (Refer to EC-594.)
- Intake air leakage
- Low compression pressure (Refer to EM-101, "On-Vehicle Service".)
- If NG, repair or replace the malfunctioning part.

If OK, replace fuel injector. (It may be caused by leakage from fuel injector or clogging.)

>> GO TO 11.

11. CHECK "A/F ALPHA-B1", "A/F ALPHA-B2"

- Start engine.
- Select "A/F ALPHA-B1", "A/F ALPHA-B2" in "SPEC" of "DATA MONITOR" mode, and make sure that the each indication is within the SP value.

OK or NG

OK >> INSPECTION END

NG >> GO TO 12.

12.CHECK A/F SENSOR 1 FUNCTION

Perform all DTC Confirmation Procedure related with A/F sensor 1.

- For DTC P0130, P0150, refer to EC-218, "DTC Confirmation Procedure".
- For DTC P0131, P0151, refer to EC-226, "DTC Confirmation Procedure".
- For DTC P0132, P0152, refer to <u>EC-234, "DTC Confirmation Procedure"</u>.
- For DTC P0133, P0153, refer to <u>EC-242</u>. "<u>DTC Confirmation Procedure</u>".
 For DTC P2A00, P2A03, refer to <u>EC-574</u>, "<u>DTC Confirmation Procedure</u>".

OK or NG

OK >> GO TO 15.

NG >> GO TO 13.

13.check a/f sensor 1 circuit

Perform Diagnostic Procedure according to corresponding DTC.

>> GO TO 14.

14.CHECK "A/F ALPHA-B1", "A/F ALPHA-B2"

- Start engine.
- Select "A/F ALPHA-B1", "A/F ALPHA-B2" in "SPEC" of "DATA MONITOR" mode, and make sure that the each indication is within the SP value.

OK or NG

TROUBLE DIAGNOSIS - SPECIFICATION VALUE

< SERVICE INFORMATION > [VQ35DE]	
OK >> INSPECTION END NG >> GO TO 15.	-
15. DISCONNECT AND RECONNECT ECM HARNESS CONNECTOR	_
 Stop the engine. Disconnect ECM harness connector. Check pin terminal and connector for damage, and then reconnect it 	-
>> GO TO 16.	
16.check "a/f alpha-b1", "a/f alpha-b2"	
 Start engine. Select "A/F ALPHA-B1", "A/F ALPHA-B2" in "SPEC" of "DATA MONITOR" mode, and make sure that the each indication is within the SP value.)
OK or NG	
OK >> INSPECTION END NG >> Detect malfunctioning part according to <u>EC-93</u> , "Symptom Matrix Chart".	
17.check "B/Fuel schol"	_
Select "B/FUEL SCHDL" in "SPEC" of "DATA MONITOR" mode, and make sure that the indication is within the SP value.)
OK or NG	
OK >> INSPECTION END NG (More than the SP value)>>GO TO 18.	
NG (Less than the SP value)>>GO TO 25.	
18. detect malfunctioning part	
 Check for the cause of large engine friction. Refer to the following. Engine oil level is too high 	
- Engine oil viscosity	
 Belt tension of power steering, alternator, A/C compressor, etc. is excessive Noise from engine 	
 Noise from transmission, etc. Check for the cause of insufficient combustion. Refer to the following. 	
- Valve clearance malfunction	
 Intake valve timing control function malfunction Camshaft sprocket installation malfunction, etc. 	
>> Repair or replace malfunctioning part, and then GO TO 30.	
19. CHECK INTAKE SYSTEM	_
Check for the cause of uneven air flow through mass air flow sensor. Refer to the following. • Crushed air ducts	
 Malfunctioning seal of air cleaner element Uneven dirt of air cleaner element 	
Improper specification of intake air system	
OK or NG	
OK >> GO TO 21. NG >> Repair or replace malfunctioning part, and then GO TO 20.	
20.CHECK "A/F ALPHA-B1", "A/F ALPHA-B2", AND "B/FUEL SCHDL"	
Select "A/F ALPHA-B1", "A/F ALPHA-B2", and "B/FUEL SCHDL" in "SPEC" of "DATA MONITOR" mode, and make sure that the each indication is within the SP value.	Ē
OK or NG OK >> INSPECTION END	
NG ("B/FUEL SCHDL" is more, "A/F ALPHA-B1", "A/F ALPHA-B2" are less than the SP value)>>GO TO 21.	
21. DISCONNECT AND RECONNECT MASS AIR FLOW SENSOR HARNESS CONNECTOR	

Revision: 2009 February **EC-137** 2008 M35/M45

1. Stop the engine.

TROUBLE DIAGNOSIS - SPECIFICATION VALUE

< SERVICE INFORMATION >

[VQ35DE]

2. Disconnect mass air flow sensor harness connector. Check pin terminal and connector for damage and then reconnect it again.

>> GO TO 22.

22.CHECK "A/F ALPHA-B1", "A/F ALPHA-B2"

- 1. Start engine.
- 2. Select "A/F ALPHA-B1", "A/F ALPHA-B2" in "SPEC" of "DATA MONITOR" mode, and make sure that the each indication is within the SP value.

OK or NG

OK >> 1. Detect malfunctioning part of mass air flow sensor circuit and repair it. Refer to EC-185.

2. GO TO 29.

NG >> GO TO 23.

23. CHECK "MAS A/F SE-B1"

Select "MAS A/F SE-B1" in "SPEC" of "DATA MONITOR" mode, and make sure that the indication is within the SP value.

OK or NG

OK >> GO TO 24.

NG (More than the SP value)>>Replace mass air flow sensor, and then GO TO 29.

24. REPLACE ECM

- 1. Replace ECM.
- 2. Perform initialization of IVIS (NATS) system and registration of all IVIS (NATS) ignition key IDs. Refer to BL-221, "ECM Re-Communicating Function".
- 3. Perform EC-81, "VIN Registration".
- 4. Perform EC-82, "Accelerator Pedal Released Position Learning".
- 5. Perform EC-82, "Throttle Valve Closed Position Learning".
- 6. Perform EC-82, "Idle Air Volume Learning".

>> GO TO 29.

25. CHECK INTAKE SYSTEM

Check for the cause of uneven air flow through mass air flow sensor. Refer to the following.

- · Crushed air ducts
- Malfunctioning seal of air cleaner element
- · Uneven dirt of air cleaner element
- Improper specification of intake air system

OK or NG

OK >> GO TO 27.

NG >> Repair or replace malfunctioning part, and then GO TO 26.

26.check "B/FUEL SCHDL"

Select "B/FUEL SCHDL" in "SPEC" of "DATA MONITOR" mode, and make sure that the indication is within the SP value.

OK or NG

OK >> INSPECTION END

NG (Less than the SP value)>>GO TO 27.

27.CHECK "MAS A/F SE-B1"

Select "MAS A/F SE-B1" in "SPEC" of "DATA MONITOR" mode, and make sure that the indication is within the SP value.

OK or NG

OK >> GO TO 28.

NG (Less than the SP value)>>Replace mass air flow sensor, and then GO TO 30.

28.CHECK INTAKE SYSTEM

Check for the cause of air leak after the mass air flow sensor. Refer to the following.

TROUBLE DIAGNOSIS - SPECIFICATION VALUE [VQ35DE] < SERVICE INFORMATION > · Disconnection, looseness, and cracks in air duct · Looseness of oil filler cap Α · Disconnection of oil level gauge • Open stuck, breakage, hose disconnection, or cracks of PCV valve Disconnection or cracks of EVAP purge hose, open stuck of EVAP canister purge volume control solenoid EC valve Malfunctioning seal of rocker cover gasket Disconnection, looseness, or cracks of hoses, such as vacuum hose, connecting to intake air system parts Malfunctioning seal of intake air system, etc. >> GO TO 30. $29.\mathtt{CHECK}$ "A/F ALPHA-B1", "A/F ALPHA-B2", AND "B/FUEL SCHDL" D Select "A/F ALPHA-B1", "A/F ALPHA-B2", and "B/FUEL SCHDL" in "SPEC" of "DATA MONITOR" mode, and make sure that the each indication is within the SP value. Е OK or NG OK >> INSPECTION END NG >> Detect malfunctioning part according to EC-93, "Symptom Matrix Chart". F 30.CHECK "B/FUEL SCHDL" Select "B/FUEL SCHDL" in "SPEC" of "DATA MONITOR" mode, and then make sure that the indication is within the SP value. OK or NG OK >> INSPECTION END Н NG >> Detect malfunctioning part according to EC-93, "Symptom Matrix Chart".

K

L

M

Ν

Р

TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT

< SERVICE INFORMATION >

[VQ35DE]

TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT

Description INFOID:000000002954131

Intermittent incidents may occur. In many cases, the malfunction resolves itself (the part or circuit function returns to normal without intervention). It is important to realize that the symptoms described in the customer's complaint often do not recur on (1st trip) DTC visits. Realize also that the most frequent cause of intermittent incidents occurrences is poor electrical connections. Because of this, the conditions under which the incident occurred may not be clear. Therefore, circuit checks made as part of the standard diagnostic procedure may not indicate the specific malfunctioning area.

Common Intermittent Incidents Report Situations

STEP in Work Flow	Situation		
2	The CONSULT-III is used. The SELF-DIAG RESULTS screen shows time data other than [0] or [1t].		
3 or 4	The symptom described by the customer does not recur.		
5	(1st trip) DTC does not appear during the DTC Confirmation Procedure.		
10	The Diagnostic Procedure for PXXXX does not indicate the malfunctioning area.		

Diagnosis Procedure

INFOID:0000000002954132

1. INSPECTION START

Erase (1st trip) DTCs. Refer to EC-55, "Emission-Related Diagnostic Information".

>> GO TO 2.

2. CHECK GROUND TERMINALS

Check ground terminals for corroding or loose connection.

Refer to EC-146, "Ground Inspection".

OK or NG

OK >> GO TO 3.

NG >> Repair or replace.

3.search for electrical incident

Perform GI-26, "How to Perform Efficient Diagnosis for an Electrical Incident", "INCIDENT SIMULATION TESTS".

OK or NG

OK >> GO TO 4.

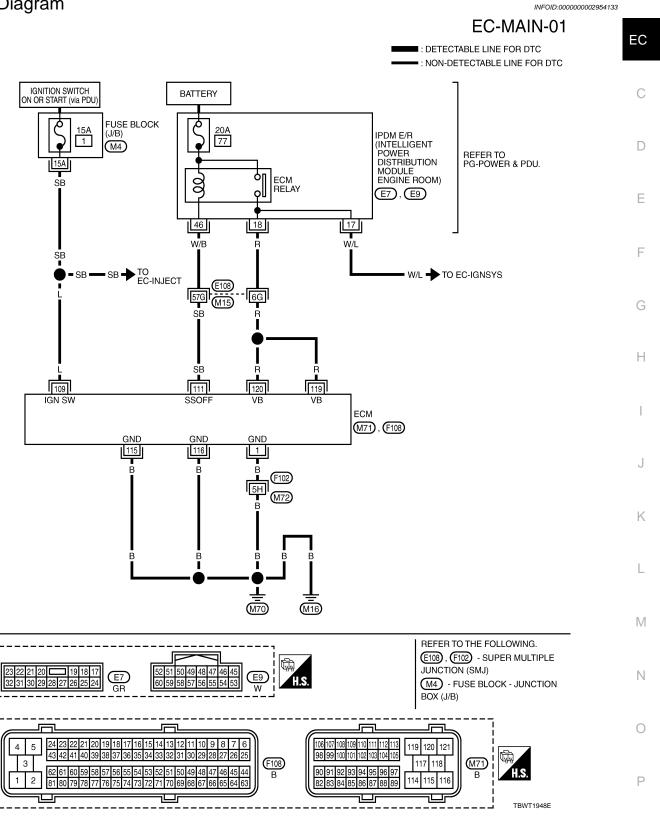
NG >> Repair or replace.

4. CHECK CONNECTOR TERMINALS

Refer to <u>GI-23</u>, "How to Check Terminal", "HOW TO PROBE CONNECTORS", "How to Check Enlarged Contact Spring of Terminal".

OK or NG

OK >> INSPECTION END


NG >> Repair or replace connector.

[VQ35DE]

Α

POWER SUPPLY AND GROUND CIRCUIT

Wiring Diagram

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
1	В	ECM ground	[Engine is running] • Idle speed	Body ground
109	L	Ignition switch	[Ignition switch: OFF]	0V
			[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)
111	SB	ECM relay (Self shut-off)	[Engine is running] [Ignition switch: OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V
			[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
115 116	B B	ECM ground	[Engine is running] • Idle speed	Body ground
119 120	R R	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

Diagnosis Procedure

INFOID:0000000002954134

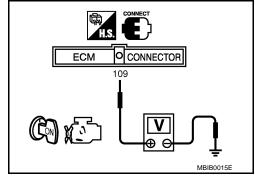
1. INSPECTION START

Start engine.

Is engine running?

Yes or No

Yes >> GO TO 8. No >> GO TO 2.

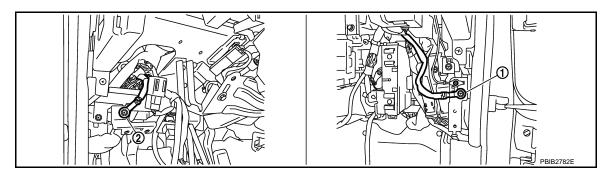

2.CHECK ECM POWER SUPPLY CIRCUIT-I

- 1. Turn ignition switch OFF and then ON.
- 2. Check voltage between ECM terminal 109 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.


3.DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector M4
- 15A fuse
- · Harness for open or short between ECM and fuse
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK GROUND CONNECTIONS-I

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws on the body. Refer to <u>EC-146</u>, "<u>Ground Inspection</u>".

1. Body ground M70

2. Body ground M16

OK or NG

OK >> GO TO 5.

NG >> Repair or replace ground connections.

${f 5.}$ CHECK ECM GROUND CIRCUIT FOR OPEN AND SHORT-I

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminals 1, 115, 116 and ground. Refer to Wiring Diagram.

Continuity should exist.

Also check harness for short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F102, M72
- Harness for open or short between ECM and ground

>> Repair open circuit or short to power in harness or connectors.

7. CHECK ECM POWER SUPPLY CIRCUIT-II

- 1. Reconnect ECM harness connector.
- 2. Turn ignition switch ON.
- 3. Check voltage between IPDM E/R terminal 17 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> Go to <u>EC-614</u>. NG >> GO TO 8.

23222120 191817 2323130292827262524 E7

8. CHECK ECM POWER SUPPLY CIRCUIT-III

1. Turn ignition switch OFF and wait at least 10 seconds.

EC

Α

D

Е

E

Н

n

L

M

Ν

Р

[VQ35DE]

Check voltage between ECM terminals 119, 120 and ground with CONSULT-III or tester.

Voltage: After turning ignition switch OFF, battery

voltage will exist for a few seconds, then drop

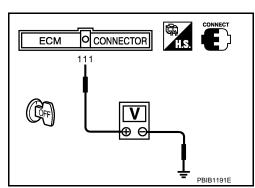
approximately 0V.

OK or NG

OK >> GO TO 15.

NG (Battery voltage does not exist.)>>GO TO 9.

NG (Battery voltage exists for more than a few seconds.)>>GO TO


9. CHECK ECM POWER SUPPLY CIRCUIT-IV

- 1. Turn ignition switch OFF and wait at least 10 seconds.
- 2. Check voltage between ECM terminal 111 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 10. NG >> GO TO 12.

CONNECTOR

119, 120

10. CHECK ECM POWER SUPPLY CIRCUIT-V

- Disconnect ECM harness connector.
- 2. Disconnect IPDM E/R harness connector E7.
- Check harness continuity between ECM terminals 119, 120 and IPDM E/R terminal 18. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 18. NG >> GO TO 11.

11. DETECT MALFUNCTIONING PART

Check the following.

- Harness or connectors E108, M15
- Harness for open or short between ECM and IPDM E/R

>> Repair open circuit or short to ground or short to power in harness or connectors.

12. CHECK ECM POWER SUPPLY CIRCUIT-VI

- 1. Disconnect ECM harness connector.
- 2. Disconnect IPDM E/R harness connector E9.
- Check harness continuity between ECM terminal 111 and IPDM E/R terminal 46. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 14. NG >> GO TO 13.

POWER SUPPLY AND GROUND CIRCUIT

< SERVICE INFORMATION >

13. DETECT MALFUNCTIONING PART

Check the following.

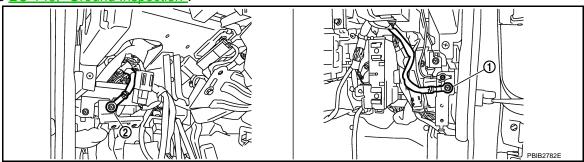
- Harness or connectors E108, M15
- Harness for open or short between ECM and IPDM E/R

>> Repair open circuit or short to ground or short to power in harness or connectors.

14. CHECK 20A FUSE

- Disconnect 20A fuse from IPDM E/R.
- 2. Check 20A fuse.

OK or NG


OK >> GO TO 18.

NG >> Replace 20A fuse.

15. CHECK GROUND CONNECTIONS-II

Loosen and retighten two ground screws on the body.

Refer to EC-146, "Ground Inspection"

1. Body ground M70

2. Body ground M16

OK or NG

OK >> GO TO 16.

NG >> Repair or replace ground connections.

16. CHECK ECM GROUND CIRCUIT FOR OPEN AND SHORT-II

- Disconnect ECM harness connector.
- Check harness continuity between ECM terminals 1, 115, 116 and ground. Refer to Wiring Diagram.

Continuity should exist.

Also check harness for short to power.

OK or NG

OK >> GO TO 18. NG >> GO TO 17.

17.DETECT MALFUNCTIONING PART

Check the following.

- Harness or connectors F102, M72
- Harness for open or short between ECM and ground

>> Repair open circuit or short to power in harness or connectors.

18. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

OK or NG

OK >> Replace IPDM E/R. Refer to PG-19.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

EC-145 Revision: 2009 February 2008 M35/M45

EC

[VQ35DE]

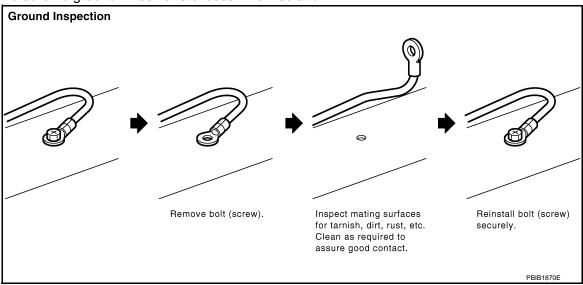
D

Е

K

N

Ground Inspection


INFOID:0000000002954135

Ground connections are very important to the proper operation of electrical and electronic circuits. Ground connections are often exposed to moisture, dirt and other corrosive elements. The corrosion (rust) can become an unwanted resistance. This unwanted resistance can change the way a circuit works.

Electronically controlled circuits are very sensitive to proper grounding. A loose or corroded ground can drastically affect an electronically controlled circuit. A poor or corroded ground can easily affect the circuit. Even when the ground connection looks clean, there can be a thin film of rust on the surface.

When inspecting a ground connection follow these rules:

- Remove the ground bolt or screw.
- · Inspect all mating surfaces for tarnish, dirt, rust, etc.
- Clean as required to assure good contact.
- · Reinstall bolt or screw securely.
- Inspect for "add-on" accessories which may be interfering with the ground circuit.
- If several wires are crimped into one ground eyelet terminal, check for proper crimps. Make sure all of the wires are clean, securely fastened and providing a good ground path. If multiple wires are cased in one eyelet make sure no ground wires have excess wire insulation.

DTC U1000, U1001 CAN COMMUNICATION LINE

< SERVICE INFORMATION >

[VQ35DE]

Α

EC

D

Е

Н

DTC U1000, U1001 CAN COMMUNICATION LINE

Description INFOID:000000002954136

CAN (Controller Area Network) is a serial communication line for real time application. It is an on-vehicle multiplex communication line with high data communication speed and excellent error detection ability. Many electronic control units are equipped onto a vehicle, and each control unit shares information and links with other control units during operation (not independent). In CAN communication, control units are connected with 2 communication lines (CAN H line, CAN L line) allowing a high rate of information transmission with less wiring. Each control unit transmits/receives data but selectively reads required data only.

On Board Diagnosis Logic

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
U1000* ¹	CAN communication	When ECM is not transmitting or receiving CAN communication signal of OBD (emission- related diagnosis) for 2 seconds or more.	Harness or connectors
U1001* ² * ³	CAN communication line	When ECM is not transmitting or receiving CAN communication signal other than OBD (emission-related diagnosis) for 2 seconds or more.	(CAN communication line is open or shorted)

^{*1:} This self-diagnosis has the one trip detection logic.

DTC Confirmation Procedure

INFOID:0000000002954138

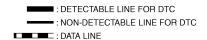
- Turn ignition switch ON and wait at least 3 seconds.
- 2. Check 1st trip DTC.
- 3. If 1st trip DTC is detected, go to EC-148, "Diagnosis Procedure".

K

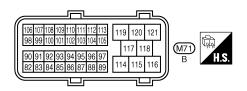
L

Ν

O


^{*2:} The MIL will not light up for this diagnosis.


^{*3:} This self-diagnosis has the one or two trip detection logic. (Models with ICC)


Wiring Diagram

INFOID:0000000002954139

EC-CAN-01

TBWT0947E

Diagnosis Procedure

INFOID:0000000002954140

Go to LAN-29, "CAN System Specification Chart".

DTC U1010 CAN COMMUNICATION

[VQ35DE] < SERVICE INFORMATION >

DTC U1010 CAN COMMUNICATION

Description INFOID:0000000002954141

CAN (Controller Area Network) is a serial communication line for real time application. It is an on-vehicle multiplex communication line with high data communication speed and excellent error detection ability. Many electronic control units are equipped onto a vehicle, and each control unit shares information and links with other control units during operation (not independent). In CAN communication, control units are connected with 2 communication lines (CAN H line, CAN L line) allowing a high rate of information transmission with less wiring. Each control unit transmits/receives data but selectively reads required data only.

On Board Diagnosis Logic

INFOID:0000000002954142

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
U1010 1010	CAN communication bus	When detecting error during the initial diagnosis for CAN controller of each control unit.	• ECM

DTC Confirmation Procedure

INFOID:0000000002954143

- Turn ignition switch ON.
- Check DTC. 2.
- If DTC is detected, go to EC-149, "Diagnosis Procedure".

Diagnosis Procedure

INFOID:0000000002954144

${f 1}$.INSPECTION START

(P) With CONSULT-III

- Turn ignition switch ON. 1.
- Select "SELF-DIAG RESULTS" mode with CONSULT-III.
- Touch "ERASE".
- 4. Perform DTC Confirmation Procedure.

See EC-149, "DTC Confirmation Procedure".

- 5. Is the DTC U1010 displayed again?
- With GST
- 1. Turn ignition switch ON.
- Select Service \$04 with GST.
- 3. Perform DTC Confirmation Procedure.

See EC-149, "DTC Confirmation Procedure".

4. Is the DTC U1010 displayed again?

Yes or No

Yes >> GO TO 2.

No >> INSPECTION END

2.REPLACE ECM

- Replace ECM.
- 2. Perform initialization of IVIS (NATS) system and registration of all IVIS (NATS) ignition key IDs. Refer to BL-221, "ECM Re-Communicating Function".
- Perform <u>EC-81</u>, "VIN Registration".
- 4. Perform EC-82, "Accelerator Pedal Released Position Learning".
- Perform EC-82, "Throttle Valve Closed Position Learning". Perform EC-82, "Idle Air Volume Learning".

>> INSPECTION END

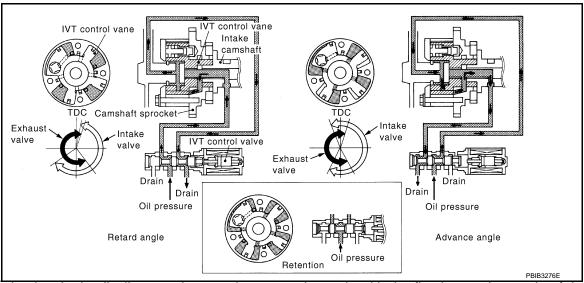
EC-149 Revision: 2009 February 2008 M35/M45

EC

Α

Е

N


DTC P0011, P0021 IVT CONTROL

Description INFOID:000000002954145

SYSTEM DESCRIPTION

Sensor	Input signal to ECM	ECM function	Actuator
Crankshaft position sensor (POS)	Engine speed and piston position	Intake valve timing control	Intake valve timing control solenoid valve
Camshaft position sensor (PHASE)	- Lingine speed and piston position		
Engine coolant temperature sensor	Engine coolant temperature		
Wheel sensor	Vehicle speed*		

^{*:} This signal is sent to the ECM through CAN communication line

This mechanism hydraulically controls cam phases continuously with the fixed operating angle of the intake valve.

The ECM receives signals such as crankshaft position, camshaft position, engine speed, and engine coolant temperature. Then, the ECM sends ON/OFF pulse duty signals to the intake valve timing (IVT) control solenoid valve depending on driving status. This makes it possible to control the shut/open timing of the intake valve to increase engine torque in low/mid speed range and output in high-speed range.

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002954146

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
IN IT 0 / TIM (D.4)	Engine: After warming up	Idle	–5° - 5°CA
INT/V TIM (B1) INT/V TIM (B2)	Selector lever: P or NAir conditioner switch: OFFNo load	When revving engine up to 2,000 rpm quickly	Approx. 0° - 30°CA
INITA (001 (D4)	Engine: After warming up	Idle	0% - 2%
INT/V SOL (B1) INT/V SOL (B2)	Selector lever: P or NAir conditioner switch: OFFNo load	When revving engine up to 2,000 rpm quickly	Approx. 0% - 50%

DTC P0011, P0021 IVT CONTROL

< SERVICE INFORMATION >

[VQ35DE]

On Board Diagnosis Logic

INFOID:0000000002954147

Α

Е

F

DTC No.	Trouble diagnosis name	Detecting condition	Possible cause	EC
P0011 0011 (Bank 1)			Crankshaft position sensor (POS) Camshaft position sensor (PHASE) Intake valve control solenoid valve	С
P0021 0021 (Bank 2)	Intake valve timing control performance	There is a gap between angle of target and phase-control angle degree.	 Accumulation of debris to the signal pick-up portion of the camshaft Timing chain installation Foreign matter caught in the oil groove for intake valve timing control 	D

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode.

Detected items	Engine operating condition in fail-safe mode
Intake valve timing control	The signal is not energized to the solenoid valve and the valve control does not function.

DTC Confirmation Procedure

INFOID:0000000002954148

CAUTION:

Always drive at a safe speed.

NOTÉ:

- If DTC P0011 or P0021 is displayed with DTC P0075, P0081, first perform the trouble diagnosis for EC-169.
- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is between 10V and 16V at idle.

WITH CONSULT-III

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Maintain the following conditions for at least 6 consecutive seconds. Hold the accelerator pedal as steady as possible.

VHCL SPEED SE	100 - 120 km/h (63 - 75 MPH)
ENG SPEED	1,200 - 2,000 rpm
COOLAN TEMP/S	More than 60°C (140°F)
B/FUEL SCHDL	More than 7.3 msec
Selector lever	D position

- Stop vehicle with engine running and let engine idle for 10 seconds.
- 4. Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-152</u>, "<u>Diagnosis Procedure</u>".
 If 1st trip DTC is not detected, go to next step.
- 6. Maintain the following conditions for at least 20 consecutive seconds.

ENG SPEED	1,700 - 3,175 rpm (A constant rotation is maintained.)
COOLAN TEMP/S	70 - 105°C (158 - 221°F)
Selector lever	1st or 2nd position
Driving location uphill	Oriving vehicle uphill (Increased engine load will help maintain the driving conditions required for this test.)

Check 1st trip DTC.

Revision: 2009 February **EC-151** 2008 M35/M45

L

M

Ν

 \circ

C

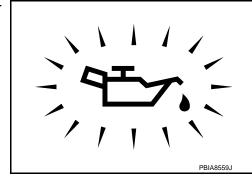
8. If 1st trip DTC is detected, go to EC-152, "Diagnosis Procedure".

WITH GST

Follow the procedure "WITH CONSULT-III" above.

Diagnosis Procedure

INFOID:0000000002954149


1. CHECK OIL PRESSURE WARNING LAMP

- 1. Start engine.
- Check oil pressure warning lamp and confirm it is not illuminated.

OK or NG

OK >> GO TO 2.

KG >> Go to <u>LU-5</u>, "Inspection".

2.CHECK INTAKE VALVE TIMING CONTROL SOLENOID VALVE

Refer to EC-153, "Component Inspection".

OK or NG

OK >> GO TO 3.

NG >> Replace intake valve timing control solenoid valve.

3.check crankshaft position sensor (pos)

Refer to EC-334, "Component Inspection".

OK or NG

OK >> GO TO 4.

NG >> Replace crankshaft position sensor (POS).

4. CHECK CAMSHAFT POSITION SENSOR (PHASE)

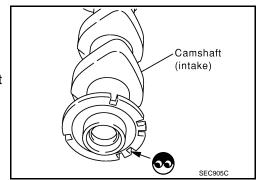
Refer to EC-341, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace malfunctioning camshaft position sensor (PHASE).

CHECK CAMSHAFT (INTAKE)


Check the following.

- · Accumulation of debris to the signal plate of camshaft rear end
- Chipping signal plate of camshaft rear end

OK or NG

OK >> GO TO 6.

NG >> Remove debris and clean the signal plate of camshaft rear end or replace camshaft.

6. CHECK TIMING CHAIN INSTALLATION

Check service records for any recent repairs that may cause timing chain misaligned.

Are there any service records that may cause timing chain misaligned?

Yes or No

DTC P0011, P0021 IVT CONTROL

< SERVICE INFORMATION >

[VQ35DE]

INFOID:0000000002954150

Yes >> Check timing chain installation. Refer to EM-65.

No >> GO TO 7.

7.CHECK LUBRICATION CIRCUIT

Refer to EM-84, "Removal and Installation".

OK or NG

OK >> GO TO 8.

NG >> Clean lubrication line.

8.check intermittent incident

Refer to EC-140.

For Wiring Diagram, refer to EC-331 for CKP sensor (POS) and EC-336 for CMP sensor (PHASE).

>> INSPECTION END

Component Inspection

INTAKE VALVE TIMING CONTROL SOLENOID VALVE

- Disconnect intake valve timing control solenoid valve harness connector.
- 2. Check resistance between intake valve timing control solenoid valve terminals as follows.

Terminals	Resistance
1 and 2	7.0 - 7.5Ω [at 20°C (68°F)]
1 or 2 and ground	${}^{\otimes\Omega}$ (Continuity should not exist)

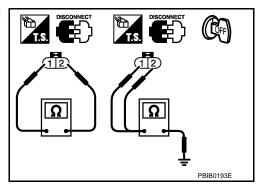
If NG, replace intake valve timing control solenoid valve. If OK, go to next step.

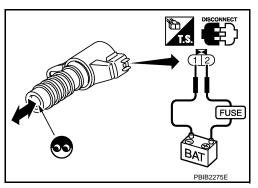
- 3. Remove intake valve timing control solenoid valve.
- 4. Provide 12V DC between intake valve timing control solenoid valve terminals and then interrupt it. Make sure that the plunger moves as shown in the figure.

CAUTION:

Do not apply 12V DC continuously for 5 seconds or more. Doing so may result in damage to the coil in intake valve timing control solenoid valve.

If NG, replace intake valve timing control solenoid valve.


NOTE:


Always replace O-ring when intake valve timing control solenoid valve is removed.

Removal and Installation

Revision: 2009 February

INTAKE VALVE TIMING CONTROL SOLENOID VALVE Refer to EM-84.

INFOID:0000000002954151

EC-153

Α

EC

D

F

Е

Н

M

DTC P0031, P0032, P0051, P0052 A/F SENSOR 1 HEATER

< SERVICE INFORMATION >

[VQ35DE]

DTC P0031, P0032, P0051, P0052 A/F SENSOR 1 HEATER

Description INFOID.000000002954152

SYSTEM DESCRIPTION

Sensor	Input Signal to ECM	ECM function	Actuator
Camshaft position sensor (PHASE) Crankshaft position sensor (POS)	Engine speed	Air fuel ratio (A/F) sensor 1 Air fuel ratio (A/F) heater control heater	Air fuel ratio (A/F) sensor 1
Mass air flow sensor	Amount of intake air		liedici

The ECM performs ON/OFF duty control of the A/F sensor 1 heater corresponding to the engine operating condition to keep the temperature of A/F sensor 1 element at the specified range.

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002954153

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
A/F S1 HTR (B1) A/F S1 HTR (B2)	Engine: After warming up, idle the engine	0 - 100%

On Board Diagnosis Logic

INFOID:0000000002954154

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0031 0031 (Bank 1)	Air fuel ratio (A/F) sensor 1 heater control circuit low	The current amperage in the A/F sensor 1 heater circuit is out of the normal range.	 Harness or connectors (The A/F sensor 1 heater circuit is open or shorted.) A/F sensor 1 heater
P0051 0051 (Bank 2)		(An excessively low voltage signal is sent to ECM through the A/F sensor 1 heater.)	
P0032 0032 (Bank 1)	Air fuel ratio (A/F) sensor	The current amperage in the A/F sensor 1 heater circuit is out of the normal range.	Harness or connectors (The A/F sensor 1 heater circuit is
P0052 0052 (Bank 2)	high	(An excessively high voltage signal is sent to ECM through the A/F sensor 1 heater.)	shorted.) • A/F sensor 1 heater

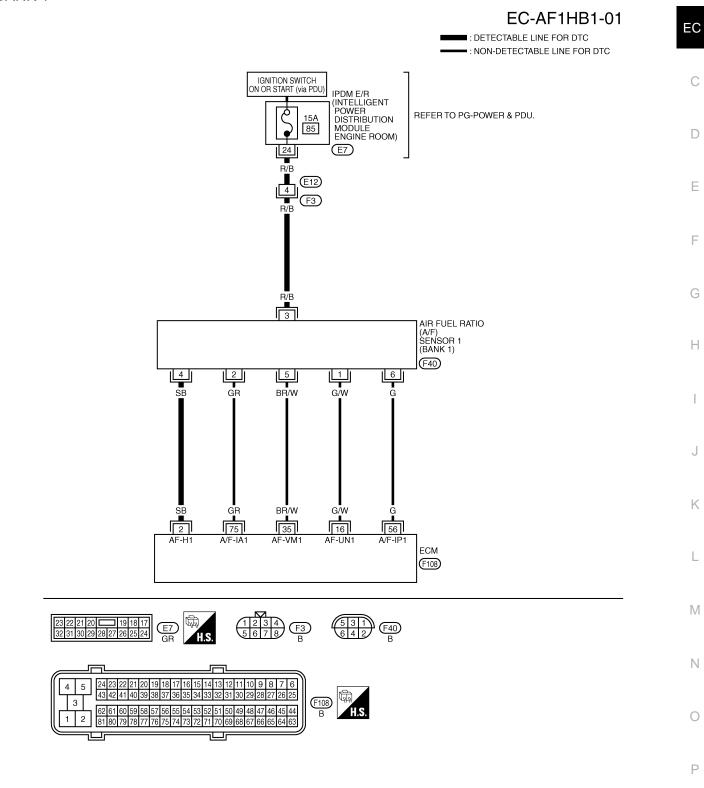
DTC Confirmation Procedure

INFOID:0000000002954155

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:


Before performing the following procedure, confirm that battery voltage is between 10.5V and 16V at idle.

- 1. Start engine and let it idle for at least 10 seconds.
- Check 1st trip DTC.
- 3. If 1st trip DTC is detected, go to EC-158. "Diagnosis Procedure".

Α

Wiring Diagram

BANK 1

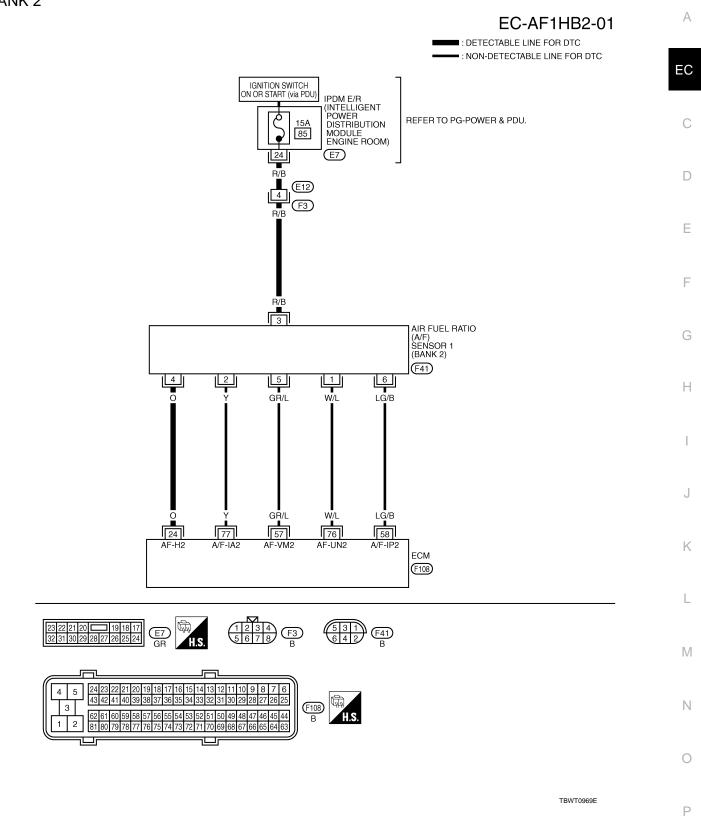
TBWT0968E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

CAUTION:

DTC P0031, P0032, P0051, P0052 A/F SENSOR 1 HEATER

< SERVICE INFORMATION >


[VQ35DE]

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
2	SB	A/F sensor 1 heater (bank 1)	[Engine is running]Warm-up conditionIdle speed	Approximately 5V★ → 10.0V/Div 10 ms/Div T PBIB1584E
16	G/W		[Engine is running] • Warm-up condition • Idle speed	Approximately 3.1V
35	BR/W	A/F sensor 1 (bank 1)		Approximately 2.6V
56	G			Approximately 2.3V
75	GR			Approximately 2.3V

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

BANK 2

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
24	0	A/F sensor 1 heater (bank 2)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V★ → 10.0V/Div 10 ms/Div T PBIB1584E
57	GR/L		[Engine is running]	Approximately 2.6V
58	LG/B	A/F sensor 1 (bank 2)		Approximately 2.3V
76	W/L		Warm-up condition Idle speed	Approximately 3.1V
77	Υ			Approximately 2.3V

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnosis Procedure

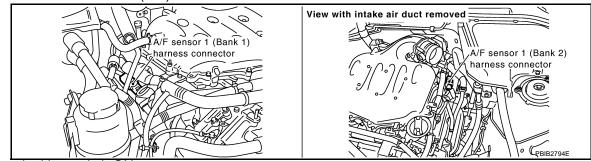
INFOID:0000000002954157

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws on the body. Refer to <u>EC-146</u>, "Ground Inspection".

1. Body ground M70

2. Body ground M16


OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

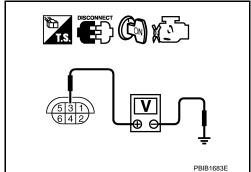
2. CHECK AIR FUEL RATIO (A/F) SENSOR 1 POWER SUPPLY CIRCUIT

1. Disconnect air fuel ratio (A/F) sensor 1 harness connector.

Turn ignition switch ON.

DTC P0031, P0032, P0051, P0052 A/F SENSOR 1 HEATER

< SERVICE INFORMATION >


[VQ35DE]

3. Check voltage between A/F sensor 1 terminal 3 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E12, F3
- IPDM E/R harness connector E7
- 15A fuse
- Harness for open or short between A/F sensor 1 and fuse

>> Repair or replace harness or connectors.

4. CHECK A/F SENSOR 1 HEATER OUTPUT SIGNAL CIRCUIT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between the following;
 ECM terminal 2 and A/F sensor 1 (bank 1) terminal 4 or
 ECM terminal 24 and A/F sensor 1 (bank 2) terminal 4.
 Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK A/F SENSOR 1 HEATER

Refer to EC-159, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace malfunctioning air fuel ratio (A/F) sensor 1.

6.CHECK INTERMITTENT INCIDENT

Perform EC-140.

>> INSPECTION END

Component Inspection

AIR FUEL RATIO (A/F) SENSOR 1 HEATER

Α

EC

С

D

Е

F

G

Н

I

K

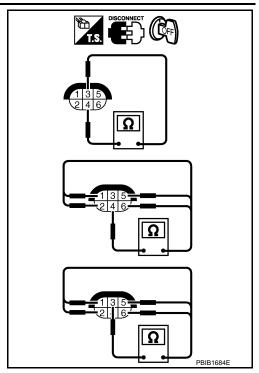
M

Ν

INFOID:0000000002954158

Check resistance between terminals 3 and 4.

Resistance: 2.3 - 4.3 Ω [at 25°C (77°F)]


Check continuity between terminals 3 and 1, 2, 5, 6, terminals 4 and 1, 2, 5, 6.

Continuity should not exist.

If NG, replace the air fuel ratio (A/F) sensor 1.

CAUTION:

- Discard any air fuel ratio (A/F) sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new air fuel ratio (A/F) sensor, clean exhaust system threads using Heated Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation

AIR FUEL RATIO (A/F) SENSOR 1 Refer to EM-27.

INFOID:0000000002954159

DTC P0037, P0038, P0057, P0058 HO2S2 HEATER

< SERVICE INFORMATION >

[VQ35DE]

Α

EC

D

Е

DTC P0037, P0038, P0057, P0058 HO2S2 HEATER

Description INFOID:0000000002954160

SYSTEM DESCRIPTION

Sensor	Input signal to ECM	ECM function	Actuator	
Camshaft position sensor (PHASE) Crankshaft position sensor (POS)	Engine speed Heated oxygen sensor 2			
Engine coolant temperature sensor	Engine coolant temperature	heater control	Heated oxygen sensor 2 heater	
Mass air flow sensor	Amount of intake air			

The ECM performs ON/OFF control of the heated oxygen sensor 2 heater corresponding to the engine speed, amount of intake air and engine coolant temperature.

OPERATION

Engine speed rpm	Heated oxygen sensor 2 heater	F
Above 3,600	OFF	
Below 3,600 rpm after the following conditions are met. Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load	ON	G

CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
HO2S2 HTR (B1) HO2S2 HTR (B2)	 Engine speed: Below 3,600 rpm after the following conditions are met. Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	ON
	Engine speed: Above 3,600 rpm	OFF

On Board Diagnosis Logic

INFOID:0000000002954162

Ν

Р

INFOID:0000000002954161

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
P0037 0037 (Bank 1)	Heated oxygen	The current amperage in the heated oxygen sensor 2 heater circuit is out of the normal range.	(The heated oxygen sensor 2 heater circuit is	
P0057 0057 (Bank 2)	control circuit low	(An excessively low voltage signal is sent to ECM through the heated oxygen sensor 2 heater.)		
P0038 0038 (Bank 1)	Heated oxygen sensor 2 heater	The current amperage in the heated oxygen sensor 2 heater circuit is out of the normal range.	Harness or connectors (The heated oxygen sensor 2 heater circuit is	
P0058 0058 (Bank 2)	control circuit high	(An excessively high voltage signal is sent to ECM through the heated oxygen sensor 2 heater.)	shorted.) • Heated oxygen sensor 2 heater	

DTC Confirmation Procedure

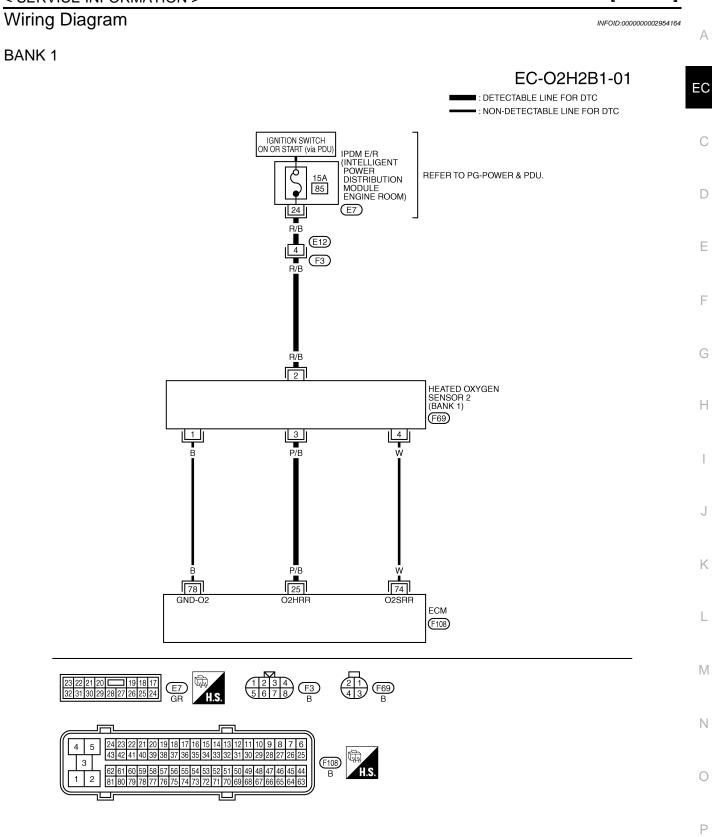
INFOID:0000000002954163

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

DTC P0037, P0038, P0057, P0058 HO2S2 HEATER


< SERVICE INFORMATION >

[VQ35DE]

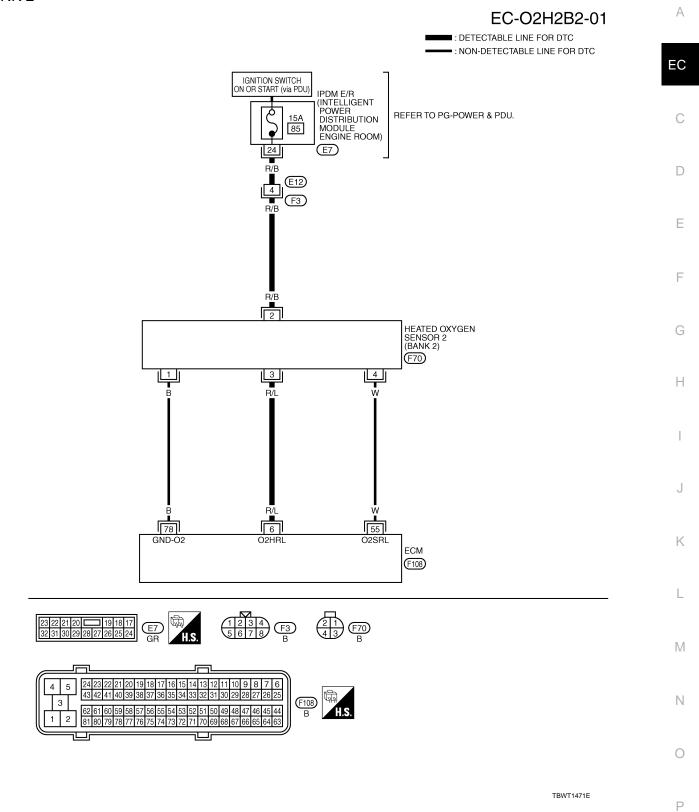
Before performing the following procedure, confirm that battery voltage is between 11V and 16V at idle.

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start the engine and keep the engine speed between 3,500 rpm and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Check 1st trip DTC.
- 6. If 1st trip DTC is detected, go to EC-166, "Diagnosis Procedure".

TBWT1470E

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


DTC P0037, P0038, P0057, P0058 HO2S2 HEATER

< SERVICE INFORMATION >

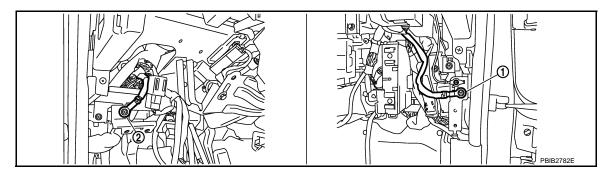
[VQ35DE]

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
25	P/B	Heated oxygen sensor 2 heater (bank 1)	 [Engine is running] Engine speed: Below 3,600 rpm after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - 1.0V
			 [Ignition switch: ON] Engine stopped [Engine is running] Engine speed: Above 3,600 rpm 	BATTERY VOLTAGE (11 - 14V)
74	w	Heated oxygen sensor 2 (bank 1)	 [Engine is running] Revving engine from idle to 3,000 rpm quickly after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V
78	В	Sensor ground (Heated oxygen sensor)	[Engine is running]Warm-up conditionIdle speed	Approximately 0V

BANK 2

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
6	R/L	Heated oxygen sensor 2 heater (bank 2)	 [Engine is running] Engine speed: Below 3,600 rpm after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - 1.0V
			[Ignition switch: ON] • Engine stopped [Engine is running] • Engine speed: Above 3,600 rpm	BATTERY VOLTAGE (11 - 14V)
55	W	Heated oxygen sensor 2 (bank 2)	 [Engine is running] Revving engine from idle to 3,000 rpm quickly after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V
78	В	Sensor ground (Heated oxygen sensor)	[Engine is running]Warm-up conditionIdle speed	Approximately 0V

Diagnosis Procedure

INFOID:0000000002954165

1. CHECK GROUND CONNECTIONS

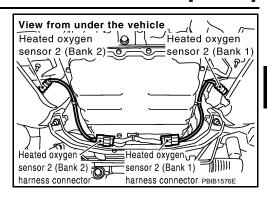
- 1. Turn ignition switch OFF.
- Loosen and retighten two ground screws on the body. Refer to <u>EC-146</u>, "Ground Inspection".

- 1. Body ground M70
- 2. Body ground M16

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

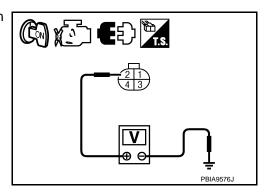

2.CHECK HO2S2 POWER SUPPLY CIRCUIT

DTC P0037, P0038, P0057, P0058 HO2S2 HEATER

< SERVICE INFORMATION >

[VQ35DE]

Disconnect heated oxygen sensor 2 harness connector.


Turn ignition switch ON.

Check voltage between HO2S2 terminal 2 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E12, F3
- IPDM E/R connector E7
- 15A fuse
- Harness for open or short between heated oxygen sensor 2 and fuse

>> Repair open circuit or short to ground or short to power in harness or connectors.

f 4.CHECK HO2S2 OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check harness continuity between ECM terminal and HO2S2 terminal as follows. Refer to Wiring Diagram.

DTC	Tern	Bank		
ыс	ECM	Sensor	Bank	
P0037, P0038	25	3	1	
P0057, P0058	6	3	2	

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

$\mathbf{5}$.CHECK HEATED OXYGEN SENSOR 2 HEATER

Refer to EC-168, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace malfunctioning heated oxygen sensor 2.

EC-167 Revision: 2009 February 2008 M35/M45

EC

Α

D

Е

F

Н

K

Ν

6. CHECK INTERMITTENT INCIDENT

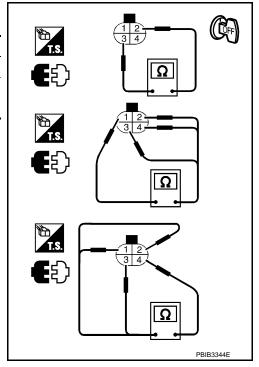
Refer to EC-140.

>> INSPECTION END

Component Inspection

INFOID:0000000002954166

HEATED OXYGEN SENSOR 2 HEATER


1. Check resistance between HO2S2 terminals as follows.

Terminal No.	Resistance
2 and 3	3.4 - 4.4 Ω at 25°C (77°F)
1 and 2, 3, 4	∞ Ω
4 and 1, 2, 3	(Continuity should not exist)

2. If NG, replace heated oxygen sensor 2.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation

INFOID:0000000002954167

HEATED OXYGEN SENSOR 2 Refer to <u>EM-27</u>.

< SERVICE INFORMATION >

[VQ35DE]

INFOID:0000000002954168

Α

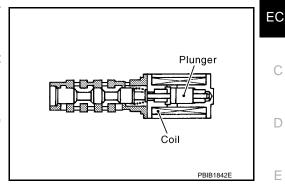
D

Е

F

DTC P0075, P0081 IVT CONTROL SOLENOID VALVE

Component Description


Intake valve timing control solenoid valve is activated by ON/OFF pulse duty (ratio) signals from the ECM.

The intake valve timing control solenoid valve changes the oil amount and direction of flow through intake valve timing control unit or stops oil flow.

The longer pulse width advances valve angle.

The shorter pulse width retards valve angle.

When ON and OFF pulse widths become equal, the solenoid valve stops oil pressure flow to fix the intake valve angle at the control position.

INFOID:0000000002954169

CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CO	NDITION	SPECIFICATION
INITA (001 (D4)	 Engine: After warming up Selector lever: P or N Air conditioner switch: OFF No load 	Idle	0% - 2%
INT/V SOL (B1) INT/V SOL (B2)		When revving engine up to 2,000 rpm quickly	Approx. 25% - 50%

On Board Diagnosis Logic

INFOID:0000000002954170

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0075 0075 (Bank 1)	Intake valve timing control	An improper voltage is sent to the ECM through intake valve timing control solenoid	Harness or connectors (Intake valve timing control solenoid valve)
P0081 0081 (Bank 2)	solenoid valve circuit	valve.	circuit is open or shorted.) Intake valve timing control solenoid valve

DTC Confirmation Procedure

INFOID:0000000002954171

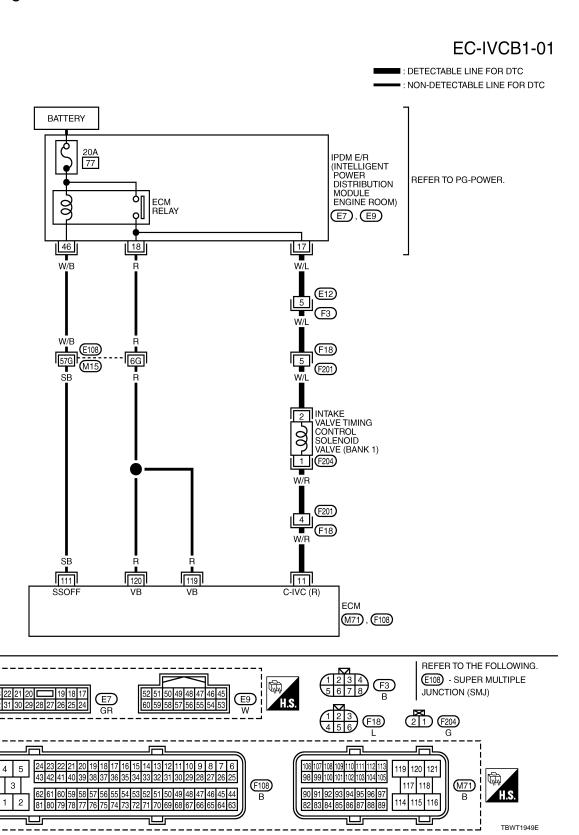
NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

- Start engine and let it idle for 5 seconds.
- Check 1st trip DTC.
- If 1st trip DTC is detected, go to EC-173, "Diagnosis Procedure".

M

K


Ν

EC-169 Revision: 2009 February 2008 M35/M45

Wiring Diagram

INFOID:0000000002954172

BANK 1

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III. CAUTION:

< SERVICE INFORMATION >

[VQ35DE]

Α

D

Е

F

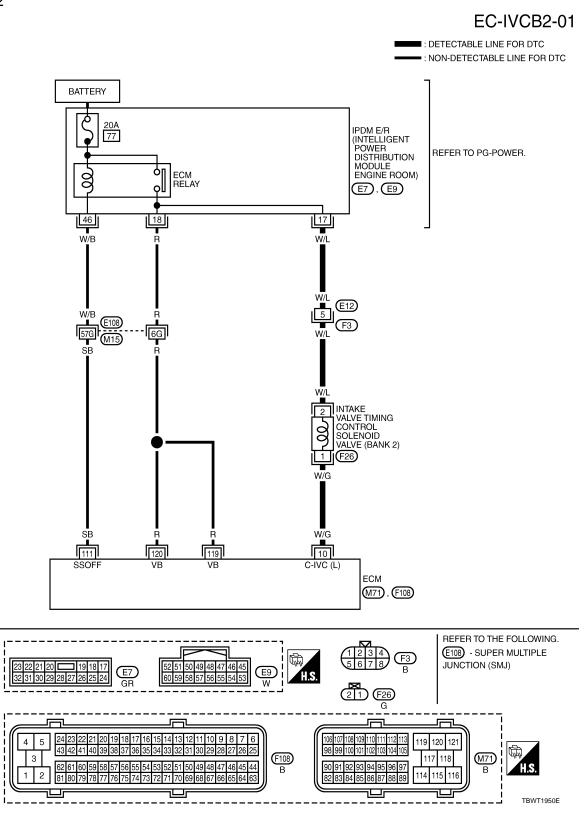
Н

K

Ν

0

Р


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Engine is running] • Warm-up condition • Idle speed	BATTERY VOLTAGE (11 - 14V)
11	11 W/R Intake valve timing control solenoid valve (bank 1)	[Engine is running]Warm-up conditionWhen revving engine up to 2,000rpm quickly	7 - 12V★	
111 SB	ECM relay	[Engine is running] [Ignition switch: OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V	
		(Self shut-off)	[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
119 120	R R	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

2008 M35/M45

BANK 2

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

< SERVICE INFORMATION >

[VQ35DE]

INFOID:0000000002954173

Α

EC

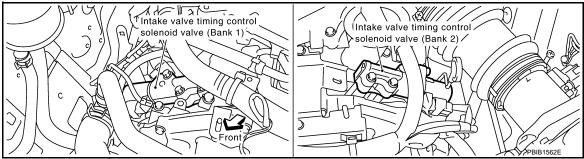
D

Е

M

Ν

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Engine is running]Warm-up conditionIdle speed	BATTERY VOLTAGE (11 - 14V)
10	10 W/G	Intake valve timing control solenoid valve (bank 2)	 [Engine is running] Warm-up condition When revving engine up to 2,000rpm quickly 	7 - 12V★
111	111 SB	ECM relay (Self shut-off)	[Engine is running] [Ignition switch: OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V
			[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
119 120	R R	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

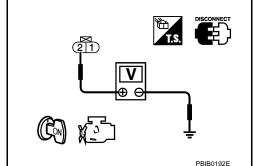

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnosis Procedure

1.check intake valve timing control solenoid valve power supply circuit

Turn ignition switch OFF.

Disconnect intake valve timing control solenoid valve harness connector.



- Turn ignition switch ON.
- Check voltage between intake valve timing control solenoid valve terminal 2 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

>> GO TO 3. OK NG >> GO TO 2.

2.DETECT MALFUNCTIONING PART

Check the following.

Revision: 2009 February

- Harness connectors E12, F3
- Harness connectors E18, F201 (bank 1)

EC-173 2008 M35/M45

< SERVICE INFORMATION >

[VQ35DE]

Harness for open or short between intake valve timing control solenoid valve and IPDM E/R

>> Repair open circuit or short to ground or short to power in harness or connectors.

3.CHECK INTAKE VALVE TIMING CONTROL SOLENOID VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between the following;

ECM terminal 11 and intake valve timing control solenoid valve (bank 1) terminal 1 or

ECM terminal 10 and intake valve timing control solenoid valve (bank 2) terminal 1.

Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5.

NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F201, F18 (bank 1)
- Harness for open or short between intake valve timing control solenoid valve and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK INTAKE VALVE TIMING CONTROL SOLENOID VALVE

Refer to EC-174, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace malfunctioning intake valve timing control solenoid valve.

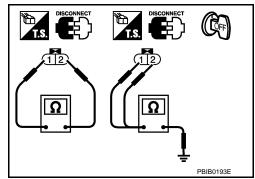
6.CHECK INTERMITTENT INCIDENT

Refer to EC-140.

>> INSPECTION END

Component Inspection

INFOID:0000000002954174


INTAKE VALVE TIMING CONTROL SOLENOID VALVE

- Disconnect intake valve timing control solenoid valve harness connector.
- 2. Check resistance between intake valve timing control solenoid valve terminals as follows.

Terminals	Resistance
1 and 2	7.0 - 7.5Ω [at 20°C (68°F)]
1 or 2 and ground	${}^{\infty}\!\Omega$ (Continuity should not exist)

If NG, replace intake valve timing control solenoid valve. If OK, go to next step.

3. Remove intake valve timing control solenoid valve.

< SERVICE INFORMATION >

[VQ35DE]

 Provide 12V DC between intake valve timing control solenoid valve terminals and then interrupt it. Make sure that the plunger moves as shown in the figure.

CAUTION:

Do not apply 12V DC continuously for 5 seconds or more. Doing so may result in damage to the coil in intake valve timing control solenoid valve.

If NG, replace intake valve timing control solenoid valve. **NOTE:**

Always replace O-ring when intake valve timing control solenoid valve is removed.

PBIB2275E

INFOID:0000000002954175

Removal and Installation

INTAKE VALVE TIMING CONTROL SOLENOID VALVE Refer to EM-84.

Revision: 2009 February **EC-175** 2008 M35/M45

EC

Α

С

D

Е

F

J

Н

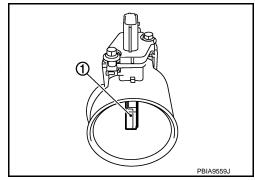
K

L

M

Ν

O


INFOID:0000000002954176

DTC P0101 MAF SENSOR

Component Description

The mass air flow sensor (1) is placed in the stream of intake air. It measures the intake flow rate by measuring a part of the entire intake flow. The mass air flow sensor controls the temperature of the hot wire to a certain amount. The heat generated by the hot wire is reduced as the intake air flows around it. The more air, the greater the heat loss.

Therefore, the electric current supplied to hot wire is changed to maintain the temperature of the hot wire as air flow increases. The ECM detects the air flow by means of this current change.

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002954177

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
MAS A/F SE-B1	See <u>EC-132</u> .		
	Engine: After warming up	Idle	5% - 35%
CAL/LD VALUE	Selector lever: P or NAir conditioner switch: OFFNo load	2,500 rpm	5% - 35%
	Engine: After warming up	Idle	2.0 - 6.0 g·m/s
MASS AIRFLOW	Selector lever: P or NAir conditioner switch: OFFNo load	2,500 rpm	7.0 - 20.0 g·m/s

On Board Diagnosis Logic

INFOID:0000000002954178

DTC No.	Trouble diagnosis name	DTC detecting condition		Possible cause
P0101	Mass air flow sensor cir-	A)	A high voltage from the sensor is sent to ECM under light load driving condition.	 Harness or connectors (The sensor circuit is open or shorted.) Mass air flow sensor EVAP control system pressure sensor Intake air temperature sensor
0101	cuit range/performance	В)	A low voltage from the sensor is sent to ECM under heavy load driving condition.	 Harness or connectors (The sensor circuit is open or shorted.) Intake air leaks Mass air flow sensor EVAP control system pressure sensor Intake air temperature sensor

DTC Confirmation Procedure

INFOID:0000000002954179

Perform PROCEDURE FOR MALFUNCTION A first. If DTC cannot be confirmed, perform PROCEDURE FOR MALFUNCTION B. NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

PROCEDURE FOR MALFUNCTION A **NOTE**:

Revision: 2009 February

DTC P0101 MAF SENSOR

< SERVICE INFORMATION >

[VQ35DE]

If engine will not start or stops soon, wait at least 10 seconds with engine stopped (Ignition switch ON) instead of running engine at idle speed.

- 1. Turn ignition switch ON.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Run engine for at least 10 seconds at idle speed.
- 4. Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-181, "Diagnosis Procedure"</u>.

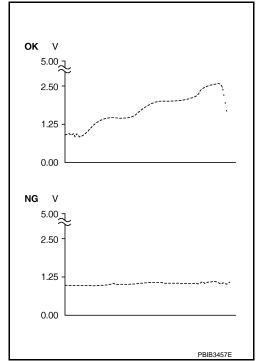
PROCEDURE FOR MALFUNCTION B

NOTE:

Check vehicle specifications and VIN, then select the procedure to be performed. (Refer to the table below.)

Vehicle specification	Vehicle serial number	Procedure
Axel	venicie senai numbei	
2WD	Up to 606709	В-а
2000	From 606710	B-b
4WD	Up to 655057	В-а
4000	From 655058	B-b

CAUTION:


Always drive vehicle at a safe speed.

Procedure for Malfunction B-a

(P) WITH CONSULT-III

- Turn ignition switch ON.
- Start engine and warm it up to normal operating temperature.
 If engine cannot be started, go to <u>EC-181</u>, "<u>Diagnosis Procedure</u>".
- Select "DATA MONITOR" mode with CONSULT-III.
- 4. Check the voltage of "MAS A/F SE-B1" with "DATA MONITOR".
- 5. Increases engine speed to about 4,000 rpm.
- Monitor the linear voltage rise in response to engine speed increases.

If NG, go to <u>EC-181, "Diagnosis Procedure"</u>. If OK, go to following step.

7. Maintain the following conditions for at least 10 consecutive seconds.

ENG SPEED	More than 2,000 rpm
THRTL SEN 1	More than 3V
THRTL SEN 2	More than 3V

EC

Α

0

Е

D

F

G

Н

Κ

L

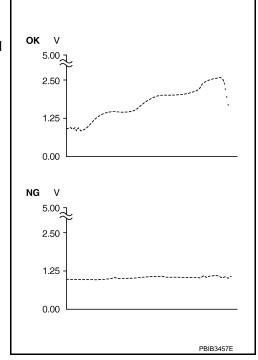
M

Ν

< SERVICE INFORMATION >

Selector lever	Suitable position
Driving location	Driving vehicle uphill (Increased engine load) will help maintain the driving conditions required for this test.

If 1st trip DTC is detected, go to <u>EC-181, "Diagnosis Procedure"</u>.


Procedure for Malfunction B-b

- (P) WITH CONSULT-III
- 1. Turn ignition switch ON.
- 2. Start engine and warm it up to normal operating temperature.

If engine cannot be started, go to EC-181, "Diagnosis Procedure".

- 3. Select "DATA MONITOR" mode with CONSULT-III.
- 4. Check the voltage of "MAS A/F SE-B1" with "DATA MONITOR".
- 5. Increases engine speed to about 4,000 rpm.
- 6. Monitor the linear voltage rise in response to engine speed increases.

If NG, go to <u>EC-181</u>, "<u>Diagnosis Procedure</u>". If OK, go to following step.

7. Maintain the following conditions for at least 10 consecutive seconds.

ENG SPEED	More than 2,000 rpm
THRTL SEN 1	More than 1.5V
THRTL SEN 2	More than 1.5V
Selector lever	Suitable position
Driving location	Driving vehicle uphill (Increased engine load) will help maintain the driving conditions required for this test.

8. If 1st trip DTC is detected, go to EC-181, "Diagnosis Procedure".

Overall Function Check

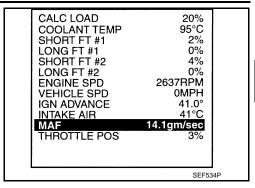
INFOID:0000000002954180

PROCEDURE FOR MALFUNCTION B

Use this procedure to check the overall function of the mass air flow sensor circuit. During this check, a DTC might not be confirmed.

With GST

- 1. Start engine and warm it up to normal operating temperature.
- Select Service \$01 with GST.


DTC P0101 MAF SENSOR

< SERVICE INFORMATION >

[VQ35DE]

3. Check the mass air flow sensor signal with Service \$01.

- 4. Check for linear mass air flow sensor signal value rise in response to increases to about 4,000 rpm in engine speed.
- 5. If NG, go to EC-181, "Diagnosis Procedure".

Α

EC

С

 D

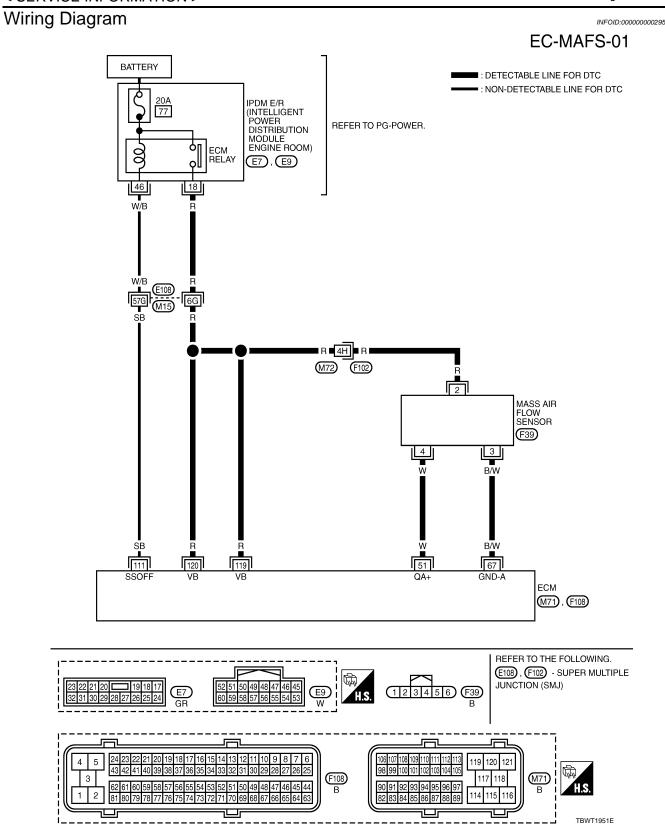
Е

F

G

Н

.


Κ

L

M

Ν

0

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

Α

EC

D

Е

F

M

Ν

Ρ

INFOID:0000000002954182

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
51	W	Mass air flow sensor	[Engine is running]Warm-up conditionIdle speed	0.9 - 1.2V
31	VV	IVIASS All HOW SETISOI	[Engine is running]Warm-up conditionEngine speed: 2,500 rpm	1.6 - 1.9V
67	B/W	Sensor ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
111 SB	SB	ECM relay (Self shut-off)	[Engine is running] [Ignition switch: OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V
			[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
119 120	R R	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

Diagnosis Procedure

1.INSPECTION START

Which malfunction (A or B) is duplicated?

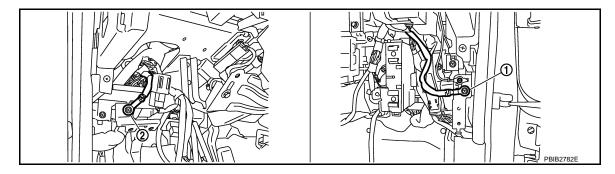
A or B

A >> GO TO 3. B >> GO TO 2.

2. CHECK INTAKE SYSTEM

Check the following for connection.

- Air duct
- Vacuum hoses
- Intake air passage between air duct and intake manifold


OK or NG

OK >> GO TO 3.

NG >> Reconnect the parts.

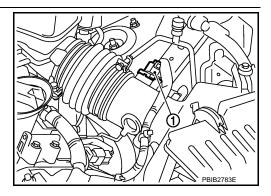
3. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws on the body. Refer to <u>EC-146</u>, "Ground Inspection".

1. Body ground M70

2. Body ground M16

< SERVICE INFORMATION >

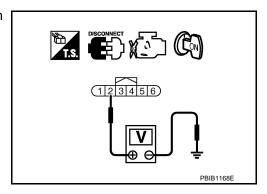

OK or NG

OK >> GO TO 4.

NG >> Repair or replace ground connections.

4. CHECK MAF SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect mass air flow (MAF) sensor (1) harness connector.
- Turn ignition switch ON.



3. Check voltage between MAF sensor terminal 2 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- Harness connectors M72, F102
- · Harness for open or short between mass air flow sensor and ECM
- Harness for open or short between mass air flow sensor and IPDM E/R
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK MAF SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between MAF sensor terminal 3 and ECM terminal 67. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

.CHECK MAF SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between MAF sensor terminal 4 and ECM terminal 51. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

DTC P0101 MAF SENSOR [VQ35DE] < SERVICE INFORMATION > OK >> GO TO 8. NG >> Repair open circuit or short to ground or short to power in harness or connectors. 8.CHECK INTAKE AIR TEMPERATURE SENSOR Refer to EC-195, "Component Inspection". EC OK or NG OK >> GO TO 9. NG >> Replace intake air temperature sensor.

Refer to EC-385, "Component Inspection".

OK or NG

OK >> GO TO 10.

NG >> Replace EVAP control system pressure sensor.

9. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

10. CHECK MASS AIR FLOW SENSOR

Refer to EC-183, "Component Inspection".

OK or NG

OK >> GO TO 11.

NG >> Replace mass air flow sensor.

11. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

>> INSPECTION END

Component Inspection

MASS AIR FLOW SENSOR

(P) With CONSULT-III

- Reconnect all harness connectors disconnected.
- 2. Start engine and warm it up to normal operating temperature.
- Connect CONSULT-III and select "DATA MONITOR" mode.
- Select "MAS A/F SE-B1" and check indication under the following conditions.

Condition	MAS A/F SE-B1 (V)
Ignition switch ON (Engine stopped.)	Approx. 0.4
Idle (Engine is warmed-up to normal operating temperature.)	0.9 - 1.2
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.6 - 1.9
Idle to about 4,000 rpm	0.9 - 1.2 to Approx. 2.4*

^{*:} Check for linear voltage rise in response to engine being increased to about 4,000 rpm.

- If the voltage is out of specification, proceed the following.
- Check for the cause of uneven air flow through mass air flow sensor. Refer to following.
 - Crushed air ducts
 - Malfunctioning seal of air cleaner element
 - · Uneven dirt of air cleaner element
 - Improper specification of intake air system parts
- b. If NG, repair or replace malfunctioning part and perform step 2 to 4 again. If OK, go to next step.
- Turn ignition switch OFF. 6.
- 7. Disconnect mass air flow sensor harness connector and reconnect it again.
- Perform step 2 to 4 again.

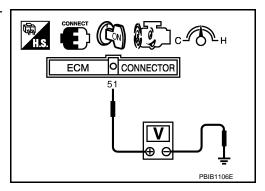
Α

D

Е

F

INFOID:0000000002954183


N

Р

INFOID:0000000002954184

- If NG, clean or replace mass air flow sensor.
- Without CONSULT-III
- 1. Reconnect all harness connectors disconnected.
- 2. Start engine and warm it up to normal operating temperature.
- Check voltage between ECM terminal 51 (Mass air flow sensor signal) and ground.

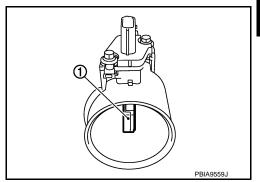
Condition	Voltage V
Ignition switch ON (Engine stopped.)	Approx. 0.4
Idle (Engine is warmed-up to normal operating temperature.)	0.9 - 1.2
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.6 - 1.9
Idle to about 4,000 rpm	0.9 - 1.2 to Approx. 2.4*

- *: Check for linear voltage rise in response to engine being increased to about 4,000 rpm.
- 4. If the voltage is out of specification, proceed the following.
- a. Check for the cause of uneven air flow through mass air flow sensor. Refer to following.
 - · Crushed air ducts
 - · Malfunctioning seal of air cleaner element
 - Uneven dirt of air cleaner element
 - Improper specification of intake air system parts
- b. If NG, repair or replace malfunctioning part and perform step 2 and 3 again. If OK, go to next step.
- 5. Turn ignition switch OFF.
- 6. Disconnect mass air flow sensor harness connector and reconnect it again.
- 7. Perform step 2 and 3 again.
- 8. If NG, clean or replace mass air flow sensor.

Removal and Installation

MASS AIR FLOW SENSOR Refer to EM-18.

[VQ35DE]


INFOID:0000000002954185

DTC P0102, P0103 MAF SENSOR

Component Description

The mass air flow sensor (1) is placed in the stream of intake air. It measures the intake flow rate by measuring a part of the entire intake flow. The mass air flow sensor controls the temperature of the hot wire to a certain amount. The heat generated by the hot wire is reduced as the intake air flows around it. The more air, the greater the heat loss.

Therefore, the electric current supplied to hot wire is changed to maintain the temperature of the hot wire as air flow increases. The ECM detects the air flow by means of this current change.

CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
MAS A/F SE-B1	See <u>EC-132</u> .		
	Engine: After warming up	Idle	5% - 35%
CAL/LD VALUE	Selector lever: P or NAir conditioner switch: OFFNo load	2,500 rpm	5% - 35%
	Engine: After warming up	Idle	2.0 - 6.0 g·m/s
MASS AIRFLOW	Selector lever: P or NAir conditioner switch: OFFNo load	2,500 rpm	7.0 - 20.0 g·m/s

On Board Diagnosis Logic

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0102 0102	Mass air flow sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.) Intake air leaks Mass air flow sensor
P0103 0103	Mass air flow sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.) Mass air flow sensor

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Detected items	Engine operating condition in fail-safe mode
Mass air flow sensor circuit	Engine speed will not rise more than 2,400 rpm due to the fuel cut.

DTC Confirmation Procedure

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

PROCEDURE FOR DTC P0102

- 1. Start engine and wait at least 5 seconds.
- Check DTC.

EC

Α

D

Е

F

INFOID:0000000002954186

INFOID:0000000002954187

K

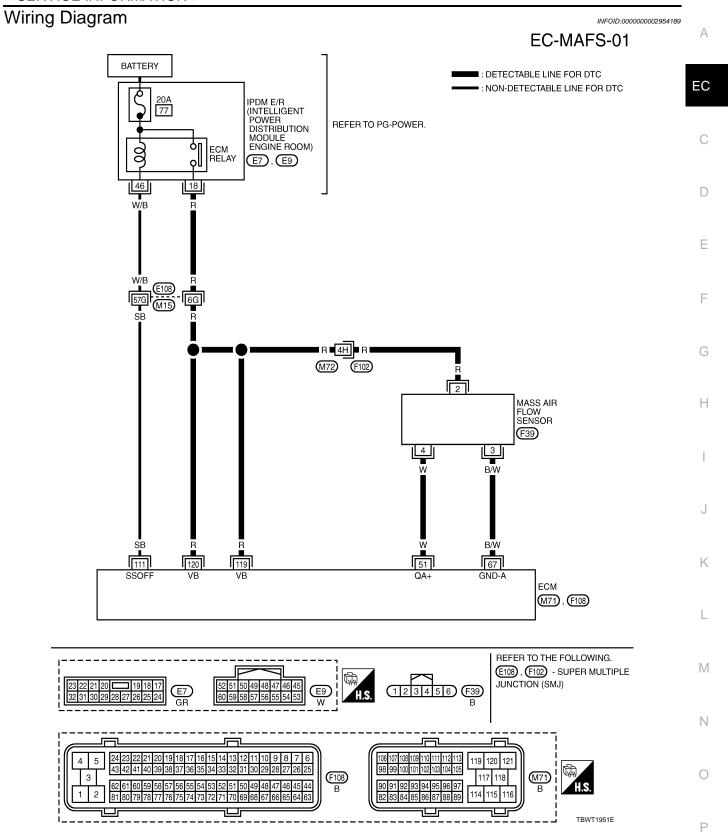
L

M

Ν

INFOID:0000000002954188

DTC P0102, P0103 MAF SENSOR


< SERVICE INFORMATION >

[VQ35DE]

3. If DTC is detected, go to EC-188, "Diagnosis Procedure".

PROCEDURE FOR DTC P0103

- 1. Turn ignition switch ON.
- 2. Wait at least 5 seconds.
- 3. Check DTC.
- 4. If DTC is detected, go to <u>EC-188, "Diagnosis Procedure"</u>. If DTC is not detected, go to next step.
- 5. Start engine and wait at least 5 seconds.
- 6. Check DTC.
- 7. If DTC is detected, go to EC-188, "Diagnosis Procedure".

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

INFOID:0000000002954190

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
51	W	Mass air flow sensor	[Engine is running]Warm-up conditionIdle speed	0.9 - 1.2V
31	VV	ividas dii ilow serisor	[Engine is running]Warm-up conditionEngine speed: 2,500 rpm	1.6 - 1.9V
67	B/W	Sensor ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
111	111 SB	ECM relay (Self shut-off)	[Engine is running] [Ignition switch: OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V
			[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
119 120	R R	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

Diagnosis Procedure

1. INSPECTION START

Which malfunction (P0102 or P0103) is duplicated?

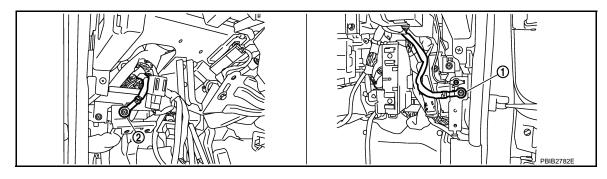
P0102 or P0103

P0102 >> GO TO 2. P0103 >> GO TO 3.

2. CHECK INTAKE SYSTEM

Check the following for connection.

- Air duct
- Vacuum hoses
- Intake air passage between air duct to intake manifold


OK or NG

OK >> GO TO 3.

NG >> Reconnect the parts.

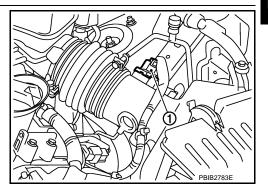
3. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws on the body. Refer to EC-146, "Ground Inspection".

1. Body ground M70

2. Body ground M16

[VQ35DE] < SERVICE INFORMATION >

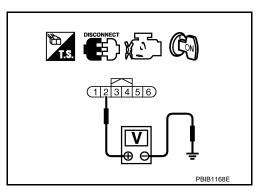

OK or NG

OK >> GO TO 4.

NG >> Repair or replace ground connections.

4. CHECK MAF SENSOR POWER SUPPLY CIRCUIT

- Disconnect mass air flow (MAF) sensor (1) harness connector.
- Turn ignition switch ON.



3. Check voltage between MAF sensor terminal 2 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

$5.\mathsf{DETECT}$ MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- Harness connectors M72, F102
- Harness for open or short between mass air flow sensor and ECM
- Harness for open or short between mass air flow sensor and IPDM E/R

>> Repair open circuit or short to ground or short to power in harness or connectors.

6.CHECK MAF SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check harness continuity between MAF sensor terminal 3 and ECM terminal 67. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

1. CHECK MAF SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Check harness continuity between MAF sensor terminal 4 and ECM terminal 51. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

EC-189 Revision: 2009 February 2008 M35/M45

EC

Α

D

Е

L

N

DTC P0102, P0103 MAF SENSOR

< SERVICE INFORMATION >

[VQ35DE]

OK >> GO TO 8.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

8.CHECK MASS AIR FLOW SENSOR

Refer to EC-190, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace mass air flow sensor.

9. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

>> INSPECTION END

Component Inspection

INFOID:0000000002954191

MASS AIR FLOW SENSOR

(P) With CONSULT-III

- 1. Reconnect all harness connectors disconnected.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Connect CONSULT-III and select "DATA MONITOR" mode.
- 4. Select "MAS A/F SE-B1" and check indication under the following conditions.

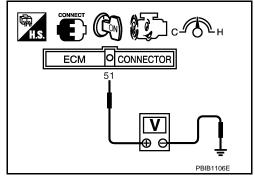
Condition	MAS A/F SE-B1 (V)
Ignition switch ON (Engine stopped.)	Approx. 0.4
Idle (Engine is warmed-up to normal operating temperature.)	0.9 - 1.2
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.6 - 1.9
Idle to about 4,000 rpm	0.9 - 1.2 to Approx. 2.4*

^{*:} Check for linear voltage rise in response to engine being increased to about 4,000 rpm.

- 5. If the voltage is out of specification, proceed the following.
- a. Check for the cause of uneven air flow through mass air flow sensor. Refer to following.
 - · Crushed air ducts
 - Malfunctioning seal of air cleaner element
 - Uneven dirt of air cleaner element
 - · Improper specification of intake air system parts
- b. If NG, repair or replace malfunctioning part and perform step 2 to 4 again. If OK, go to next step.
- Turn ignition switch OFF.
- 7. Disconnect mass air flow sensor harness connector and reconnect it again.
- 8. Perform step 2 to 4 again.
- 9. If NG, clean or replace mass air flow sensor.

Without CONSULT-III

- 1. Reconnect all harness connectors disconnected.
- 2. Start engine and warm it up to normal operating temperature.


DTC P0102, P0103 MAF SENSOR

< SERVICE INFORMATION >

[VQ35DE]

Check voltage between ECM terminal 51 (Mass air flow sensor signal) and ground.

Condition	Voltage V
Ignition switch ON (Engine stopped.)	Approx. 0.4
Idle (Engine is warmed-up to normal operating temperature.)	0.9 - 1.2
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.6 - 1.9
Idle to about 4,000 rpm	0.9 - 1.2 to Approx. 2.4*

- *: Check for linear voltage rise in response to engine being increased to about 4,000 rpm.
- If the voltage is out of specification, proceed the following.
- Check for the cause of uneven air flow through mass air flow sensor. Refer to following.
 - Crushed air ducts
 - Malfunctioning seal of air cleaner element
 - Uneven dirt of air cleaner element
 - Improper specification of intake air system parts
- b. If NG, repair or replace malfunctioning part and perform step 2 and 3 again. If OK, go to next step.
- Turn ignition switch OFF.
- Disconnect mass air flow sensor harness connector and reconnect it again.
- Perform step 2 and 3 again.
- If NG, clean or replace mass air flow sensor.

Removal and Installation

MASS AIR FLOW SENSOR

Refer to EM-18.

Н

Α

EC

D

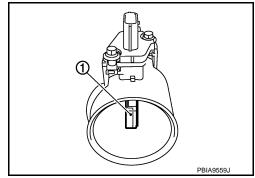
Е

F

INFOID:0000000002954192

Ν

Р


INFOID:0000000002954193

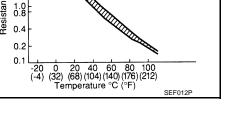
DTC P0112, P0113 IAT SENSOR

Component Description

The intake air temperature sensor is built-into mass air flow sensor (1). The sensor detects intake air temperature and transmits a signal to the ECM.

The temperature sensing unit uses a thermistor which is sensitive to the change in temperature. Electrical resistance of the thermistor decreases in response to the temperature rise.

<Reference data>


Intake air temperature °C (°F)	Voltage* V	Resistance kΩ
25 (77)	3.3	1.800 - 2.200
80 (176)	1.2	0.283 - 0.359

^{*:} This data is reference value and is measured between ECM terminal 34 (Intake air temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

Acceptable

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
P0112 0112	Intake air tempera- ture sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)	
P0113 0113	Intake air tempera- ture sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	Intake air temperature sensor	

DTC Confirmation Procedure

INFOID:0000000002954195

INFOID:000000002954194

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

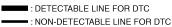
- 1. Turn ignition switch ON.
- 2. Wait at least 5 seconds.
- Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-193, "Diagnosis Procedure"</u>.

⇜

6 B/W

67 GND-A

ECM (F108)


MASS AIR FLOW SENSOR (INTAKE AIR TEMPERATURE SENSOR)

Wiring Diagram

[VQ35DE]

INFOID:0000000002954196

EC

Α

D

Е

F

Н

M

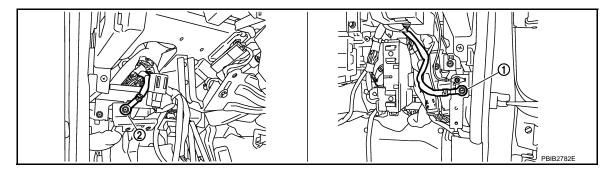
Ν

0

Р

123456 F39 B

Diagnosis Procedure


1. CHECK GROUND CONNECTIONS

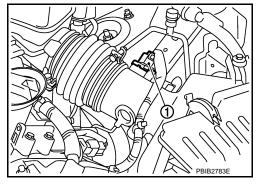
- 1. Turn ignition switch OFF.
- Loosen and retighten two ground screws on the body. Refer to EC-146, "Ground Inspection".

EC-193

INFOID:0000000002954197

TBWT0951E

- 1. Body ground M70
- 2. Body ground M16

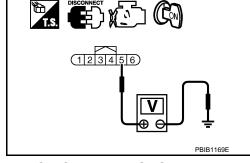

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. CHECK INTAKE AIR TEMPERATURE SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect mass air flow sensor (intake air temperature sensor is built-into) (1) harness connector.
- 2. Turn ignition switch ON.


3. Check voltage between mass air flow sensor terminal 5 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 3.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

3.check intake air temperature sensor ground circuit for open and short

- Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check harness continuity between mass air flow sensor terminal 6 and ECM terminal 67. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK INTAKE AIR TEMPERATURE SENSOR

Refer to EC-195, "Component Inspection".

OK or NG

DTC P0112, P0113 IAT SENSOR

< SERVICE INFORMATION >

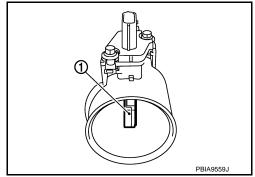
OK >> GO TO 5.

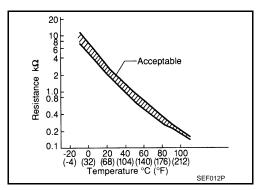
NG >> Replace mass air flow sensor (with intake air temperature sensor).

5. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

>> INSPECTION END


Component Inspection


INTAKE AIR TEMPERATURE SENSOR

1. Check resistance between mass air flow sensor (1) terminals 5 and 6 under the following conditions.

Intake air temperature °C (°F)	Resistance $k\Omega$
25 (77)	1.800 - 2.200

If NG, replace mass air flow sensor (with intake air temperature sensor).

Removal and Installation

MASS AIR FLOW SENSOR Refer to EM-18.

INFOID:0000000002954199

[VQ35DE]

INFOID:0000000002954198

Α

EC

D

Е

F

Н

Revision: 2009 February **EC-195** 2008 M35/M45

L

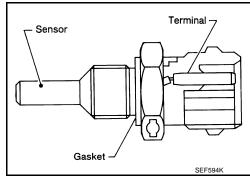
M

Ν

0

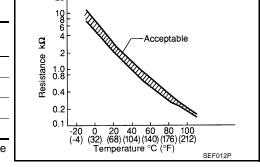
Р

INFOID:0000000004932947


DTC P0116 ECT SENSOR

Component Description

NOTE:


If DTC P0125 is displayed with P0117 or P0118, first perform the trouble diagnosis for DTC P0117 or P0118. Refer to EC-199.

The engine coolant temperature sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Engine coolant temperature °C (°F)	Voltage* V	Resistance kΩ
-10 (14)	4.4	7.0 - 11.4
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

^{*:} This data is reference value and is measured between ECM terminal 73 (Engine coolant temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

NOTE:

If DTC P0116 is displayed with P0117 or P0118, first perform the trouble diagnosis for DTC P0117, P0118. Refer to EC-199, "On Board Diagnosis Logic".

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0116 0116	Engine coolant tempera- ture sensor circuit range/ performance	Engine coolant temperature signal from engine coolant temperature sensor does not fluctuate, even when some time has passed after starting the engine with pre-warming up condition.	Harness or connectors (High or low resistance in the circuit)

DTC Confirmation Procedure

INFOID:0000000004932940

INFOID:0000000004932939

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, do not add fuel.

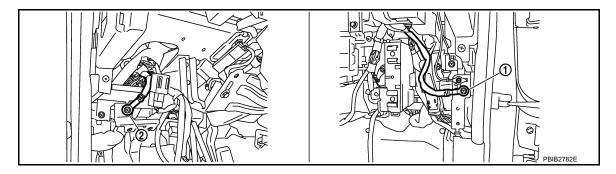
- Start engine and warm it up to normal operating temperature.
- 2. Rev engine up to 2,000 rpm for more than 10 minutes.
- 3. Move the vehicle to a cool place, then stop engine and turn ignition switch OFF.
- 4. Check resistance between "fuel level sensor unit and fuel pump" terminals 4 and 5.

5. Soak the vehicle until the resistance between "fuel level sensor unit and fuel pump" terminals 4 and 5 becomes 0.5 $k\Omega$ higher than the value measured before soaking.

CAUTION:

Never turn ignition switch ON during soaking time.

NOTE:


Soak time changes depending on ambient air temperature. It may take several hours.

- 6. Start engine and let it idle for 5 minutes.
- 7. Check 1st trip DTC.
- 8. If 1st trip DTC is detected, go to EC-197, "Diagnosis Procedure".

Diagnosis Procedure

1. CHECK GROUND CONNECTIONS

- Turn ignition switch OFF.
- Loosen and retighten two ground screws on the body. Refer to <u>EC-146</u>, "Ground Inspection".

1. Body ground M70

2. Body ground M16

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK ENGINE COOLANT TEMPERATURE SENSOR

Refer to EC-197, "Component Inspection".

OK or NG

OK >> GO TO 3.

NG >> Replace engine coolant temperature sensor.

3.CHECK INTERMITTENT INCIDENT

Refer to EC-140.

Refer to EC-201, "Wiring Diagram".

>> INSPECTION END

Component Inspection

ENGINE COOLANT TEMPERATURE SENSOR

EC

Α

INFOID:00000000004932944

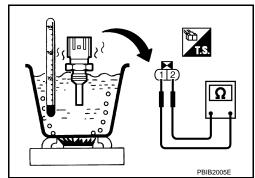
Е

D

G

Н

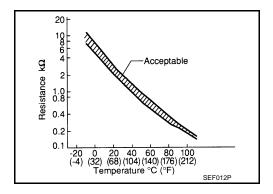
K


L

Ν

Р

INFOID:0000000004932946


1. Check resistance between engine coolant temperature sensor terminals 1 and 2 as shown in the figure.

<Reference data>

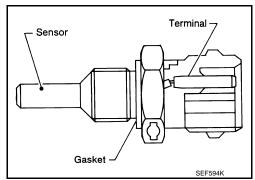
Temperature °C (°F)	Resistance $k\Omega$
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.00
90 (194)	0.236 - 0.260

2. If NG, replace engine coolant temperature sensor.

INFOID:0000000004932945

Removal and Installation

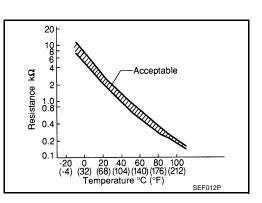
ENGINE COOLANT TEMPERATURE SENSOR Refer to CO-30.


[VQ35DE]

INFOID:0000000002954200

DTC P0117, P0118 ECT SENSOR

Component Description


The engine coolant temperature sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Engine coolant temperature °C (°F)	Voltage* V	Resistance kΩ
-10 (14)	4.4	7.0 - 11.4
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

^{*:} This data is reference value and is measured between ECM terminal 73 (Engine coolant temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble Diagnosis Name	DTC Detecting Condition	Possible Cause
P0117 0117	Engine coolant tem- perature sensor cir- cuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)
P0118 0118	Engine coolant tem- perature sensor cir- cuit high input	An excessively high voltage from the sensor is sent to ECM.	Engine coolant temperature sensor

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

EC

Α

D

Е

G

Н

INFOID:0000000002954201

K

M

Ν

0

Р

Detected items	Engine operating condition in fail-safe mode		
	Engine coolant temperature will be determined by ECM based on the following condition. CONSULT-III displays the engine coolant temperature decided by ECM.		
	Condition	Engine coolant temperature decided (CONSULT-III display)	
Engine coolant temper-	Just as ignition switch is turned ON or START	40°C (104°F)	
ature sensor circuit	Approx. 4 minutes or more after engine starting	80°C (176°F)	
	Except as shown above	40 - 80°C (104 - 176°F) (Depends on the time)	
	When the fail-safe system for engine coolant temperature engine is running.	sensor is activated, the cooling fan operates while	

DTC Confirmation Procedure

INFOID:0000000002954202

NOTE:

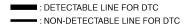
If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

- 1. Turn ignition switch ON.
- 2. Wait at least 5 seconds.
- 3. Check DTC.
- 4. If DTC is detected, go to EC-201, "Diagnosis Procedure".

⇜

ENGINE COOLANT TEMPERATURE SENSOR

(F13)


B/W

67 GND-A [VQ35DE]

Wiring Diagram

INFOID:0000000002954203

EC-ECTS-01

EC

Α

D

Е

F

Н

M

Ν

0

Р

ECM (F108)

Diagnosis Procedure

2 1 F13 GR

1. CHECK GROUND CONNECTIONS

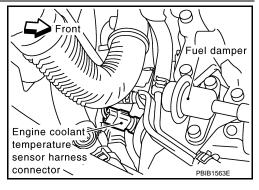
- 1. Turn ignition switch OFF.
- Loosen and retighten two ground screws on the body. Refer to EC-146, "Ground Inspection".

EC-201

INFOID:0000000002954204

TBWT0952E

- 1. Body ground M70
- 2. Body ground M16

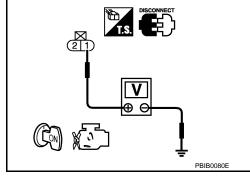

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. CHECK ECT SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect engine coolant temperature (ECT) sensor harness connector.
- 2. Turn ignition switch ON.


Check voltage between ECT sensor terminal 1 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 3.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

3.CHECK ECT SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check harness continuity between ECT sensor terminal 2 and ECM terminal 67. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK ENGINE COOLANT TEMPERATURE SENSOR

Refer to EC-203, "Component Inspection".

OK or NG

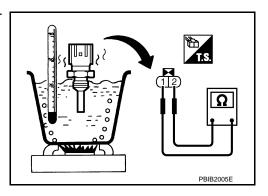
DTC P0117, P0118 ECT SENSOR

[VQ35DE] < SERVICE INFORMATION >

OK >> GO TO 5.

NG >> Replace engine coolant temperature sensor.

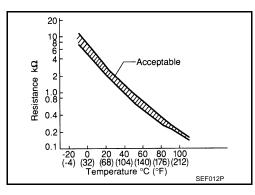
5. CHECK INTERMITTENT INCIDENT


Refer to EC-140.

>> INSPECTION END

Component Inspection

ENGINE COOLANT TEMPERATURE SENSOR


1. Check resistance between engine coolant temperature sensor terminals 1 and 2 as shown in the figure.

<Reference data>

Temperature °C (°F)	Resistance kΩ
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.00
90 (194)	0.236 - 0.260

If NG, replace engine coolant temperature sensor.

INFOID:0000000002954206

Removal and Installation

ENGINE COOLANT TEMPERATURE SENSOR Refer to CO-30.

M

Р

EC-203 Revision: 2009 February 2008 M35/M45

EC

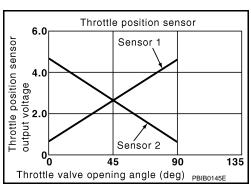
Α

D

INFOID:0000000002954205

Е

Ν


INFOID:0000000002954207

DTC P0122, P0123 TP SENSOR

Component Description

Electric throttle control actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002954208

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
THRTL SEN 1	Ignition switch: ON	Accelerator pedal: Fully released	More than 0.36V
THRTL SEN 2*	(Engine stopped) • Selector lever: D	Accelerator pedal: Fully depressed	Less than 4.75V

^{*:} Throttle position sensor 2 signal is converted by ECM internally. Thus, it differs from ECM terminal voltage signal.

On Board Diagnosis Logic

INFOID:0000000002954209

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0122 0122	Throttle position sensor 2 circuit low input	An excessively low voltage from the TP sensor 2 is sent to ECM.	Harness or connectors (TP sensor 2 circuit is open or shorted.)
P0123 0123	Throttle position sensor 2 circuit high input	An excessively high voltage from the TP sensor 2 is sent to ECM.	 (APP sensor 2 circuit is shorted.) Electric throttle control actuator (TP sensor 2) Accelerator pedal position sensor (APP sensor 2)

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operation condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

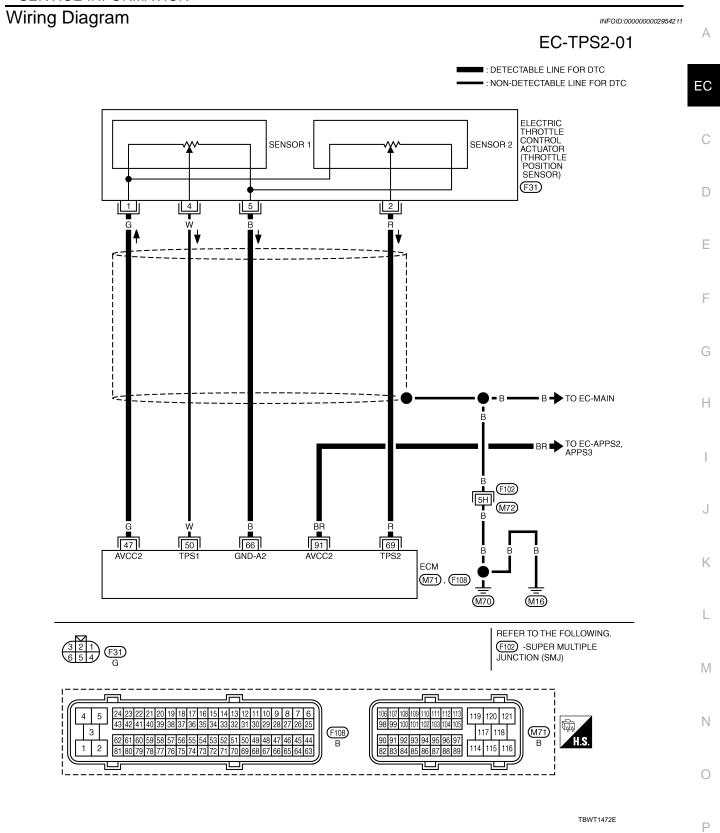
The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

DTC Confirmation Procedure

INFOID:0000000002954210

NOTF:


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

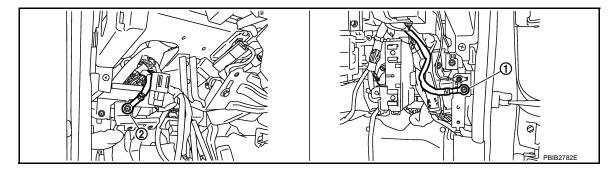
Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

- Start engine and let it idle for 1 second.
- 2. Check DTC.
- If DTC is detected, go to <u>EC-206</u>, "<u>Diagnosis Procedure</u>".

[VQ35DE]

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
47	G	Sensor power supply (Throt- tle position sensor)	[Ignition switch: ON]	Approximately 5V
50	50 W Throttle position sensor 1	[Ignition switch: ON]Engine stoppedSelector lever: DAccelerator pedal: Fully released	More than 0.36V	
50		 [Ignition switch: ON] Engine stopped Selector lever: D Accelerator pedal: Fully depressed 	Less than 4.75V	
66	В	Sensor ground (Throttle position sensor)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
69		Throttle position sensor 2	[Ignition switch: ON]Engine stoppedSelector lever: DAccelerator pedal: Fully released	Less than 4.75V
09	R	THIOME POSITION SENSON Z	 [Ignition switch: ON] Engine stopped Selector lever: D Accelerator pedal: Fully depressed 	More than 0.36V
91	BR	Sensor power supply (APP sensor 2)	[Ignition switch: ON]	Approximately 5V

Diagnosis Procedure

INFOID:0000000002954212

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws on the body. Refer to <u>EC-146</u>, "<u>Ground Inspection</u>".

1. Body ground M70

2. Body ground M16

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK THROTTLE POSITION SENSOR 2 POWER SUPPLY CIRCUIT-I

< SERVICE INFORMATION >

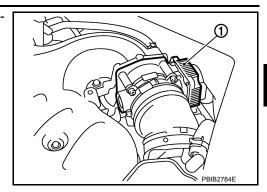
[VQ35DE]

Α

EC

D

Е

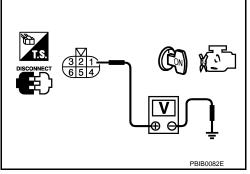

K

Ν

Р

Disconnect electric throttle control actuator (1) harness connector.

2. Turn ignition switch ON.



 Check voltage between electric throttle control actuator terminal 1 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 7. NG >> GO TO 3.

3.CHECK THROTTLE POSITION SENSOR 2 POWER SUPPLY CIRCUIT-II

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between electric throttle control actuator terminal 1 and ECM terminal 47. Refer to Wiring Diagram.

EC-207

Continuity should exist.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit.

4. CHECK THROTTLE POSITION SENSOR 2 POWER SUPPLY CIRCUIT-III

Check harness for short to power and short to ground, between the following terminals.

ECM terminal	Sensor terminal	Reference Wiring Diagram
47	Electric throttle control actuator terminal 1	EC-205
91	APP sensor terminal 5	EC-556

OK or NG

OK >> GO TO 5.

NG >> Repair short to ground or short to power in harness or connectors.

5. CHECK APP SENSOR

Refer to EC-560, "Component Inspection".

OK or NG

OK >> GO TO 11. NG >> GO TO 6.

6. REPLACE ACCELERATOR PEDAL ASSEMBLY

- 1. Replace accelerator pedal assembly.
- Perform <u>EC-82</u>, "Accelerator Pedal Released Position Learning".
- 3. Perform EC-82, "Throttle Valve Closed Position Learning".
- 4. Perform EC-82, "Idle Air Volume Learning".

2008 M35/M45

>> INSPECTION END

7.check throttle position sensor 2 ground circuit for open and short

- Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check harness continuity between electric throttle control actuator terminal 5 and ECM terminal 66. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

8.CHECK THROTTLE POSITION SENSOR 2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal 69 and electric throttle control actuator terminal 2. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK THROTTLE POSITION SENSOR

Refer to EC-208, "Component Inspection".

OK or NG

OK >> GO TO 11.

NG >> GO TO 10.

10. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- Replace the electric throttle control actuator.
- 2. Perform EC-82. "Throttle Valve Closed Position Learning".
- 3. Perform EC-82, "Idle Air Volume Learning".

>> INSPECTION END

11. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

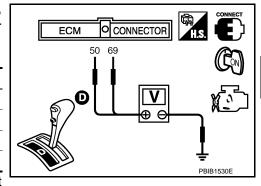
>> INSPECTION END

Component Inspection

INFOID:0000000002954213

THROTTLE POSITION SENSOR

- Reconnect all harness connectors disconnected.
- Perform <u>EC-82</u>, "Throttle Valve Closed Position Learning".
- 3. Turn ignition switch ON.
- Set selector lever to D position.


DTC P0122, P0123 TP SENSOR

< SERVICE INFORMATION >

[VQ35DE]

Check voltage between ECM terminals 50 (TP sensor 1 signal),
 (TP sensor 2 signal) and ground under the following conditions.

Terminal	Accelerator pedal	Voltage
50	Fully released	More than 0.36V
(Throttle position sensor 1)	Fully depressed	Less than 4.75V
69	Fully released	Less than 4.75V
(Throttle position sensor 2	Fully depressed	More than 0.36V

- If NG, replace electric throttle control actuator and go to the next step.
- 7. Perform EC-82, "Throttle Valve Closed Position Learning".
- 8. Perform EC-82, "Idle Air Volume Learning".

Removal and Installation

INFOID:0000000002954214

ELECTRIC THROTTLE CONTROL ACTUATOR Refer to EM-20.

G

Α

EC

C

D

Е

F

Н

J

K

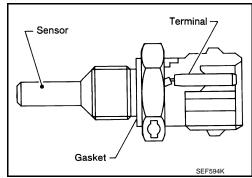
M

Ν

0

Р

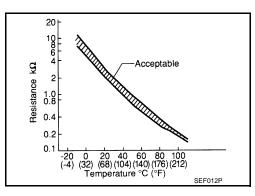
INFOID:0000000002954215


DTC P0125 ECT SENSOR

Component Description

NOTE:

If DTC P0125 is displayed with P0117 or P0118, first perform the trouble diagnosis for DTC P0117 or P0118. Refer to EC-199.


The engine coolant temperature sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Engine coolant temperature °C (°F)	Voltage* V	Resistance k Ω
-10 (14)	4.4	7.0 - 11.4
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

^{*:} This data is reference value and is measured between ECM terminal 73 (Engine coolant temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

INFOID:0000000002954216

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0125 0125	Insufficient engine cool- ant temperature for closed loop fuel control	 Voltage sent to ECM from the sensor is not practical, even when some time has passed after starting the engine. Engine coolant temperature is insufficient for closed loop fuel control. 	Harness or connectors (High resistance in the circuit) Engine coolant temperature sensor Thermostat

DTC Confirmation Procedure

INFOID:0000000002954217

CAUTION:

Be careful not to overheat engine.

NOTE:

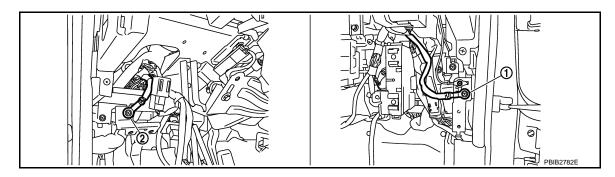
If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(A) WITH CONSULT-III

- 1. Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-III.
- Check that "COOLAN TEMP/S" is above 10°C (50°F). If it is above 10°C (50°F), the test result will be OK. If it is below 10°C (50°F), go to following step.
- Start engine and run it for 65 minutes at idle speed.

EC-210 Revision: 2009 February 2008 M35/M45 If "COOLAN TEMP/S" increases to more than 10°C (50°F) within 65 minutes, stop engine because the test result will be OK.

- 5. Check 1st trip DTC.
- 6. If 1st trip DTC is detected, go to EC-211, "Diagnosis Procedure".


® WITH GST

Follow the procedure "WITH CONSULT-III" above.

Diagnosis Procedure

1. CHECK GROUND CONNECTIONS

- Turn ignition switch OFF.
- Loosen and retighten two ground screws on the body. Refer to EC-146, "Ground Inspection".

1. Body ground M70

2. Body ground M16

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK ENGINE COOLANT TEMPERATURE SENSOR

Refer to EC-211, "Component Inspection".

OK or NG

OK >> GO TO 3.

NG >> Replace engine coolant temperature sensor.

3. CHECK THERMOSTAT OPERATION

When the engine is cold [lower than 70°C (158°F)] condition, grasp lower radiator hose and confirm the engine coolant does not flow.

OK or NG

OK >> GO TO 4.

NG >> Repair or replace thermostat. Refer to <a>CO-28.

4. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

Refer to EC-201, "Wiring Diagram".

>> INSPECTION END

Component Inspection

ENGINE COOLANT TEMPERATURE SENSOR

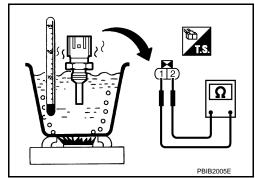
EC

Α

Е

D

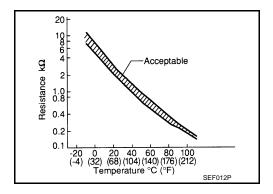
F


K

M

Ν

INFOID:0000000002954219


1. Check resistance between engine coolant temperature sensor terminals 1 and 2 as shown in the figure.

<Reference data>

Temperature °C (°F)	Resistance kΩ	
20 (68)	2.1 - 2.9	
50 (122)	0.68 - 1.00	
90 (194)	0.236 - 0.260	

2. If NG, replace engine coolant temperature sensor.

INFOID:0000000002954220

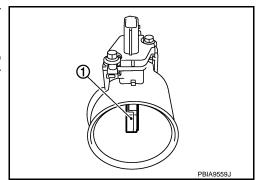
Removal and Installation

ENGINE COOLANT TEMPERATURE SENSOR Refer to CO-30.

INFOID:0000000002954221

Α

EC


D

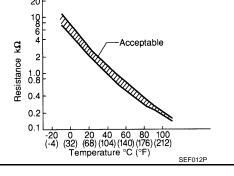
DTC P0127 IAT SENSOR

Component Description

The intake air temperature sensor is built-into mass air flow sensor (1). The sensor detects intake air temperature and transmits a signal to the ECM.

The temperature sensing unit uses a thermistor which is sensitive to the change in temperature. Electrical resistance of the thermistor decreases in response to the temperature rise.

<Reference data>


Intake air temperature °C (°F)	Voltage* V	Resistance kΩ
25 (77)	3.3	1.800 - 2.200
80 (176)	1.2	0.283 - 0.359

^{*:} This data is reference value and is measured between ECM terminal 34 (Intake air temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0127 0127	Intake air temperature too high	Rationally incorrect voltage from the sensor is sent to ECM, compared with the voltage signal from engine coolant temperature sensor.	Harness or connectors (The sensor circuit is open or shorted) Intake air temperature sensor

DTC Confirmation Procedure

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

CAUTION:

Always drive vehicle at a safe speed.

TESTING CONDITION:

This test may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

(P) WITH CONSULT-III

- 1. Wait until engine coolant temperature is less than 90°C (194°F)
- Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-III. h.
- Check the engine coolant temperature.
- If the engine coolant temperature is not less than 90°C (194°F), turn ignition switch OFF and cool down engine.
 - Perform the following steps before engine coolant temperature is above 90°C (194°F).
- Start engine.

INFOID:00000000002954223

INFOID:0000000002954222

Ν

Р

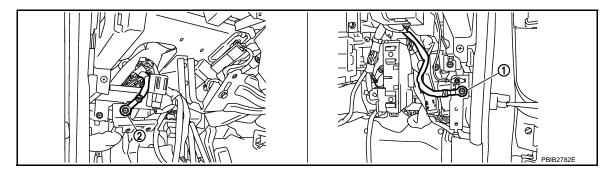
K

EC-213 Revision: 2009 February 2008 M35/M45

[VQ35DE]

< SERVICE INFORMATION >

- 3. Hold vehicle speed at more than 70 km/h (43 MPH) for 100 consecutive seconds.
- 4. Check 1st trip DTC.
- 5. If 1st trip DTC is detected, go to EC-214, "Diagnosis Procedure".
- WITH GST


Follow the procedure "WITH CONSULT-III" above.

Diagnosis Procedure

INFOID:0000000002954224

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws on the body. Refer to <u>EC-146</u>. "Ground Inspection".

1. Body ground M70

2. Body ground M16

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. CHECK INTAKE AIR TEMPERATURE SENSOR

Refer to EC-214, "Component Inspection".

OK or NG

OK >> GO TO 3.

NG >> Replace mass air flow sensor (with intake air temperature sensor).

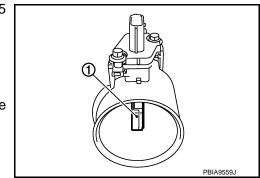
3. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

Refer to EC-193, "Wiring Diagram".

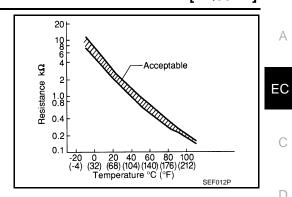
>> INSPECTION END

Component Inspection


INFOID:0000000002954225

INTAKE AIR TEMPERATURE SENSOR

 Check resistance between mass air flow sensor (1) terminals 5 and 6 under the following conditions.


Intake air temperature °C (°F)	Resistance $k\Omega$
25 (77)	1.800 - 2.200

2. If NG, replace mass air flow sensor (with intake air temperature sensor).

DTC P0127 IAT SENSOR

[VQ35DE]

Removal and Installation

MASS AIR FLOW SENSOR Refer to EM-18.

INFOID:0000000002954226

F

G

Α

C

D

Е

Н

Κ

L

M

Ν

0

Р

[VQ35DE]

DTC P0128 THERMOSTAT FUNCTION

On Board Diagnosis Logic

INFOID:0000000002954227

Engine coolant temperature has not risen enough to open the thermostat even though the engine has run long enough.

This is due to a leak in the seal or the thermostat stuck open.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0128 0128	Thermostat function	The engine coolant temperature does not reach to specified temperature even though the engine has run long enough.	Thermostat Leakage from sealing portion of thermostat Engine coolant temperature sensor

DTC Confirmation Procedure

INFOID:0000000002954228

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- For best results, perform at ambient temperature of -10°C (14°F) or higher.
- For best results, perform at engine coolant temperature of -10°C (14°F) to 52°C (126°F).

WITH CONSULT-III

- 1. Turn A/C switch OFF.
- 2. Turn blower fan switch OFF.
- 3. Turn ignition switch ON.
- 4. Select "COOLAN TEMP/S" in "DATA MONITOR" mode with CONSULT-III.
- 5. Check the indication of "COOLAN TEMP/S".
 - If it is below 52°C (126°F), go to following step.
 - If it is above 52°C (126°F), cool down the engine to less than 52°C (126°F), then go to next step.
- 6. Start engine.
- 7. Wait at idle for a least 30 minutes.
 - If "COOLAN TEMP/S" increases to more than 71°C (160°F) within 30 minutes, turn ignition switch OFF because the test result will be OK.
- 8. Check 1st trip DTC.
- 9. If 1st trip DTC is detected, go to EC-216, "Diagnosis Procedure".

WITH GST

Follow the procedure "WITH CONSULT-III" above.

Diagnosis Procedure

INFOID:0000000002954229

1. CHECK ENGINE COOLANT TEMPERATURE SENSOR

Refer to EC-216, "Component Inspection".

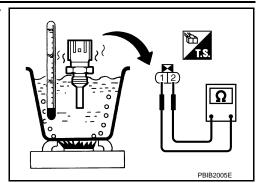
OK or NG

OK >> INSPECTION END

NG >> Replace engine coolant temperature sensor.

Component Inspection

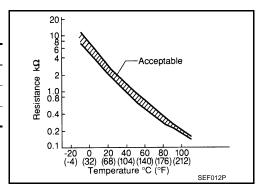
INFOID:0000000002954230


ENGINE COOLANT TEMPERATURE SENSOR

DTC P0128 THERMOSTAT FUNCTION

< SERVICE INFORMATION >

[VQ35DE]


Check resistance between engine coolant temperature sensor terminals 1 and 2 as shown in the figure.

<Reference data>

Temperature °C (°F)	Resistance kΩ
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.00
90 (194)	0.236 - 0.260

If NG, replace engine coolant temperature sensor.

INFOID:0000000002954231

Removal and Installation

ENGINE COOLANT TEMPERATURE SENSOR Refer to CO-30.

EC

Α

C

D

Е

F

Н

K

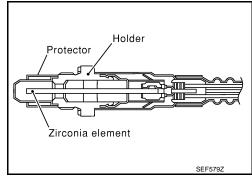
M

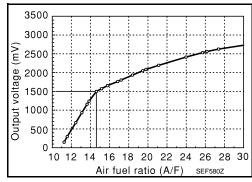
Ν

0

DTC P0130, P0150 A/F SENSOR 1

Component Description


INFOID:0000000002954232


The air fuel ratio (A/F) sensor 1 is a planar dual-cell limit current sensor. The sensor element of the A/F sensor 1 is the combination of a Nernst concentration cell (sensor cell) with an oxygen-pump cell, which transports ions. It has a heater in the element.

The sensor is capable of precise measurement $\lambda = 1$, but also in the lean and rich range. Together with its control electronics, the sensor outputs a clear, continuous signal throughout a wide λ range (0.7 < λ < air).

The exhaust gas components diffuse through the diffusion gap at the electrode of the oxygen pump and Nernst concentration cell, where they are brought to thermodynamic balance.

An electronic circuit controls the pump current through the oxygenpump cell so that the composition of the exhaust gas in the diffusion gap remains constant at $\lambda = 1$. Therefore, the A/F sensor 1 is able to indicate air/fuel ratio by this pumping of current. In addition, a heater is integrated in the sensor to ensure the required operating temperature of 700 - 800°C (1,292 - 1,472°F).

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002954233

Specification data are reference values.

MONITOR ITEM	CC	SPECIFICATION	
A/F SEN1 (B1) A/F SEN1 (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	Fluctuates around 1.5 V

On Board Diagnosis Logic

INFOID:0000000002954234

To judge the malfunction, the diagnosis checks that the A/F signal computed by ECM from the air fuel ratio (A/ F) sensor 1 signal fluctuates according to fuel feedback control.

DTC No.	Trouble diagnosis name	DTC detecting condition		Possible Cause
P0130 0130 (Bank 1)	Air fuel ratio (A/F) sensor 1	A)	The A/F signal computed by ECM from the A/F sensor 1 signal is constantly in the range other than approx. 1.5V.	Harness or connectors (The A/F sensor 1 circuit is open
P0150 0150 (Bank 2)	circuit	B)	The A/F signal computed by ECM from the A/F sensor 1 signal is constantly approx. 1.5V.	or shorted.) • Air fuel ratio (A/F) sensor 1

DTC Confirmation Procedure

INFOID:0000000002954235

Perform PROCEDURE FOR MALFUNCTION A first.

If the DTC cannot be confirmed, perform PROCEDURE FOR MALFUNCTION B.

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

PROCEDURE FOR MALFUNCTION A

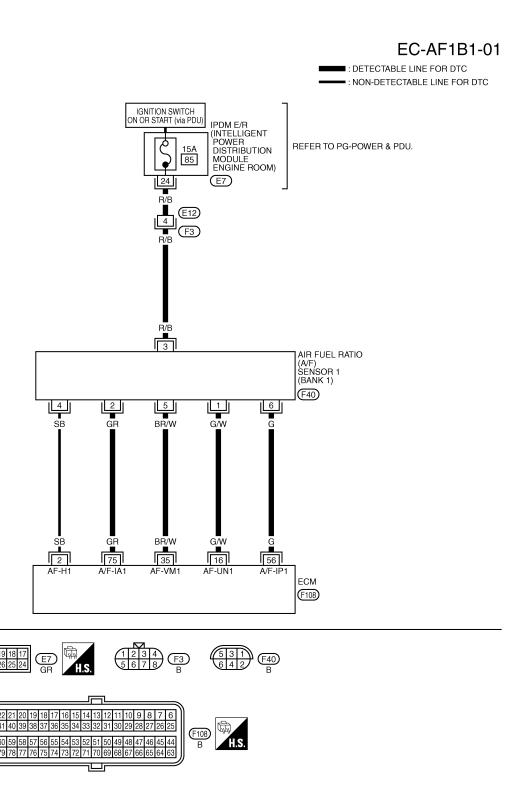
DTC P0130, P0150 A/F SENSOR 1 [VQ35DE] < SERVICE INFORMATION > Start engine and warm it up to normal operating temperature. 2. Let engine idle for 2 minutes. Α Check 1st trip DTC. 4. If 1st trip DTC is detected, go to EC-223, "Diagnosis Procedure". PROCEDURE FOR MALFUNCTION B EC **CAUTION:** Always drive vehicle at a safe speed. Procedure for Malfunction B (P) WITH CONSULT-III Start engine and warm it up to normal operating temperature. Select "A/F SEN1 (B1)" or "A/F SEN1 (B2)" in "DATA MONITOR" mode with CONSULT-III. D 3. Check "A/F SEN1 (B1)" or "A/F SEN1 (B2)" indication. If the indication is constantly approx. 1.5V and does not fluctuates, go to EC-223, "Diagnosis Procedure". If the indication fluctuates around 1.5V, go to next step. Е 4. Select "A/F SEN1 (B1) P1276" (for DTC P0130) or "A/F SEN1 (B2) P1286" (for DTC P0150) of "A/F SEN1" in "DTC WORK SUPPORT" mode with CONSULT-III. Touch "START". 6. When the following conditions are met, "TESTING" will be displayed on the CONSULT-III screen. F **ENG SPEED** 1,100 - 3,200 rpm VHCL SPEED SE More than 64 km/h (40 MPH) **B/FUEL SCHDL** 1.0 - 8.0 msec Shift lever D position Н If "TESTING" is not displayed after 20 seconds, retry from step 2. Release accelerator pedal fully. NOTE: Never apply brake during releasing the accelerator pedal. Make sure that "TESTING" changes to "COMPLETED". If "TESTING" changed to "OUT OF CONDITION", retry from step 6. Make sure that "OK" is displayed after touching "SELF-DIAG RESULT". If "NG" is displayed, go to EC-223, "Diagnosis Procedure". Overall Function Check INFOID:0000000002954236 Use this procedure to check the overall function of the A/F sensor 1 circuit. During this check, a 1st trip DTC might not be confirmed. L WITH GST 1. Start engine and warm it up to normal operating temperature. 2. Drive the vehicle at a speed of 80 km/h (50 MPH) for a few minutes in the suitable gear position. 3. Set D position, then release the accelerator pedal fully until the vehicle speed decreases to 50 km/h (30

Set D position, then release the accelerator pedal fully until the vehicle speed decreases to 50 km/h (30 MPH).

Ν

Р

NOTÉ:


Never apply brake during releasing the accelerator pedal.

- Repeat steps 2 to 3 for five times.
- 5. Stop the vehicle and turn ignition switch OFF.
- 6. Wait at least 10 seconds and restart engine.
- Repeat steps 2 to 3 for five times.
- 8. Stop the vehicle and connect GST to the vehicle.
- Make sure that no DTC is displayed.
 If 1st trip DTC is displayed, go to <u>EC-223</u>, "<u>Diagnosis Procedure</u>".

Revision: 2009 February **EC-219** 2008 M35/M45

Wiring Diagram

BANK 1

TBWT0979E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III. CAUTION:

3

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
2	SB	A/F sensor 1 heater (bank 1)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V★ → 10.0V/Div 10 ms/Div T PBIB1584E
16	G/W			Approximately 3.1V
35	BR/W	A/F sensor 1 (bank 1)	[Engine is running] • Warm-up condition	Approximately 2.6V
56	G	AVI SCIISOI I (DAIIK I)	Idle speed	Approximately 2.3V
75	GR			Approximately 2.3V

 $[\]bigstar$: Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

D

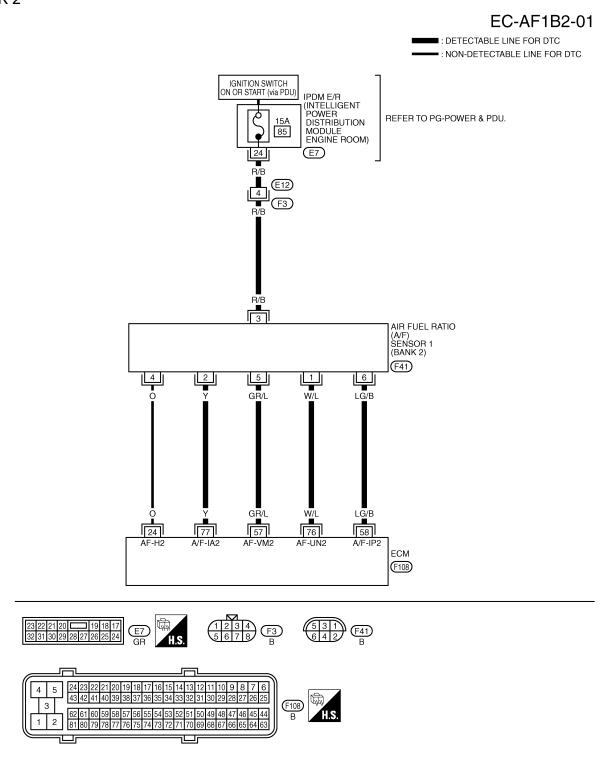
Α

Е

F

G

Н


L

M

Ν

0

BANK 2

TBWT0980E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

INFOID:00000000002954238

Α

EC

D

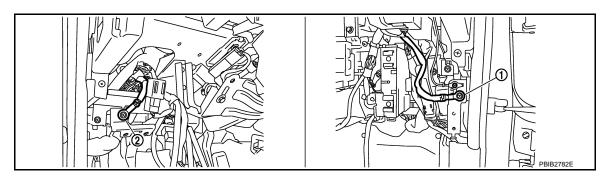
Е

Н

M

< SERVICE INFORMATION >

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
24	0	A/F sensor 1 heater (bank 2)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V★ 3 10.0V/Div 10 ms/Div T PBIB1584E
57	GR/L			Approximately 2.6V
58	LG/B	A/F sensor 1 (bank 2)	[Engine is running] • Warm-up condition	Approximately 2.3V
76	W/L	AVI SELISOI I (DALIK Z)	Idle speed	Approximately 3.1V
77	Υ			Approximately 2.3V


^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnosis Procedure

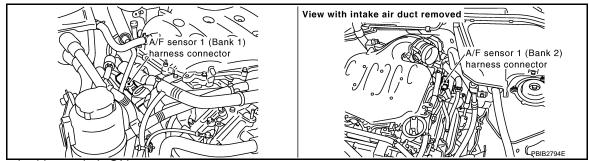
1. CHECK GROUND CONNECTIONS

1. Turn ignition switch OFF.

2. Loosen and retighten two ground screws on the body. Refer to <u>EC-146</u>, "<u>Ground Inspection</u>".

1. Body ground M70

2. Body ground M16


OK or NG

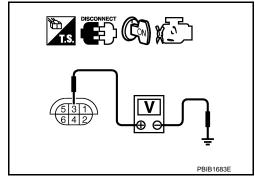
OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK AIR FUEL RATIO (A/F) SENSOR 1 POWER SUPPLY CIRCUIT

1. Disconnect A/F sensor 1 harness connector.

Turn ignition switch ON.


< SERVICE INFORMATION >

Check voltage between A/F sensor 1 terminal 3 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E12, F3
- IPDM E/R harness connector E7
- 15A fuse
- Harness for open or short between A/F sensor 1 and fuse

>> Repair or replace harness or connectors.

4. CHECK A/F SENSOR 1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between A/F sensor 1 terminal and ECM terminal as follows. Refer to Wiring Diagram.

	A/F sensor 1 terminal	ECM terminal
	1	16
Bank1	2	75
Daliki	5	35
	6	56
	1	76
Bank 2	2	77
Dalik 2	5	57
	6	58

Continuity should exist.

4. Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

Bai	nk 1	Bank 2	
A/F sensor 1 terminal	ECM terminal	A/F sensor 1 terminal	ECM terminal
1	16	1	76
2	75	2	77
5	35	5	57
6	56	6	58

Continuity should not exist.

5. Also check harness for short to power.

OK or NG

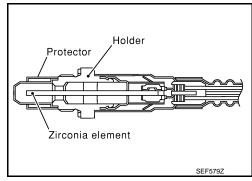
OK >> GO TO 5.

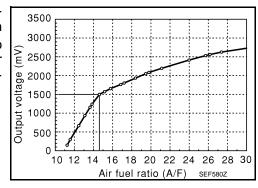
DTC P0130, P0150 A/F SENSOR 1

[VQ35DE] < SERVICE INFORMATION > NG >> Repair open circuit or short to ground or short to power in harness or connectors. 5. CHECK INTERMITTENT INCIDENT Α Perform EC-140. OK or NG EC OK >> GO TO 6. NG >> Repair or replace. **6.**REPLACE AIR FUEL RATIO (A/F) SENSOR 1 Replace malfunctioning air fuel ratio (A/F) sensor 1. **CAUTION:** • Discard any A/F sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one. Before installing new A/F sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant. Е >> INSPECTION END Removal and Installation INFOID:0000000002954239 AIR FUEL RATIO (A/F) SENSOR 1 Refer to EM-27. Н K L Ν

DTC P0131, P0151 A/F SENSOR 1

Component Description


INFOID:0000000002954240


The air fuel ratio (A/F) sensor 1 is a planar dual-cell limit current sensor. The sensor element of the A/F sensor 1 is the combination of a Nernst concentration cell (sensor cell) with an oxygen-pump cell, which transports ions. It has a heater in the element.

The sensor is capable of precise measurement λ = 1, but also in the lean and rich range. Together with its control electronics, the sensor outputs a clear, continuous signal throughout a wide λ range (0.7 < λ < air).

The exhaust gas components diffuse through the diffusion gap at the electrode of the oxygen pump and Nernst concentration cell, where they are brought to thermodynamic balance.

An electronic circuit controls the pump current through the oxygen-pump cell so that the composition of the exhaust gas in the diffusion gap remains constant at λ = 1. Therefore, the A/F sensor 1 is able to indicate air/fuel ratio by this pumping of current. In addition, a heater is integrated in the sensor to ensure the required operating temperature of 700 - 800°C (1,292 - 1,472°F).

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002954241

Specification data are reference values.

MONITOR ITEM	CC	SPECIFICATION	
A/F SEN1 (B1) A/F SEN1 (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	Fluctuates around 1.5 V

On Board Diagnosis Logic

INFOID:0000000002954242

To judge the malfunction, the diagnosis checks that the A/F signal computed by ECM from the A/F sensor 1 signal is not inordinately low.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible Cause
P0131 0131 (Bank 1)	Air fuel ratio (A/F) sensor 1	The A/F signal computed by ECM from the A/	,
P0151 0151 (Bank 2)	circuit low voltage	F sensor 1 signal is constantly approx. 0V.	shorted.) • A/F sensor 1

DTC Confirmation Procedure

INFOID:0000000002954243

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V at idle.

(II) WITH CONSULT-III

1. Start engine and warm it up to normal operating temperature.

DTC P0131, P0151 A/F SENSOR 1

< SERVICE INFORMATION >

[VQ35DE]

- Select "A/F SEN1 (B1)" or "A/F SEN1 (B2)" in "DATA MONITOR" mode with CONSULT-III.
- Check "A/F SEN1 (B1)" or "A/F SEN1 (B2)" indication. If the indication is constantly approx. 0V, go to EC-231, "Diagnosis Procedure". If the indication is not constantly approx. 0V, go to next step.
- 4. Turn ignition switch OFF, wait at least 10 seconds and then restart engine.
- Drive and accelerate vehicle to more than 40 km/h (25 MPH) within 20 seconds after restarting engine. 5.
- Maintain the following conditions for about 20 consecutive seconds.

ENG SPEED	1,000 - 3,200 rpm
VHCL SPEED SE	More than 40 km/h (25 MPH)
B/FUEL SCHDL	1.5 - 9.0 msec
Selector lever	Suitable position

NOTE:

- Keep the accelerator pedal as steady as possible during the cruising.
- If this procedure is not completed within 1 minute after restarting engine at step 4, return to step
- Check 1st trip DTC.
- If 1st trip DTC is displayed, go to EC-231, "Diagnosis Procedure".
- WITH GST

Follow the procedure "WITH CONSULT-III" above.

EC

Α

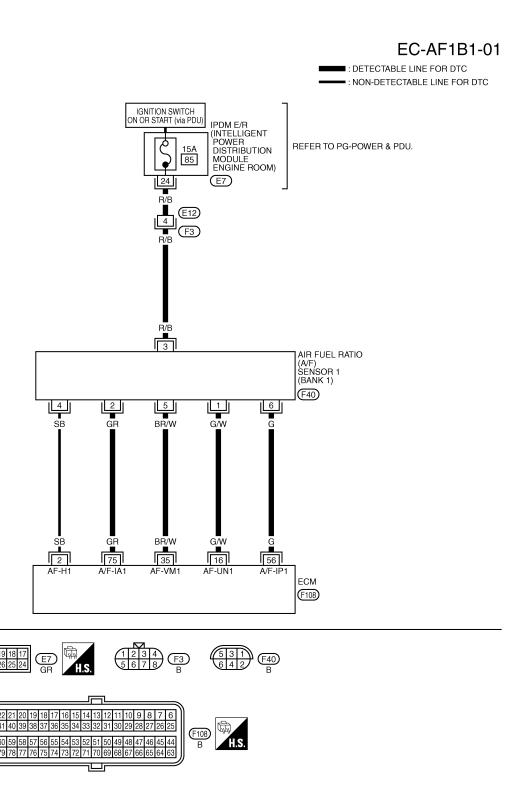
C

D

Е

F

Н


K

L

Ν

Wiring Diagram

BANK 1

TBWT0979E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III. CAUTION:

EC-228

3

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
2	SB	A/F sensor 1 heater (bank 1)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V★ → 10.0V/Div 10 ms/Div T PBIB1584E
16	G/W			Approximately 3.1V
35	BR/W	A/F sensor 1 (bank 1)	[Engine is running] • Warm-up condition	Approximately 2.6V
56	G	ANI SCHSULL (DALIK I)	Idle speed	Approximately 2.3V
75	GR		·	Approximately 2.3V

 $[\]bigstar$: Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

F

D

Е

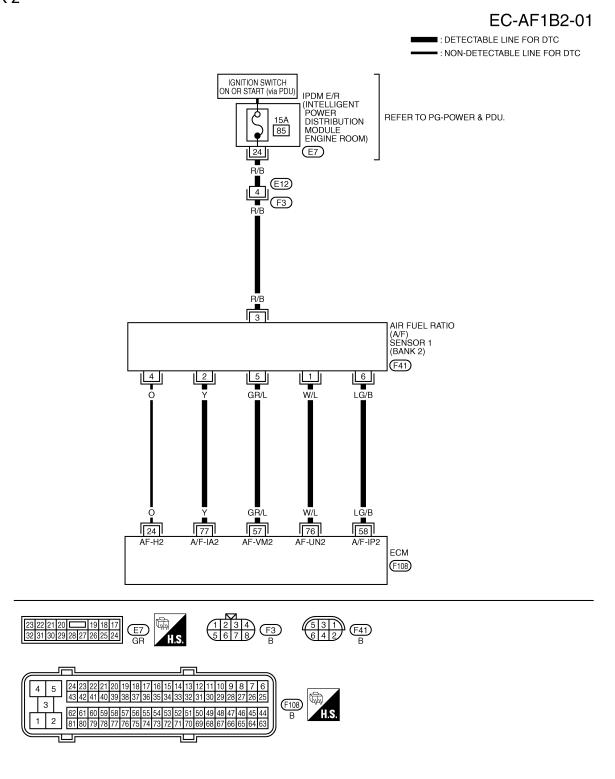
Α

G

Н

1

K


L

M

Ν

0

BANK 2

TBWT0980E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

INFOID:00000000002954245

Α

EC

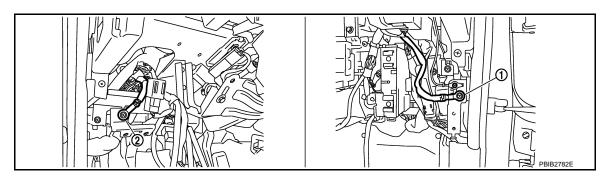
D

Е

Н

M

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
24	0	A/F sensor 1 heater (bank 2)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V★ 3 10.0V/Div 10 ms/Div T PBIB1584E
57	GR/L			Approximately 2.6V
58	LG/B	A/F sensor 1 (bank 2)	[Engine is running]	Approximately 2.3V
76	W/L	All School I (Dalik 2)	Warm-up condition Idle speed	Approximately 3.1V
77	Υ		·	Approximately 2.3V


^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnosis Procedure

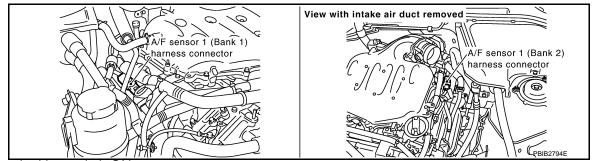
1. CHECK GROUND CONNECTIONS

1. Turn ignition switch OFF.

2. Loosen and retighten two ground screws on the body. Refer to <u>EC-146</u>, "<u>Ground Inspection</u>".

1. Body ground M70

2. Body ground M16


OK or NG

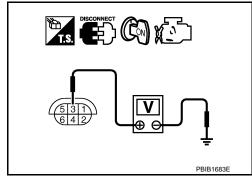
OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK AIR FUEL RATIO (A/F) SENSOR 1 POWER SUPPLY CIRCUIT

Disconnect A/F sensor 1 harness connector.

Turn ignition switch ON.


< SERVICE INFORMATION >

Check voltage between A/F sensor 1 terminal 3 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E12, F3
- IPDM E/R harness connector E7
- 15A fuse
- Harness for open or short between A/F sensor 1 and fuse

>> Repair or replace harness or connectors.

4. CHECK A/F SENSOR 1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between A/F sensor 1 terminal and ECM terminal as follows. Refer to Wiring Diagram.

	A/F sensor 1 terminal	ECM terminal
	1	16
Bank1	2	75
Daliki	5	35
	6	56
	1	76
Bank 2	2	77
Dalik 2	5	57
	6	58

Continuity should exist.

Check harness continuity between the following terminals and ground.
 Refer to Wiring Diagram.

Bai	nk 1	Bank 2	
A/F sensor 1 terminal	ECM terminal	A/F sensor 1 terminal	ECM terminal
1	16	1	76
2	75	2	77
5	35	5	57
6	56	6	58

Continuity should not exist.

5. Also check harness for short to power.

OK or NG

OK >> GO TO 5.

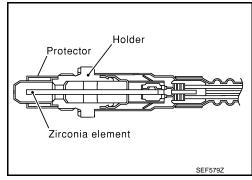
DTC P0131, P0151 A/F SENSOR 1

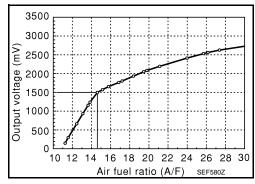
[VQ35DE] < SERVICE INFORMATION > NG >> Repair open circuit or short to ground or short to power in harness or connectors. 5. CHECK INTERMITTENT INCIDENT Α Perform EC-140. OK or NG EC OK >> GO TO 6. NG >> Repair or replace. **6.**REPLACE AIR FUEL RATIO (A/F) SENSOR 1 Replace malfunctioning air fuel ratio (A/F) sensor 1. **CAUTION:** • Discard any A/F sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one. Before installing new A/F sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant. Е >> INSPECTION END Removal and Installation INFOID:0000000002954246 AIR FUEL RATIO (A/F) SENSOR 1 Refer to EM-27. Н K L Ν

EC-233 Revision: 2009 February 2008 M35/M45

DTC P0132, P0152 A/F SENSOR 1

Component Description


INFOID:0000000002954247


The air fuel ratio (A/F) sensor 1 is a planar dual-cell limit current sensor. The sensor element of the A/F sensor 1 is the combination of a Nernst concentration cell (sensor cell) with an oxygen-pump cell, which transports ions. It has a heater in the element.

The sensor is capable of precise measurement λ = 1, but also in the lean and rich range. Together with its control electronics, the sensor outputs a clear, continuous signal throughout a wide λ range (0.7 < λ < air).

The exhaust gas components diffuse through the diffusion gap at the electrode of the oxygen pump and Nernst concentration cell, where they are brought to thermodynamic balance.

An electronic circuit controls the pump current through the oxygen-pump cell so that the composition of the exhaust gas in the diffusion gap remains constant at λ = 1. Therefore, the A/F sensor 1 is able to indicate air/fuel ratio by this pumping of current. In addition, a heater is integrated in the sensor to ensure the required operating temperature of 700 - 800°C (1,292 - 1,472°F).

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002954248

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
A/F SEN1 (B1) A/F SEN1 (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	Fluctuates around 1.5 V

On Board Diagnosis Logic

INFOID:0000000002954249

To judge the malfunction, the diagnosis checks that the A/F signal computed by ECM from the A/F sensor 1 signal is not inordinately high.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible Cause
P0132 0132 (Bank 1)	Air fuel ratio (A/F) sensor 1	The A/F signal computed by ECM from the A/F	Harness or connectors (The A/F sensor 1 circuit is open or
P0152 0152 (Bank 2)	circuit high voltage	sensor 1 signal is constantly approx. 5V.	shorted.) • A/F sensor 1

DTC Confirmation Procedure

INFOID:0000000002954250

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V at idle.

(II) WITH CONSULT-III

1. Start engine and warm it up to normal operating temperature.

DTC P0132, P0152 A/F SENSOR 1

[VQ35DE] < SERVICE INFORMATION >

Select "A/F SEN1 (B1)" or "A/F SEN1 (B2)" in "DATA MONITOR" mode with CONSULT-III.

Check "A/F SEN1 (B1)" or "A/F SEN1 (B2)" indication. If the indication is constantly approx. 5V, go to EC-239, "Diagnosis Procedure". If the indication is not constantly approx. 5V, go to next step.

4. Turn ignition switch OFF, wait at least 10 seconds and then restart engine.

- Drive and accelerate vehicle to more than 40 km/h (25 MPH) within 20 seconds after restarting engine. 5.
- Maintain the following conditions for about 20 consecutive seconds.

ENG SPEED	1,000 - 3,200 rpm
VHCL SPEED SE	More than 40 km/h (25 MPH)
B/FUEL SCHDL	1.5 - 9.0 msec
Selector lever	Suitable position

NOTE:

- Keep the accelerator pedal as steady as possible during the cruising.
- If this procedure is not completed within 1 minute after restarting engine at step 4, return to step
- Check 1st trip DTC.
- If 1st trip DTC is displayed, go to EC-239, "Diagnosis Procedure".
- WITH GST

Follow the procedure "WITH CONSULT-III" above.

EC

Α

C

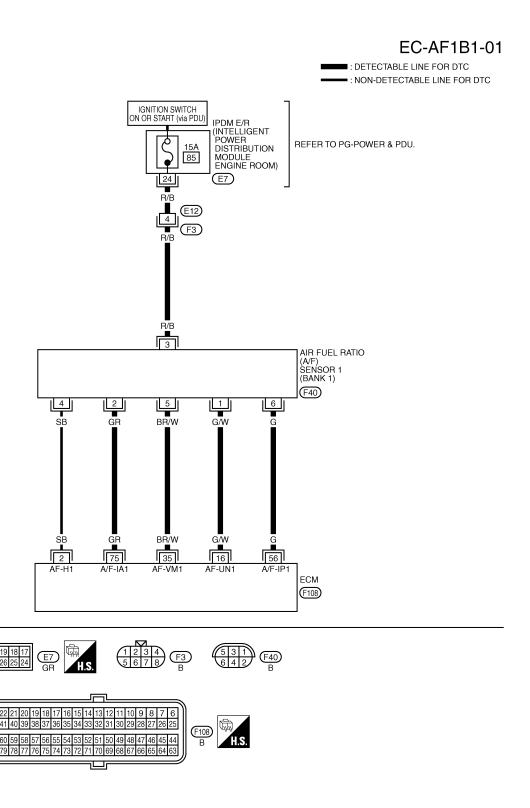
D

Е

F

Н

K


L

Ν

Wiring Diagram

INFOID:0000000002954251

BANK 1

TBWT0979E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III. CAUTION:

3

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
2	SB	A/F sensor 1 heater (bank 1)	[Engine is running]Warm-up conditionIdle speed	Approximately 5V★ ≥ 10.0V/Div 10 ms/Div T PBIB1584E
16	G/W			Approximately 3.1V
35	BR/W	A/F sensor 1 (bank 1)	[Engine is running] • Warm-up condition	Approximately 2.6V
56	G	ANT SCHSOL I (DALIK I)	Idle speed	Approximately 2.3V
75	GR			Approximately 2.3V

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

F

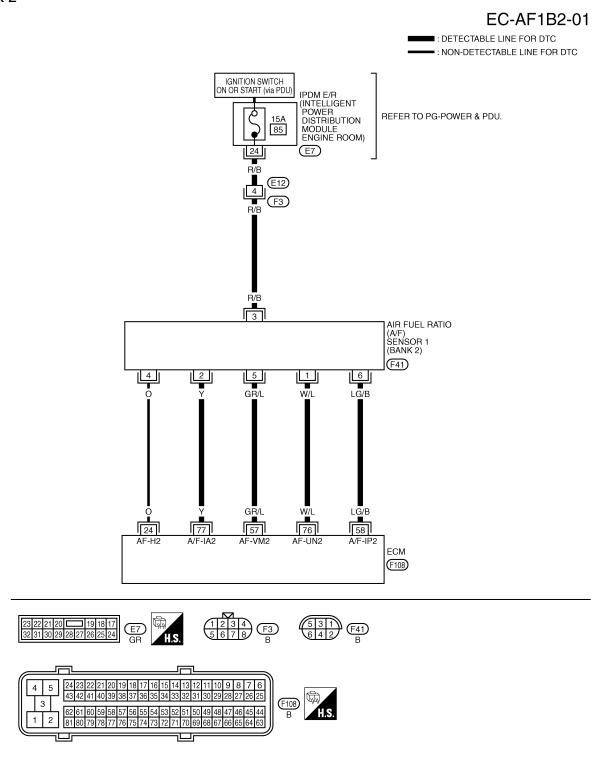
Α

EC

D

Е

G


Н

Л

N

 \circ

BANK 2

TBWT0980E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

INFOID:00000000002954252

Α

EC

D

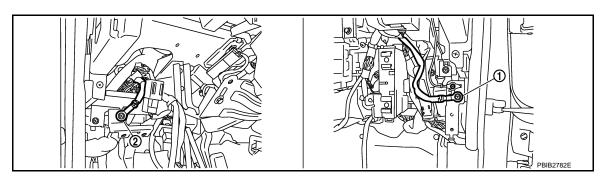
Е

Н

M

2008 M35/M45

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
24	0	A/F sensor 1 heater (bank 2)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V★ 3 10.0V/Div 10 ms/Div T PBIB1584E
57	GR/L			Approximately 2.6V
58	LG/B	A/E consor 1 (bank 2)	[Engine is running] • Warm-up condition	Approximately 2.3V
76	W/L	A/F sensor 1 (bank 2)	Idle speed	Approximately 3.1V
77	Υ		·	Approximately 2.3V


^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnosis Procedure

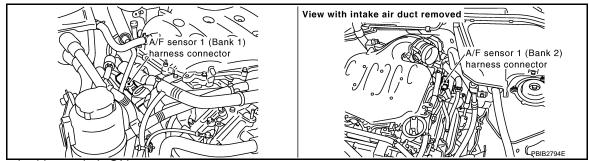
1. CHECK GROUND CONNECTIONS

1. Turn ignition switch OFF.

 Loosen and retighten two ground screws on the body. Refer to <u>EC-146</u>, "Ground Inspection".

1. Body ground M70

2. Body ground M16


OK or NG

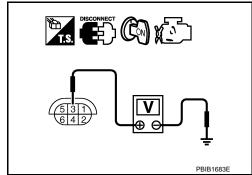
OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK AIR FUEL RATIO (A/F) SENSOR 1 POWER SUPPLY CIRCUIT

Disconnect A/F sensor 1 harness connector.

Turn ignition switch ON.


< SERVICE INFORMATION >

Check voltage between A/F sensor 1 terminal 3 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E12, F3
- IPDM E/R harness connector E7
- 15A fuse
- Harness for open or short between A/F sensor 1 and fuse

>> Repair or replace harness or connectors.

4. CHECK A/F SENSOR 1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between A/F sensor 1 terminal and ECM terminal as follows. Refer to Wiring Diagram.

	A/F sensor 1 terminal	ECM terminal
	1	16
Bank1	2	75
Daliki	5	35
	6	56
	1	76
Bank 2	2	77
Dalik 2	5	57
	6	58

Continuity should exist.

4. Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

Bai	nk 1	Ba	nk 2
A/F sensor 1 terminal	ECM terminal	A/F sensor 1 terminal	ECM terminal
1	16	1	76
2	75	2	77
5	35	5	57
6	56	6	58

Continuity should not exist.

5. Also check harness for short to power.

OK or NG

OK >> GO TO 5.

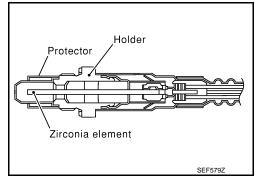
DTC P0132, P0152 A/F SENSOR 1

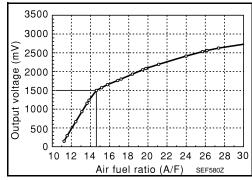
[VQ35DE] < SERVICE INFORMATION > NG >> Repair open circuit or short to ground or short to power in harness or connectors. 5. CHECK INTERMITTENT INCIDENT Α Perform EC-140. OK or NG EC OK >> GO TO 6. NG >> Repair or replace. **6.**REPLACE AIR FUEL RATIO (A/F) SENSOR 1 Replace malfunctioning air fuel ratio (A/F) sensor 1. **CAUTION:** • Discard any A/F sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one. Before installing new A/F sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant. Е >> INSPECTION END Removal and Installation INFOID:0000000002954253 AIR FUEL RATIO (A/F) SENSOR 1 Refer to EM-27. Н K L Ν

EC-241 Revision: 2009 February 2008 M35/M45

DTC P0133, P0153 A/F SENSOR 1

Component Description


INFOID:0000000002954254


The air fuel ratio (A/F) sensor 1 is a planar dual-cell limit current sensor. The sensor element of the A/F sensor 1 is the combination of a Nernst concentration cell (sensor cell) with an oxygen-pump cell, which transports ions. It has a heater in the element.

The sensor is capable of precise measurement λ = 1, but also in the lean and rich range. Together with its control electronics, the sensor outputs a clear, continuous signal throughout a wide λ range (0.7 < λ < air).

The exhaust gas components diffuse through the diffusion gap at the electrode of the oxygen pump and Nernst concentration cell, where they are brought to thermodynamic balance.

An electronic circuit controls the pump current through the oxygen-pump cell so that the composition of the exhaust gas in the diffusion gap remains constant at λ = 1. Therefore, the A/F sensor 1 is able to indicate air/fuel ratio by this pumping of current. In addition, a heater is integrated in the sensor to ensure the required operating temperature of 700 - 800°C (1,292 - 1,472°F).

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002954255

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
A/F SEN1 (B1) A/F SEN1 (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	Fluctuates around 1.5 V

On Board Diagnosis Logic

INFOID:0000000002954256

To judge the malfunction of A/F sensor 1, this diagnosis measures response time of the A/F signal computed by ECM from the A/F sensor 1 signal. The time is compensated by engine operating (speed and load), fuel feedback control constant, and the A/F sensor 1 temperature index. Judgment is based on whether the compensated time (the A/F signal cycling time index) is inordinately long or not.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible Cause
P0133 0133 (Bank 1) P0153 0153 (Bank 2)	Air fuel ratio (A/F) sensor 1 circuit slow response	The response of the A/F signal computed by ECM from A/F sensor 1 signal takes more than the specified time.	Harness or connectors (The A/F sensor 1 circuit is open or shorted.) A/F sensor 1 A/F sensor 1 heater Fuel pressure Fuel injector Intake air leaks Exhaust gas leaks PCV Mass air flow sensor

DTC Confirmation Procedure

INFOID:0000000002954257

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

DTC P0133, P0153 A/F SENSOR 1

[VQ35DE] < SERVICE INFORMATION >

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

WITH CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- Let engine idle for 1 minute.
- Select "A/F SEN1(B1) P1278/P1279" (for DTC P0133) or "A/F SEN1(B1) P1288/P1289" (for DTC P0153) of "A/F SEN1" in "DTC WORK SUPPORT" mode with CONSULT-III.
- Touch "START".
 - If "COMPLETED" appears on CONSULT-III screen, go to step 10.
 - If "COMPLETED" does not appear on CONSULT-III screen, go to the following step.
- 7. After perform the following procedure, "TESTING" will be displayed on the CONSULT-III screen.
- Increase the engine speed up to 4,000 to 5,000 rpm and keep it for 10 seconds.
- Fully release accelerator pedal and then let engine idle for about 10 seconds.
 - If "TESTING" is not displayed after 10 seconds, refer to EC-132.
- 8. Wait for about 20 seconds at idle at under the condition that "TESTING" is displayed on the CONSULT-III screen.
- Make sure that "TESTING" changes to "COMPLETED".

If "TESTING" changed to "OUT OF CONDITION", refer to EC-132.

10. Make sure that "OK" is displayed after touching "SELF-DIAG RESULT". If "NG" is displayed, go to EC-247, "Diagnosis Procedure".

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- Select Service \$01 with GST.
- 3. Calculate the total value of "Short term fuel trim" and "Long term fuel trim" indications.

Make sure that the total percentage should be within $\pm 15\%$.

If OK, go to the following step.

- If NG, check the following.
- Intake air leaks
- Exhaust gas leaks
- Incorrect fuel pressure
- Lack of fuel
- Fuel injector
- Incorrect PCV hose connection
- PCV valve
- Mass air flow sensor
- Turn ignition switch OFF and wait at least 10 seconds.
- 5. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- Let engine idle for 1 minute.
- 7. Increase the engine speed up to 4,000 to 5,000 rpm and keep it for 10 seconds.
- Fully release accelerator pedal and then let engine idle for about 1 minute.
- Select Service \$07 with GST.

If the 1st trip DTC is displayed, go to EC-247, "Diagnosis Procedure".

EC

Α

D

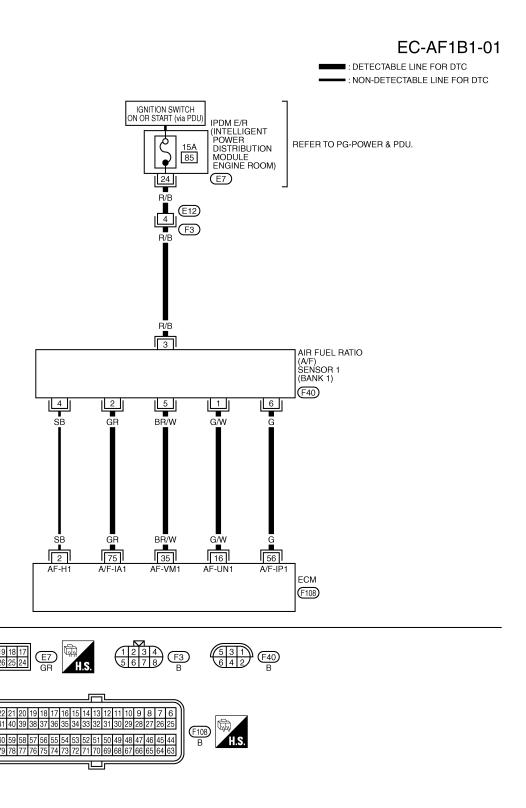
Е

F

Н

L

M


Ν

Р

EC-243 2008 M35/M45 Revision: 2009 February

Wiring Diagram

BANK 1

TBWT0979E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III. CAUTION:

3

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
2	SB	A/F sensor 1 heater (bank 1)	[Engine is running]Warm-up conditionIdle speed	Approximately 5V★ → 10.0V/Div 10 ms/Div T PBIB1584E
16	G/W			Approximately 3.1V
35	BR/W	A/F sensor 1 (bank 1)	[Engine is running] • Warm-up condition	Approximately 2.6V
56	G	TVI SCIISUI I (DAIIK I)	Idle speed	Approximately 2.3V
75	GR			Approximately 2.3V

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Е

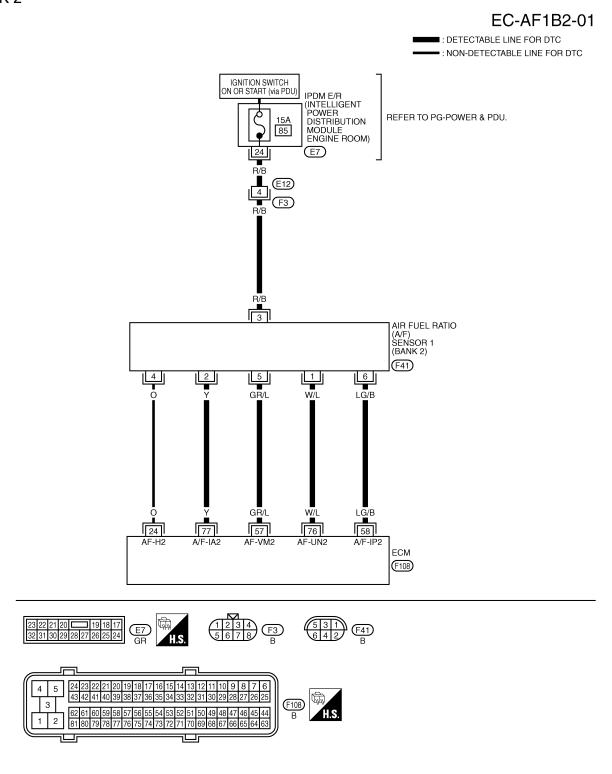
F

D

Α

EC

G


Н

M

Ν

0

BANK 2

TBWT0980E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

INFOID:00000000002954259

Α

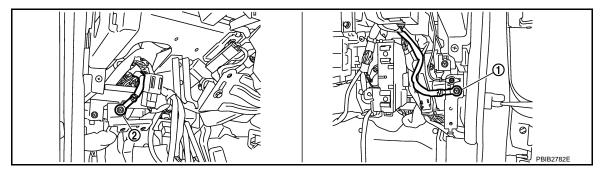
EC

D

Е

Н

M


TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
24	0	A/F sensor 1 heater (bank 2)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V★ → 10.0V/Div 10 ms/Div T PBIB1584E
57	GR/L	A/F sensor 1 (bank 2)	[Engine is running] • Warm-up condition • Idle speed	Approximately 2.6V
58	LG/B			Approximately 2.3V
76	W/L			Approximately 3.1V
77	Υ			Approximately 2.3V

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

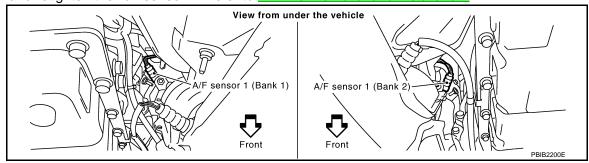
Diagnosis Procedure

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- Loosen and retighten two ground screws on the body. Refer to <u>EC-146</u>, "Ground Inspection".

1. Body ground M70

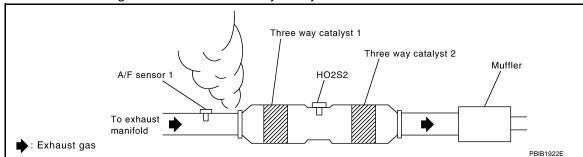
2. Body ground M16


OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. RETIGHTEN A/F SENSOR 1


Loosen and retighten the A/F sensor 1. Refer to EM-27, "Removal and Installation".

>> GO TO 3.

3. CHECK EXHAUST GAS LEAK

- 1. Start engine and run it at idle.
- Listen for an exhaust gas leak before three way catalyst 1.

OK or NG

OK >> GO TO 4.

NG >> Repair or replace.

4. CHECK FOR INTAKE AIR LEAK

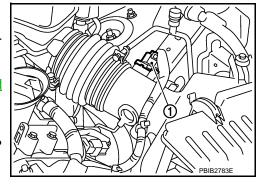
Listen for an intake air leak after the mass air flow sensor.

OK or NG

OK >> GO TO 5.

NG >> Repair or replace.

5. CLEAR THE SELF-LEARNING DATA


(I) With CONSULT-III

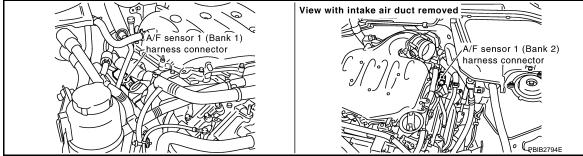
- Start engine and warm it up to normal operating temperature.
- Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-III.
- 3. Clear the self-learning control coefficient by touching "CLEAR" or "START".
- 4. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0171, P172, P0174 or P0175 detected? Is it difficult to start engine?

Without CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor (1) harness connector.
- 4. Restart engine and let it idle for at least 5 seconds.
- Stop engine and reconnect mass air flow sensor harness connector.
- Make sure DTC P0102 is displayed.
- 7. Erase the DTC memory. Refer to <u>EC-55</u>, "<u>Emission-Related</u> <u>Diagnostic Information</u>".
- 8. Make sure DTC P0000 is displayed.
- Run engine for at least 10 minutes at idle speed.
 Is the 1st trip DTC P0171, P0172, P0174 or P0175 detected?
 Is it difficult to start engine?

Yes or No


Yes >> Perform trouble diagnosis for DTC P0171, P0174 or P0172, P0175. Refer to <u>EC-280</u> or <u>EC-292</u>.

No >> GO TO 6.

6. CHECK AIR FUEL RATIO (A/F) SENSOR 1 POWER SUPPLY CIRCUIT

1. Turn ignition switch OFF.

Disconnect A/F sensor 1 harness connector.

- Turn ignition switch ON.
- Check voltage between A/F sensor 1 terminal 3 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E12, F3
- IPDM E/R harness connector E7
- 15A fuse
- Harness for open or short between A/F sensor 1 and fuse
 - >> Repair or replace harness or connectors.

8.CHECK A/F SENSOR 1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between A/F sensor 1 terminal and ECM terminal as follows. Refer to Wiring Diagram.

	A/F sensor 1 terminal	ECM terminal
	1	16
Bank1	2	75
Danki	5	35
	6	56
	1	76
Bank 2	2	77
Dalik 2	5	57
	6	58

Continuity should exist.

Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

EC-249 Revision: 2009 February 2008 M35/M45

D

Α

EC

Е

K

Ν

Bank 1		Bank 2	
A/F sensor 1 terminal	ECM terminal	A/F sensor 1 terminal	ECM terminal
1	16	1	76
2	75	2	77
5	35	5	57
6	56	6	58

Continuity should not exist.

5. Also check harness for short to power.

OK or NG

OK >> GO TO 9.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK AIR FUEL RATIO (A/F) SENSOR 1 HEATER

Refer to EC-159, "Component Inspection".

OK or NG

OK >> GO TO 10.

NG >> GO TO 13.

10.check mass air flow sensor

Refer to EC-183, "Component Inspection".

OK or NG

OK >> GO TO 11.

NG >> Replace mass air flow sensor.

11. CHECK PCV VALVE

Refer to EC-51, "Component Inspection".

OK or NG

OK >> GO TO 12.

NG >> Repair or replace PCV valve.

12. CHECK INTERMITTENT INCIDENT

Perform EC-140.

OK or NG

OK >> GO TO 13.

NG >> Repair or replace.

13.REPLACE AIR FUEL RATIO (A/F) SENSOR 1

Replace malfunctioning air fuel ratio (A/F) sensor 1.

CAUTION:

- Discard any A/F sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new A/F sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

>> INSPECTION END

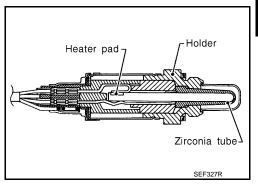
Removal and Installation

INFOID:0000000002954260

AIR FUEL RATIO (A/F) SENSOR 1 Refer to EM-27.

INFOID:0000000002954261

DTC P0137, P0157 HO2S2


Component Description

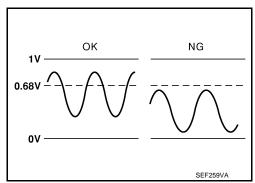
The heated oxygen sensor 2, after three way catalyst 1, monitors the oxygen level in the exhaust gas on each bank.

Even if switching characteristics of the air fuel ratio (A/F) sensor 1 are shifted, the air-fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 is not used for engine control operation.

INFOID:0000000002954262


CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
HO2S2 (B1) HO2S2 (B2)	Revving engine from idle to 3,000 rpm quickly after the following conditions are met	0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S2 MNTR (B1) HO2S2 MNTR (B2)	 Engine: After warming up Keeping engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	$LEAN \longleftrightarrow RICH$

On Board Diagnosis Logic

The heated oxygen sensor 2 has a much longer switching time between rich and lean than the air fuel ratio (A/F) sensor 1. The oxygen storage capacity of the three way catalyst 1 causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2, ECM monitors whether the maximum voltage of the sensor is sufficiently high during the various driving condition such as fuel-cut.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0137 0137 (Bank 1) P0157 0157 (Bank 2)	Heated oxygen sensor 2 circuit low voltage	The maximum voltage from the sensor is not reached to the specified voltage.	Harness or connectors (The sensor circuit is open or shorted) Heated oxygen sensor 2 Fuel pressure Fuel injector Intake air leaks

DTC Confirmation Procedure

NOTE:

If DTC confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

WITH CONSULT-III

TESTING CONDITION:

For better results, perform "DTC WORK SUPPORT" at a temperature of 0 to 30 °C (32 to 86 °F).

Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-III.

Revision: 2009 February **EC-251** 2008 M35/M45

EC

Α

С

D

F

G

1

INFOID:0000000002954263

.

K

ı

//

N

0

INFOID:0000000002954264

< SERVICE INFORMATION >

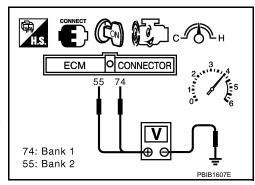
- Start engine and warm it up to the normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 4. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 5. Let engine idle for 1 minute.
- 6. Make sure that "COOLAN TEMP/S" indicates more than 70°C (158°F).

 If not, warm up engine and go to next step when "COOLAN TEMP/S" indication reaches to 70°C (158°F).
- 7. Open engine hood.
- Select "HO2S2 (B1) P1147" (for DTC P0137) or "HO2S2 (B2) P1167" (for DTC P0157) of "HO2S2" in "DTC WORK SUPPORT" mode with CONSULT-III.
- 9. Start engine and following the instruction of CONSULT-III.

NOTE:

It will take at most 10 minutes until "COMPLETED" is displayed.

- 10. Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS".
 - If "NG" is displayed, refer to EC-256, "Diagnosis Procedure".
 - If "CAN NOT BE DIAGNOSED" is displayed, perform the following.
- a. Turn ignition switch OFF and leave the vehicle in a cool place (soak the vehicle).
- b. Return to step 1.


Overall Function Check

INFOID:0000000002954265

Use this procedure to check the overall function of the heated oxygen sensor 2 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Set voltmeter probes between ECM terminal 55 [HO2S2 (B2) signal] or 74 [HO2S2 (B1) signal] and ground.
- Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be above 0.68V at least once during this procedure.
 - If the voltage can be confirmed in step 6, step 7 is not necessary.
- Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position.
 - The voltage should be above 0.68V at least once during this procedure.
- 8. If NG, go to EC-256, "Diagnosis Procedure".

[VQ35DE] < SERVICE INFORMATION > Wiring Diagram INFOID:0000000002954266 Α BANK 1 EC-02S2B1-01 EC : DETECTABLE LINE FOR DTC : NON-DETECTABLE LINE FOR DTC IGNITION SWITCH ON OR START (via PDU IPDM E/R (INTELLIGENT POWER DISTRIBUTION MODULE ENGINE ROOM) REFER TO PG-POWER & PDU. 85 D (E7) R<u>∕</u>B (E12) Е F R/B 2 HEATED OXYGEN SENSOR 2 (BANK 1) Н (F69) 3 P/B K P/B 25 74 78 ECM (F108)

| Color | Colo

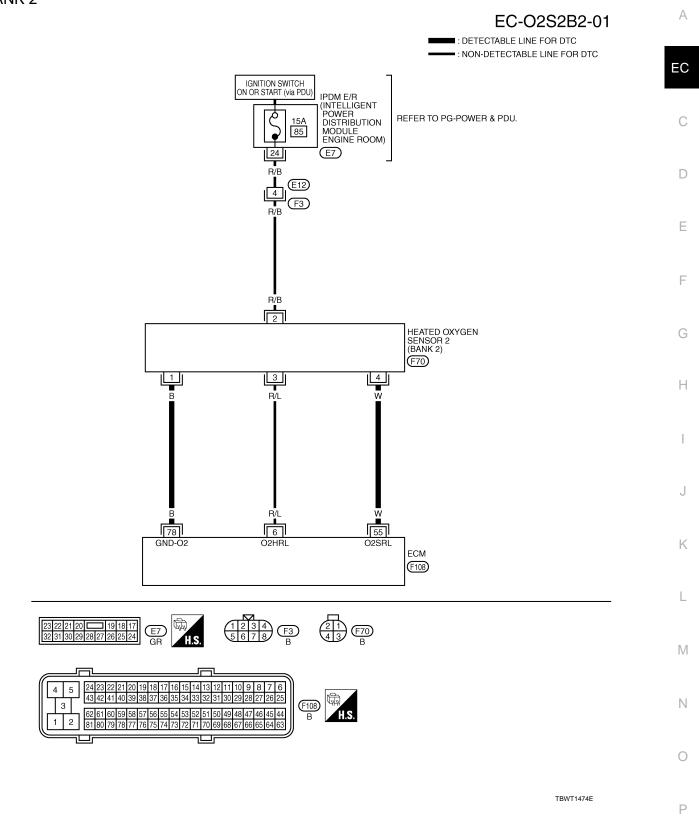
TBWT1473E

M

Ν

Ρ

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

< SERVICE INFORMATION >

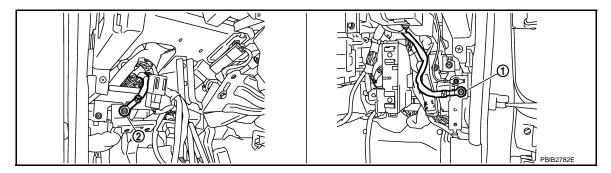
TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
25	P/B	Heated oxygen sensor 2 heater (bank 1)	 [Engine is running] Engine speed: Below 3,600 rpm after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - 1.0V
			 [Ignition switch: ON] Engine stopped [Engine is running] Engine speed: Above 3,600 rpm 	BATTERY VOLTAGE (11 - 14V)
74	w	Heated oxygen sensor 2 (bank 1)	 [Engine is running] Revving engine from idle to 3,000 rpm quickly after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V
78	В	Sensor ground (Heated oxygen sensor)	[Engine is running]Warm-up conditionIdle speed	Approximately 0V

[VQ35DE]

BANK 2

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
6	R/L	Heated oxygen sensor 2 heater (bank 2)	 [Engine is running] Engine speed: Below 3,600 rpm after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - 1.0V
			[Ignition switch: ON] • Engine stopped [Engine is running] • Engine speed: Above 3,600 rpm	BATTERY VOLTAGE (11 - 14V)
55	W	Heated oxygen sensor 2 (bank 2)	 [Engine is running] Revving engine from idle to 3,000 rpm quickly after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V
78	В	Sensor ground (Heated oxygen sensor)	[Engine is running]Warm-up conditionIdle speed	Approximately 0V

Diagnosis Procedure

INFOID:0000000002954267

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws on the body. Refer to <u>EC-146</u>, "Ground Inspection".

1. Body ground M70

2. Body ground M16

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CLEAR THE SELF-LEARNING DATA

(II) With CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-III.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 or P0174 detected? Is it difficult to start engine?

Α

EC

D

Е

F

Н

Without CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF.
- Disconnect mass air flow sensor (1) harness connector, and restart and run engine for at least 5 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to <u>EC-55</u>, "Emission-Related <u>Diagnostic Information"</u>.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 or P0174 detected? Is it difficult to start engine?

Yes >> Perform trouble diagnosis for DTC P0171 or P0174. Refer to EC-280.

No >> GO TO 3.

${f 3.}$ CHECK HO2S2 GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect heated oxygen sensor 2 harness connector.
- 3. Disconnect ECM harness connector.
- 4. Check harness continuity between ECM terminal 78 and HO2S2 terminal 1.

Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4.CHECK HO2S2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

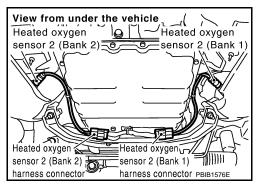
 Check harness continuity between ECM terminal and HO2S2 terminal as follows. Refer to Wiring Diagram.

DTC	Tern	Bank	
ы	ECM	Sensor	Dank
P0137	74	4	1
P0157	55	4	2

Continuity should exist.

Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

DTC	Tern	Bank	
ыс	ECM	Sensor	Dank
P0137	74	4	1
P0157	55	4	2


Continuity should not exist.

3. Also check harness for short to power.

OK or NG

1 PBIB2783E

J

N

N

0

Р

< SERVICE INFORMATION >

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

${f 5.}$ CHECK HEATED OXYGEN SENSOR 2

Refer to EC-258, "Component Inspection".

OK or NG

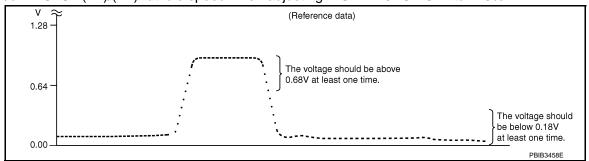
OK >> GO TO 6.

NG >> Replace malfunctioning heated oxygen sensor 2.

6.CHECK INTERMITTENT INCIDENT

Refer to EC-140.

>> INSPECTION END


Component Inspection

INFOID:0000000002954268

HEATED OXYGEN SENSOR 2

(P) With CONSULT-III

- 1. Start engine and warm it up to the normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSULT-III.
- 6. Check "HO2S2 (B1)/(B2)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

"HO2S2 (B1)/(B2)" should be above 0.68V at least once when the "FUEL INJECTION" is +25%. "HO2S2 (B1)/(B2)" should be below 0.18V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Without CONSULT-III

- 1. Start engine and warm it up to the normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Set voltmeter probes between ECM terminal 74 [HO2S2 (B2) signal] or 55 [HO2S2 (B1) signal] and ground.

[VQ35DE]

Check the voltage when revving up to 4,000 rpm under no load at least 10 times.

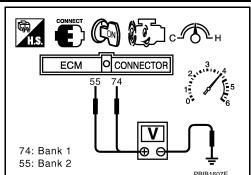
(Depress and release accelerator pedal as soon as possible.) The voltage should be above 0.68V at least once during this procedure.

If the voltage is above 0.68V at step 6, step 7 is not necessarv.

7. Keep vehicle at idling for 10 minutes, then check voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D

The voltage should be below 0.18V at least once during this procedure.

8. If NG, replace heated oxygen sensor 2.


CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7) in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

HEATED OXYGEN SENSOR 2

Refer to EM-27.

EC

Α

C

D

F

INFOID:0000000002954269

Н

K

L

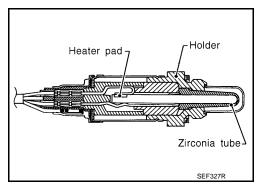
M

Ν

Р

INFOID:0000000002954270

DTC P0138, P0158 HO2S2


Component Description

The heated oxygen sensor 2, after three way catalyst 1, monitors the oxygen level in the exhaust gas on each bank.

Even if switching characteristics of the air fuel ratio (A/F) sensor 1 are shifted, the air-fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

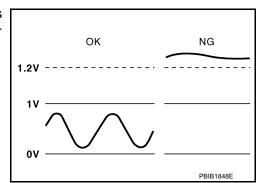
Under normal conditions the heated oxygen sensor 2 is not used for engine control operation.

INFOID:0000000002954271

CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
HO2S2 (B1) HO2S2 (B2)	Revving engine from idle to 3,000 rpm quickly after the following conditions are met	0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S2 MNTR (B1) HO2S2 MNTR (B2)	 Engine: After warming up Keeping engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	$LEAN \longleftrightarrow RICH$


On Board Diagnosis Logic

INFOID:0000000002954272

The heated oxygen sensor 2 has a much longer switching time between rich and lean than the air fuel ratio (A/F) sensor 1. The oxygen storage capacity of the three way catalyst 1 causes the longer switching time.


MALFUNCTION A

To judge the malfunctions of heated oxygen sensor 2, ECM monitors whether the voltage is unusually high during the various driving condition such as fuel-cut.

MALFUNCTION B

To judge the malfunctions of heated oxygen sensor 2, ECM monitors whether the minimum voltage of sensor is sufficiently low during the various driving condition such as fuel-cut.

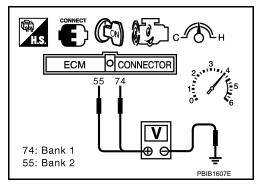
Р

INFOID:0000000002954274

DTC No.	Trouble diagnosis name		DTC detecting condition	Possible cause	
P0138 0138 (Bank 1)		A)	An excessively high voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted) Heated oxygen sensor 2	
P0158 0158 (Bank 2)	Heated oxygen sensor 2 circuit high voltage		The minimum voltage from the sensor is not reached to the specified voltage.	 Harness or connectors (The sensor circuit is open or shorted) Heated oxygen sensor 2 Fuel pressure Fuel injector 	
TC Co	nfirmation Proced	lure		INFOID:0000000002954273	
DTC can		erfor	MCTION A first. m PROCEDURE FOR MALFUNCTION Deen previously conducted, always to		
east 10 se	conds before conduct	ing th	ne next test.	
	URE FOR MALFUN				
. Turn ig . Start e	nition switch OFF and	l wait gine	e normal operating temperature. t at least 10 seconds. speed between 3,500 and 4,000 rpm	for at least 1 minute under no load.	
	1st trip DTC.	•			
. If 1st to	rip DTC is detected, go	o to E	EC-266, "Diagnosis Procedure".		
ROCED	URE FOR MALFUN	CTIC	ON B		
) With CO	NSULT-III				
	CONDITION: results_perform "DT	.c. M	ORK SUPPORT" at a temperature	of 0 to 30 °C (32 to 86 °F)	
	· •		ct "DATA MONITOR" mode with CON		
_			e normal operating temperature.		
•	nition switch OFF and				
	•	gine	speed between 3,500 and 4,000 rpm	for at least 1 minute under no load.	
	gine idle for 1 minute. sure that "COOLAN T	=MÞ/	/S" indicates more than 70°C (158°F)		
			next step when "COOLAN TEMP/S"		
•	engine hood.				
8. Select "HO2S2 (B1) P1146" (for DTC P0138) or "HO2S2 (B2) P1166" (for DTC P0158) of "HO2S2" in "DTC WORK SUPPORT" mode with CONSULT-III.					
NOTE	:		truction of CONSULT-III.		
			til "COMPLETED" is displayed.		
If "NG'	' is displayed, refer to	<u>ÉC-2</u>	after touching "SELF-DIAG RESULT 266. "Diagnosis Procedure". 3 displayed, perform the following.	S".	
			ve the vehicle in a cool place (soak the	ne vehicle).	
. Turn iç					

Overall Function Check

b. Return to step 1.

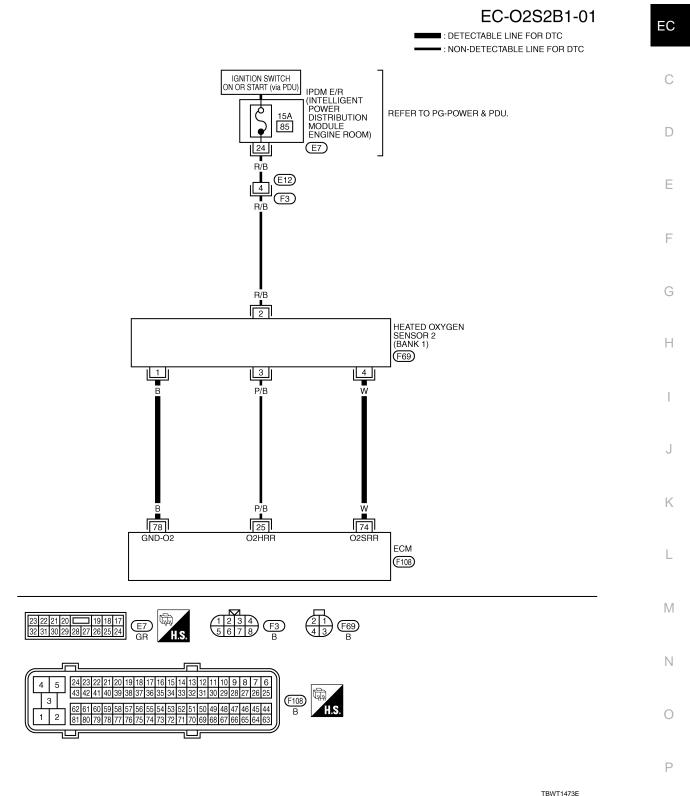

PROCEDURE FOR MALFUNCTION B

I NOCEDONE I ON MALI ONO HONE

Use this procedure to check the overall function of the heated oxygen sensor 2 circuit. During this check, a 1st trip DTC might not be confirmed.

With GST

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Set voltmeter probes between ECM terminal 55 [HO2S2 (B2) signal] or 74 [HO2S2 (B1) signal] and ground.
- 6. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be below 0.18V at least once during this procedure.
 - If the voltage can be confirmed in step 6, step 7 is not necessary.
- Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position.
 - The voltage should be below 0.18V at least once during this procedure.
- 8. If NG, go to EC-266. "Diagnosis Procedure".



[VQ35DE]

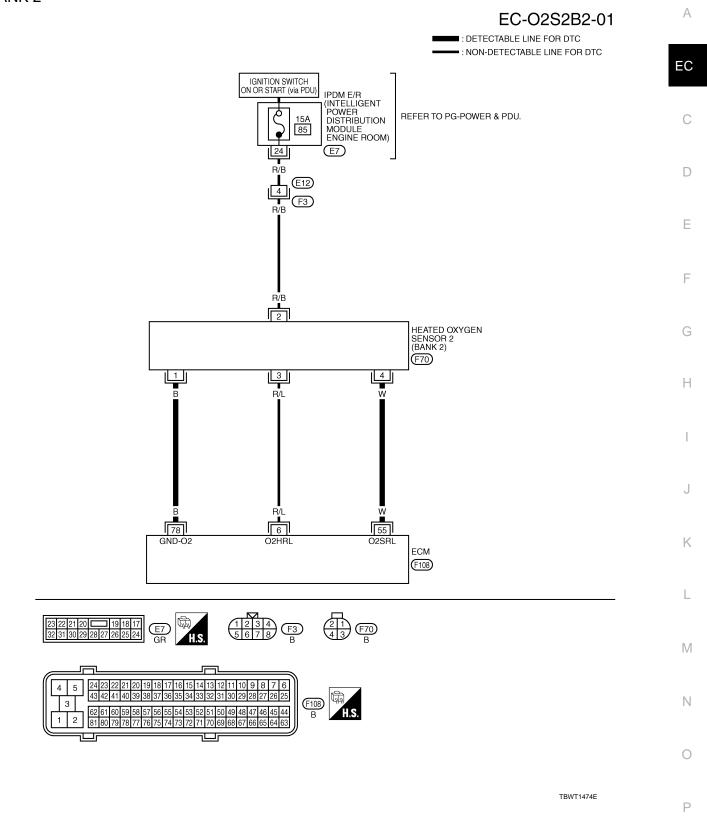
Α

Wiring Diagram

BANK 1

اء ا

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

< SERVICE INFORMATION >

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
25	P/B	Heated oxygen sensor 2 heater (bank 1)	 [Engine is running] Engine speed: Below 3,600 rpm after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - 1.0V
			 [Ignition switch: ON] Engine stopped [Engine is running] Engine speed: Above 3,600 rpm 	BATTERY VOLTAGE (11 - 14V)
74	w	Heated oxygen sensor 2 (bank 1)	 [Engine is running] Revving engine from idle to 3,000 rpm quickly after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V
78	В	Sensor ground (Heated oxygen sensor)	[Engine is running]Warm-up conditionIdle speed	Approximately 0V

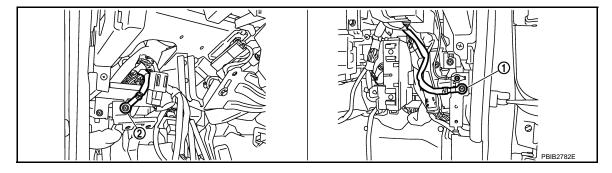
[VQ35DE]

BANK 2

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
6	R/L	Heated oxygen sensor 2 heater (bank 2)	 [Engine is running] Engine speed: Below 3,600 rpm after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - 1.0V
			[Ignition switch: ON] • Engine stopped [Engine is running] • Engine speed: Above 3,600 rpm	BATTERY VOLTAGE (11 - 14V)
55	W	Heated oxygen sensor 2 (bank 2)	 [Engine is running] Revving engine from idle to 3,000 rpm quickly after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V
78	В	Sensor ground (Heated oxygen sensor)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V


Diagnosis Procedure

INFOID:0000000002954276

PROCEDURE FOR MALFUNCTION A

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws on the body. Refer to EC-146, "Ground Inspection".

1. Body ground M70

2. Body ground M16

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK HO2S2 GROUND CIRCUIT FOR OPEN AND SHORT

< SERVICE INFORMATION >

[VQ35DE]

- Disconnect heated oxygen sensor 2 harness connector.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 78 and HO2S2 terminal 1.

Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 3.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

View from under the vehicle Heated oxygen Heated oxygen sensor 2 (Bank 2) sensor 2 (Bank 1) Heated oxygen Heated óxygen sensor 2 (Bank 2) harness connector sensor 2 (Bank 1) harness connector PBIB1576E

3.check ho2s2 input signal circuit for open and short

Check harness continuity between ECM terminal and HO2S2 terminal as follows. Refer to Wiring Diagram.

DTC	Tern	Bank	
ыс	ECM	Sensor	Dalik
P0138	74	4	1
P0158	55	4	2

Continuity should exist.

Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

DTC	Tern	Bank	
DIC	ECM	Sensor	Dalik
P0138	74	4	1
P0158	55	4	2

Continuity should not exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4.CHECK HO2S2 CONNECTOR FOR WATER

Check connectors for water.

Water should not exist.

OK or NG

OK >> GO TO 5.

NG >> Repair or replace harness or connectors.

${f 5.}$ CHECK HEATED OXYGEN SENSOR 2

Refer to EC-269, "Component Inspection".

OK or NG

OK >> GO TO 6.

Revision: 2009 February

NG >> Replace malfunctioning heated oxygen sensor 2.

6.CHECK INTERMITTENT INCIDENT

Refer to EC-140.

EC-267

Α

EC

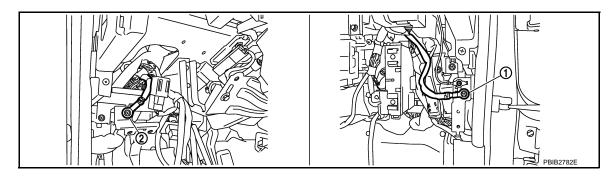
D

F

Е

Н

M


N

>> INSPECTION END

PROCEDURE FOR MALFUNCTION B

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws on the body. Refer to <u>EC-146</u>, "<u>Ground Inspection</u>".

1. Body ground M70

2. Body ground M16

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CLEAR THE SELF-LEARNING DATA

(II) With CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-III.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed.

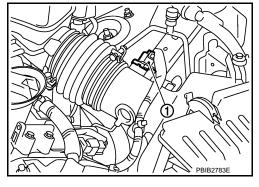
Is the 1st trip DTC P0172 or P0175 detected?

Is it difficult to start engine?

Without CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor (1) harness connector, and restart and run engine for at least 5 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to <u>EC-55</u>, "<u>Emission-Related</u> <u>Diagnostic Information</u>".
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0172 or P0175 detected? Is it difficult to start engine?


Yes or No

Yes >> Perform trouble diagnosis for DTC P0172, P0175. Refer to EC-292.

No >> GO TO 3.

3.check ho2s2 ground circuit for open and short

1. Turn ignition switch OFF.

< SERVICE INFORMATION >

[VQ35DE]

Α

EC

D

Е

F

Н

M

Ν

Р

- Disconnect heated oxygen sensor 2 harness connector.
- 3. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 78 and HO2S2 terminal 1.

Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

View from under the vehicle Heated oxygen sensor 2 (Bank 2) Heated oxygen Heated oxygen sensor 2 (Bank 2) Heated oxygen sensor 2 (Bank 2) harness connector PBIB1576E

4.CHECK HO2S2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal and HO2S2 terminal as follows. Refer to Wiring Diagram.

DTC	Tern	Bank	
ыс	ECM	Sensor	Dank
P0138	74	4	1
P0158	55	4	2

Continuity should exist.

Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

DTC	Tern	Bank	
DIC	ECM	Sensor	Dalik
P0138	74	4	1
P0158	55	4	2

Continuity should not exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

EC-269

5. CHECK HEATED OXYGEN SENSOR 2

Refer to EC-269, "Component Inspection".

OK or NG

OK >> GO TO 6.

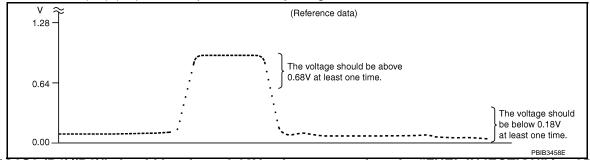
NG >> Replace malfunctioning heated oxygen sensor 2.

6.CHECK INTERMITTENT INCIDENT

Refer to EC-140.

>> INSPECTION END

Component Inspection


HEATED OXYGEN SENSOR 2

- (II) With CONSULT-III
- Start engine and warm it up to the normal operating temperature.

2008 M35/M45

INFOID:0000000002954277

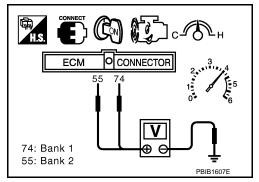
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSULT-III.
- Check "HO2S2 (B1)/(B2)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

"HO2S2 (B1)/(B2)" should be above 0.68V at least once when the "FUEL INJECTION" is +25%. "HO2S2 (B1)/(B2)" should be below 0.18V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Without CONSULT-III


- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Set voltmeter probes between ECM terminal 74 [HO2S2 (B2) signal] or 55 [HO2S2 (B1) signal] and ground.
- Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be above 0.68V at least once during this procedure.
 - If the voltage is above 0.68V at step 6, step 7 is not necessary.
- Keep vehicle at idling for 10 minutes, then check voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position.
 - The voltage should be below 0.18V at least once during this procedure.
- 8. If NG, replace heated oxygen sensor 2.

CALITION

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads (using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12) and approved anti-seize lubricant.

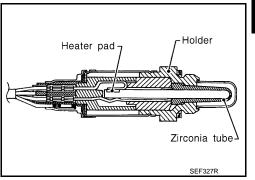
Removal and Installation

HEATED OXYGEN SENSOR 2 Refer to EM-27.

INFOID:0000000002954278

INFOID:0000000002954279

DTC P0139, P0159 HO2S2


Component Description

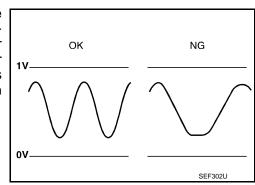
The heated oxygen sensor 2, after three way catalyst 1, monitors the oxygen level in the exhaust gas on each bank.

Even if switching characteristics of the air fuel ratio (A/F) sensor 1 are shifted, the air-fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 is not used for engine control operation.

INFOID:0000000002954280


CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
HO2S2 (B1) HO2S2 (B2)	Revving engine from idle to 3,000 rpm quickly after the following conditions are met	0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S2 MNTR (B1) HO2S2 MNTR (B2)	 Engine: After warming up Keeping engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	$LEAN \longleftrightarrow RICH$

On Board Diagnosis Logic

The heated oxygen sensor 2 has a much longer switching time between rich and lean than the air fuel ratio (A/F) sensor 1. The oxygen storage capacity of the three way catalyst 1 causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2, ECM monitors whether the switching response of the sensor's voltage is faster than specified during the various driving condition such as fuel-cut.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0139 0139 (Bank 1)	Heated oxygen sensor 2	It takes more time for the sensor to respond be-	 Harness or connectors (The sensor circuit is open or shorted) Heated oxygen sensor 2
P0159 0159 (Bank 2)	circuit slow response	tween rich and lean than the specified time.	Fuel pressureFuel injectorIntake air leaks

DTC Confirmation Procedure

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

WITH CONSULT-III

TESTING CONDITION:

For better results, perform "DTC WORK SUPPORT" at a temperature of 0 to 30 °C (32 to 86 °F).

Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-III.

Revision: 2009 February **EC-271** 2008 M35/M45

EC

Α

D

Е

F

G

1

INFOID:0000000002954281

J

K

//

Ν

_

INFOID:0000000002954282

F

< SERVICE INFORMATION >

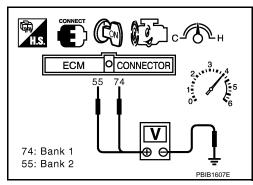
- Start engine and warm it up to the normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 4. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 5. Let engine idle for 1 minute.
- 6. Make sure that "COOLAN TEMP/S" indicates more than 70°C (158°F). If not, warm up engine and go to next step when "COOLAN TEMP/S" indication reaches to 70°C (158°F).
- 7. Open engine hood.
- Select "HO2S2 (B1) P0139" or "HO2S2 (B2) P0159" of "HO2S2" in "DTC WORK SUPPORT" mode with CONSULT-III.
- 9. Start engine and following the instruction of CONSULT-III.

NOTE:

It will take at most 10 minutes until "COMPLETED" is displayed.

- 10. Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS".
 - If "NG" is displayed, refer to EC-276, "Diagnosis Procedure".
 - If "CAN NOT BE DIAGNOSED" is displayed, perform the following.
- a. Turn ignition switch OFF and leave the vehicle in a cool place (soak the vehicle).
- b. Return to step 1.

Overall Function Check


INFOID:0000000002954283

Use this procedure to check the overall function of the heated oxygen sensor 2 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Set voltmeter probes between ECM terminal 55 [HO2S2 (B2) signal] or 74 [HO2S2 (B1) signal] and ground.
- Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.)

 A change of voltage should be more than 0.24V for 1 second during this procedure.
 - If the voltage can be confirmed in step 6, step 7 is not necessary.
- Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position.
 - A change of voltage should be more than 0.24V for 1 second during this procedure.
- 8. If NG, go to EC-276, "Diagnosis Procedure".

[VQ35DE] < SERVICE INFORMATION > Wiring Diagram INFOID:0000000002954284 Α BANK 1 EC-02S2B1-01 EC : DETECTABLE LINE FOR DTC : NON-DETECTABLE LINE FOR DTC IGNITION SWITCH ON OR START (via PDU IPDM E/R (INTELLIGENT POWER DISTRIBUTION MODULE ENGINE ROOM) REFER TO PG-POWER & PDU. 85 D (E7) R<u>∕</u>B (E12) Е F R/B 2 HEATED OXYGEN SENSOR 2 (BANK 1) Н (F69) 3 P/B

74

ECM (F108)

P/B 25

78

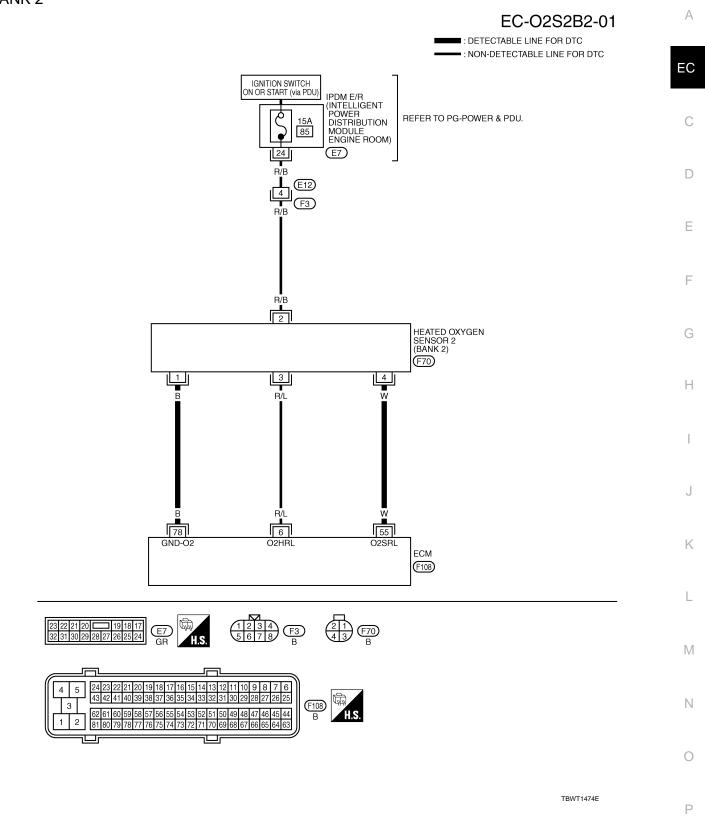
TBWT1473E

K

M

Ν

Ρ


Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

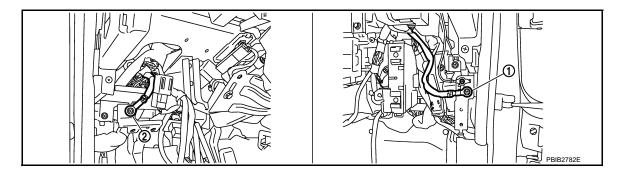
< SERVICE INFORMATION >

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
25	P/B	Heated oxygen sensor 2 heater (bank 1)	 [Engine is running] Engine speed: Below 3,600 rpm after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - 1.0V
		 [Ignition switch: ON] Engine stopped [Engine is running] Engine speed: Above 3,600 rpm 	BATTERY VOLTAGE (11 - 14V)	
74	w	Heated oxygen sensor 2 (bank 1)	 [Engine is running] Revving engine from idle to 3,000 rpm quickly after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V
78	В	Sensor ground (Heated oxygen sensor)	[Engine is running]Warm-up conditionIdle speed	Approximately 0V

BANK 2

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
6	R/L	Heated oxygen sensor 2 heater (bank 2)	 [Engine is running] Engine speed: Below 3,600 rpm after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - 1.0V
	[Ignition switch: ON] • Engine stopped [Engine is running] • Engine speed: Above 3,600 rpm	BATTERY VOLTAGE (11 - 14V)		
55	W	Heated oxygen sensor 2 (bank 2)	 [Engine is running] Revving engine from idle to 3,000 rpm quickly after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V
78	В	Sensor ground (Heated oxygen sensor)	[Engine is running]Warm-up conditionIdle speed	Approximately 0V

Diagnosis Procedure

INFOID:0000000002954285

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws on the body. Refer to EC-146, "Ground Inspection".

1. Body ground M70

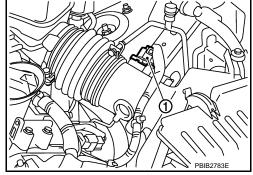
2. Body ground M16

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CLEAR THE SELF-LEARNING DATA


(P) With CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-III.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171, P0172, P0174 or P0175 detected? Is it difficult to start engine?

Without CONSULT-III

1. Start engine and warm it up to normal operating temperature.

- Turn ignition switch OFF.
- Disconnect mass air flow sensor (1) harness connector, and restart and run engine for at least 5 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to EC-55, "Emission-Related **Diagnostic Information**".
- Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171, P0172, P0174 or P0175 detected? Is it difficult to start engine?

Yes or No

>> Perform trouble diagnosis for DTC P0171, P0174 or P0172, P0175. Refer to EC-280 or EC-292. Yes No >> GO TO 3.

3.CHECK HO2S2 GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- Disconnect heated oxygen sensor 2 harness connector.
- Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 78 and HO2S2 terminal 1.

Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

f 4.CHECK HO2S2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Check harness continuity between ECM terminal and HO2S2 terminal as follows. Refer to Wiring Diagram.

	Tern	ninals	
DTC	ECM	Sensor	Bank
P0139	74	4	1
P0159	55	4	2

Continuity should exist.

Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

DTC	Terminals		Bank
ы	ECM	Sensor	Dank
P0139	74	1	1
P0159	55	1	2

Continuity should not exist.

Also check harness for short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

View from under the vehicle Heated oxygen Heated oxygen sensor 2 (Bank 2) =sensor 2 (Bank 1) Heated oxygen Heated oxygen sensor 2 (Bank 2) sensor 2 (Bank 1) harness connector harness connector PBIB1576E

Α

EC

D

Е

Н

N

Р

5.CHECK HEATED OXYGEN SENSOR 2

Refer to EC-278, "Component Inspection".

OK or NG

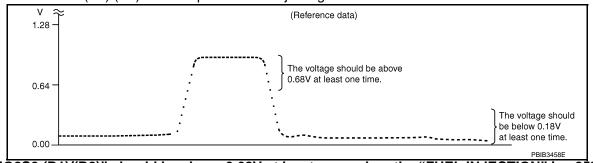
OK >> GO TO 6.

NG >> Replace malfunctioning heated oxygen sensor 2.

6.CHECK INTERMITTENT INCIDENT

Refer to EC-140.

>> INSPECTION END


Component Inspection

INFOID:0000000002954286

HEATED OXYGEN SENSOR 2

(P) With CONSULT-III

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- Let engine idle for 1 minute.
- Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSULT-III.
- 6. Check "HO2S2 (B1)/(B2)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

"HO2S2 (B1)/(B2)" should be above 0.68V at least once when the "FUEL INJECTION" is +25%. "HO2S2 (B1)/(B2)" should be below 0.18V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

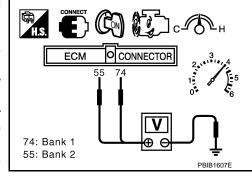
- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

N Without CONSULT-III

- 1. Start engine and warm it up to the normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Set voltmeter probes between ECM terminal 74 [HO2S2 (B2) signal] or 55 [HO2S2 (B1) signal] and ground.

[VQ35DE]

Check the voltage when revving up to 4,000 rpm under no load at least 10 times.


(Depress and release accelerator pedal as soon as possible.) The voltage should be above 0.68V at least once during this procedure.

If the voltage is above 0.68V at step 6, step 7 is not necessary.

Keep vehicle at idling for 10 minutes, then check voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position.

The voltage should be below 0.18V at least once during this procedure.

8. If NG, replace heated oxygen sensor 2.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation

HEATED OXYGEN SENSOR 2

Refer to EM-27.

Α

EC

С

D

F

INFOID:0000000002954287

Н

K

L

M

Ν

0

Р

< SERVICE INFORMATION >

[VQ35DE]

DTC P0171, P0174 FUEL INJECTION SYSTEM FUNCTION

On Board Diagnosis Logic

INFOID:0000000002954288

With the Air/Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the theoretical mixture ratio based on the mixture ratio feedback signal from the A/F sensors 1. The ECM calculates the necessary compensation to correct the offset between the actual and the theoretical ratios. In case the amount of the compensation value is extremely large (The actual mixture ratio is too lean.), the ECM judges the condition as the fuel injection system malfunction and lights up the MIL (2 trip detection logic).

Sensor	Input signal to ECM	ECM function	Actuator
A/F sensor 1	Density of oxygen in exhaust gas (Mixture ratio feedback signal)	Fuel injection control	Fuel injector

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0171 0171 (Bank 1) P0174 0174 (Bank 2)	Fuel injection system too lean	 Fuel injection system does not operate properly. The amount of mixture ratio compensation is too large. (The mixture ratio is too lean.) 	Intake air leaks A/F sensor 1 Fuel injector Exhaust gas leaks Incorrect fuel pressure Lack of fuel Mass air flow sensor Incorrect PCV hose connection

DTC Confirmation Procedure

INFOID:0000000002954289

NOTE:

Check vehicle specifications and VIN, then select the procedure to be performed. (Refer to the table below.)

Vehicle specification	Vehicle serial number	Procedure
Drive	venicle serial number	
2WD	Up to 606709	А
	From 606710	В
AWD	Up to 655057	А
	From 655058	В

PROCEDURE A

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) With CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON and select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CON-SULT-III.
- 4. Clear the self-learning control coefficient by touching "CLEAR".
- Start engine.
 - If it is difficult to start engine, the fuel injection system has a malfunction. Perform the following procedure is advised.
- a. Crank engine while depressing accelerator pedal.
- b. If engine starts, go to EC-287, "Diagnosis Procedure".
- 6. Keep engine at idle for at least 10 minutes.
- 7. Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-287, "Diagnosis Procedure"</u>.
 If 1st trip DTC is not detected, performing the following procedure is advised.

< SERVICE INFORMATION >

- Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and drive the vehicle under the similar conditions to (1st trip) Freeze Frame Data for 10 minutes. Refer to the table below.

Hold the accelerator pedal as steady as possible.

The similar conditions to (1st trip) Freeze Frame Data means the vehicle operation that the following conditions should be satisfied at the same time.

Engine speed	Engine speed in the freeze frame data $\pm400~\text{rpm}$
Vehicle speed	Vehicle speed in the freeze frame data ± 10 km/h (6 MPH)
Engine coolant temperature (T)	When the freeze frame data shows lower than 70 °C (158 °F), T should be lower than 70 °C (158 °F).
condition	When the freeze frame data shows higher than or equal to 70 °C (158 °F), T should be higher than or equal to 70 °C (158 °F).

- Check 1st trip DTC.
- 10. The 1st trip is detected, go to EC-287, "Diagnosis Procedure".

With GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- Disconnect mass air flow sensor (1) harness connector.
- Restart engine and let it idle for at least 5 seconds. 4.
- Stop engine and reconnect mass air flow sensor harness connector.
- 6. Select Service \$03 with GST. Make sure DTC P0102 is detected.
- 7. Select Service \$04 with GST and erase the DTC P0102.
- Start engine again and let it idle for at least 10 minutes.
- 9. Select Service \$07 with GST. The 1st trip DTC P0171 or P0174 should be detected at this stage, if a malfunction exists. If so, go to EC-287, "Diagnosis Procedure".

NOTE:

If 1st trip DTC is not detected during above procedure, performing the following procedure is advised.

- a. Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and drive the vehicle under the similar conditions to (1st trip) Freeze Frame Data for 10 minutes. Refer to the table below.

Hold the accelerator pedal as steady as possible.

The similar conditions to (1st trip) Freeze Frame Data means the vehicle operation that the following conditions should be satisfied at the same time.

Engine speed	Engine speed in the freeze frame data $\pm400~\text{rpm}$
Vehicle speed	Vehicle speed in the freeze frame data ± 10 km/h (6 MPH)
Engine coolant temperature (T) condition	When the freeze frame data shows lower than 70 °C (158 °F), T should be lower than 70 °C (158 °F).
	When the freeze frame data shows higher than or equal to 70 °C (158 °F), T should be higher than or equal to 70 °C (158 °F).

- 10. If it is difficult to start engine at step 8, the fuel injection system has a malfunction.
- 11. Crank engine while depressing accelerator pedal. If engine starts, go to EC-287, "Diagnosis Procedure". If engine does not start, check exhaust and intake air leak visually.

PROCEDURE B

NOTE:

K

[VQ35DE]

EC

Е

F

Н

M

Ν

Р

EC-281 Revision: 2009 February 2008 M35/M45

< SERVICE INFORMATION >

[VQ35DE]

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) With CONSULT-III

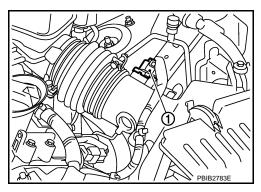
- 1. Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON and select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CON-SULT-III.
- 4. Clear the self-learning control coefficient by touching "CLEAR".
- 5. Start engine.
 - If it is difficult to start engine, the fuel injection system has a malfunction. Perform the following procedure is advised.
- a. Crank engine while depressing accelerator pedal.
- b. If engine starts, go to EC-287, "Diagnosis Procedure".
- 6. Keep engine at idle for at least 5 minutes.
- Check 1st trip DTC.
- 8. If 1st trip DTC is detected, go to <u>EC-287, "Diagnosis Procedure"</u>. If 1st trip DTC is not detected, performing the following procedure is advised.
- a. Turn ignition switch OFF and wait at least 10 seconds.
- b. Start engine and drive the vehicle under the similar conditions to (1st trip) Freeze Frame Data for 10 minutes. Refer to the table below.

Hold the accelerator pedal as steady as possible.

The similar conditions to (1st trip) Freeze Frame Data means the vehicle operation that the following conditions should be satisfied at the same time.

Engine speed	Engine speed in the freeze frame data ± 400 rpm
Vehicle speed	Vehicle speed in the freeze frame data \pm 10 km/h (6 MPH)
Engine coolant temperature (T)	When the freeze frame data shows lower than 70 °C (158 °F), T should be lower than 70 °C (158 °F).
condition	When the freeze frame data shows higher than or equal to 70 °C (158 °F), T should be higher than or equal to 70 °C (158 °F).

- 9. Check 1st trip DTC.
- 10. The 1st trip is detected, go to EC-287, "Diagnosis Procedure".


With GST

- 1. Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 3. Disconnect mass air flow sensor (1) harness connector.
- 4. Restart engine and let it idle for at least 5 seconds.
- 5. Stop engine and reconnect mass air flow sensor harness connector.
- Select Service \$03 with GST. Make sure DTC P0102 is detected.
- 7. Select Service \$04 with GST and erase the DTC P0102.
- Start engine again and let it idle for at least 5 minutes.
- Select Service \$07 with GST. The 1st trip DTC P0171 or P0174 should be detected at this stage, if a malfunction exists. If so, go to <u>EC-287</u>, "<u>Diagnosis Procedure</u>".

NOTE:

If 1st trip DTC is not detected during above procedure, performing the following procedure is advised.

a. Turn ignition switch OFF and wait at least 10 seconds.

< SERVICE INFORMATION >

[VQ35DE]

Start engine and drive the vehicle under the similar conditions to (1st trip) Freeze Frame Data for 10 minutes. Refer to the table below.

Hold the accelerator pedal as steady as possible.

The similar conditions to (1st trip) Freeze Frame Data means the vehicle operation that the following conditions should be satisfied at the same time.

Engine speed	Engine speed in the freeze frame data $\pm400~\text{rpm}$	
Vehicle speed	Vehicle speed in the freeze frame data \pm 10 km/h (6 MPH)	
Engine coolant temperature (T)	When the freeze frame data shows lower than 70 °C (158 °F), T should be lower than 70 °C (158 °F).	
condition	When the freeze frame data shows higher than or equal to 70 °C (158 °F), T should be higher than or equal to 70 °C (158 °F).	

10. If it is difficult to start engine at step 8, the fuel injection system has a malfunction.

11. Crank engine while depressing accelerator pedal. If engine starts, go to EC-287, "Diagnosis Procedure". If engine does not start, check exhaust and intake air leak visually.

Е

F

Α

EC

C

D

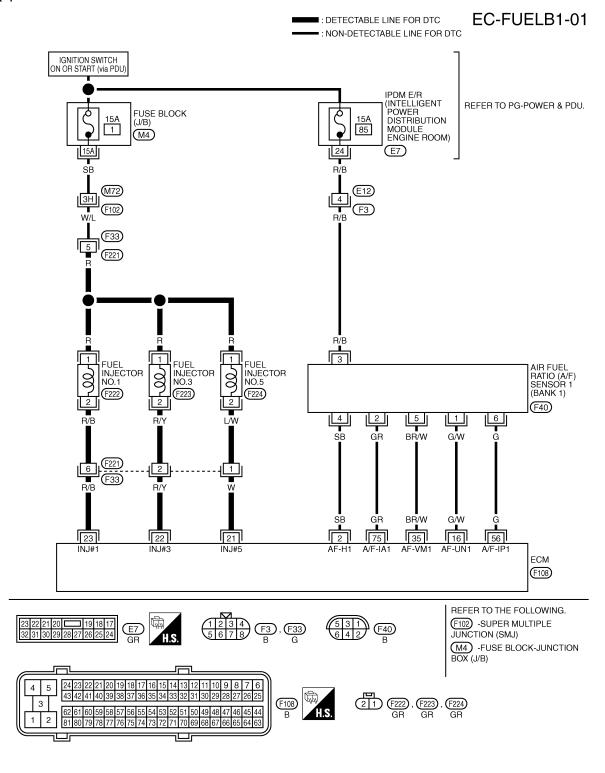
Н

K

M

L

Ν


0

Р

[VQ35DE]

Wiring Diagram

BANK 1

TBWT0956E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III. CAUTION:

< SERVICE INFORMATION >

[VQ35DE]

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECMs transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
2	SB	A/F sensor 1 heater (bank 1)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V★ → 10.0V/Div 10 ms/Div T PBIB1584E	C D
16	G/W			Approximately 3.1V	
35	BR/W	A/F sensor 1 (bank 1)	[Engine is running] • Warm-up condition	Approximately 2.6V	
56	G	Avi selisol i (balik i)	Idle speed	Approximately 2.3V	F
75	GR			Approximately 2.3V	-
21 W 22 R/Y 23 R/B		Fuel injector No. 5 Fuel injector No. 3 Fuel injector No. 1	 [Engine is running] Warm-up condition Idle speed NOTE: The pulse cycle changes depending on rpm at idle 	BATTERY VOLTAGE (11 - 14V)★ → 10.0V/Div 50 ms/Div PBIB0042E	G H
			[Engine is running] • Warm-up condition • Engine speed: 2,000 rpm	BATTERY VOLTAGE (11 - 14V)★ Description Description	J K L

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Revision: 2009 February **EC-285** 2008 M35/M45

M

Ν

0

Р

[VQ35DE]

BANK 2

TBWT0957E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECMs transistor. Use a ground other than ECM terminals, such as the ground.

< SERVICE INFORMATION >

[VQ35DE]

Α

EC

D

Е

F

Н

K

M

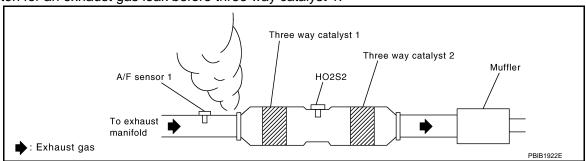
Ν

0

Р

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
24	0	A/F sensor 1 heater (bank 2)	[Engine is running]Warm-up conditionIdle speed	Approximately 5V★ → 10.0V/Div 10 ms/Div T PBIB1584E
40 V/R 41 P/L 42 R/W	1	Fuel injector No. 6 Fuel injector No. 4 Fuel injector No. 2	[Engine is running] • Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle	BATTERY VOLTAGE (11 - 14V)★ → 10.0V/Div 50 ms/Div PBIB0042E
			[Engine is running]Warm-up conditionEngine speed: 2,000 rpm	BATTERY VOLTAGE (11 - 14V)★ → 10.0V/Div 50 ms/Div PBIB0043E
57	GR/L	A/F sensor 1 (bank 2)		Approximately 2.6V
58	LG/B		[Engine is running]	Approximately 2.3V
76	W/L		Warm-up condition Idle speed	Approximately 3.1V
77	Υ			Approximately 2.3V

★: Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)


Diagnosis Procedure

INFOID:0000000002954291

1. CHECK EXHAUST GAS LEAK

Start engine and run it at idle.

Listen for an exhaust gas leak before three way catalyst 1.

OK or NG

OK >> GO TO 2.

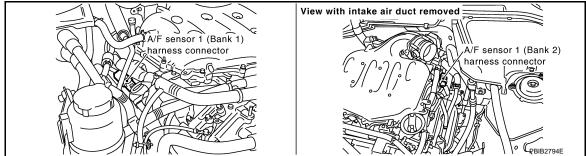
NG >> Repair or replace.

2. CHECK FOR INTAKE AIR LEAK

[VQ35DE]

< SERVICE INFORMATION >

- 1. Listen for an intake air leak after the mass air flow sensor.
- Check PCV hose connection.


OK or NG

OK >> GO TO 3.

NG >> Repair or replace.

${f 3.}$ CHECK A/F SENSOR 1 INPUT SIGNAL CIRCUIT

- 1. Turn ignition switch OFF.
- Disconnect corresponding A/F sensor 1 harness connector.

- 3. Disconnect ECM harness connector.
- Check harness continuity between the following terminals. Refer to Wiring Diagram.

	A/F sensor 1 terminal	ECM terminal
Bank 1	1	16
	2	75
	5	35
	6	56
Bank 2	1	76
	2	77
	5	57
	6	58

Continuity should exist.

Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

Bank 1		Bank 2	
A/F sensor 1 terminal	ECM terminal	A/F sensor 1 terminal	ECM terminal
1	16	1	76
2	75	2	77
5	35	5	57
6	56	6	58

Continuity should not exist.

6. Also check harness for short to power.

OK or NG

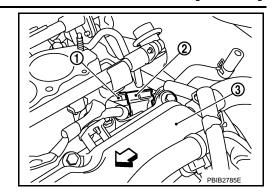
OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK FUEL PRESSURE

- 1. Release fuel pressure to zero. Refer to EC-84, "Fuel Pressure Check".
- Install fuel pressure gauge and check fuel pressure. Refer to EC-84, "Fuel Pressure Check".

< SERVICE INFORMATION > [VQ35DE]

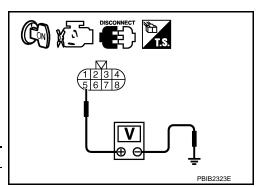

At idling: Approximately 350 kPa (3.57 kg/cm ² , 51 psi)	А
OK or NG	
OK >> GO TO 6.	EC
NG >> GO TO 5.	
5. DETECT MALFUNCTIONING PART	
Check the following. • Fuel pump and circuit (Refer to <u>EC-600</u> .)	С
 Fuel pressure regulator (Refer to <u>EC-84, "Fuel Pressure Check"</u>.) 	
 Fuel lines (Refer to <u>FL-3</u>.) Fuel filter for clogging 	D
1 der inter for diogging	
>> Repair or replace.	Е
6.CHECK MASS AIR FLOW SENSOR	_
(A) With CONSULT-III	
1. Install all removed parts.	F
2. Check "MASS AIR FLOW" in "DATA MONITOR" mode with CONSULT-III.	
2.0 - 6.0 g·m/sec: at idling	G
7.0 - 20.0 g·m/sec: at 2,500 rpm	
 With GST Install all removed parts. Check mass air flow sensor signal in Service \$01 with GST. 	Н
2.0 - 6.0 g·m/sec: at idling	
7.0 - 20.0 g·m/sec: at 2,500 rpm	
OK or NG	Л
OK (With CONSULT-III)>>GO TO 7.	Ü
OK (Without CONSULT-III)>>GO TO 8. NG >> Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or	
grounds. Refer to EC-176.	K
7. CHECK FUNCTION OF FUEL INJECTOR	
With CONSULT-III	L
 Start engine. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-III. 	
 Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-III. Make sure that each circuit produces a momentary engine speed drop. 	M
OK or NG	IVI
OK >> GO TO 10.	
NG >> Perform trouble diagnosis for FUEL INJECTOR, refer to <u>EC-594</u> .	Ν
8.CHECK FUNCTION OF FUEL INJECTOR-I	
Without CONSULT-III 1. Turn ignition switch OFF.	0
1. Turn ignition switch Of F.	
	Р

Revision: 2009 February **EC-289** 2008 M35/M45

< SERVICE INFORMATION >

[VQ35DE]

- 2. Disconnect harness connectors F221 (1), F33 (2).
- <□: vehicle front
- Cylinder head (bank 2) (3)
- 3. Turn ignition switch ON.



4. Check voltage between harness connector F33 terminal 5 and ground with CONSULT-III or tester.

Voltage: Battery voltage

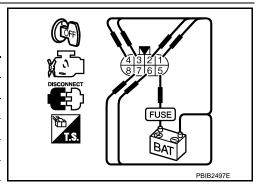
- 5. Turn ignition switch OFF.
- 6. Disconnect ECM harness connector.
- 7. Check harness continuity between the following terminals.

Cylinder	Harness connector F33 terminal	ECM terminal
1	6	23
2	4	42
3	2	22
4	3	41
5	1	21
6	7	40

Continuity should exist.

8. Also check harness for short to ground and short to power.

OK or NG


OK >> GO TO 9.

NG >> Perform trouble diagnosis for FUEL INJECTOR, refer to <u>EC-594</u>.

9. CHECK FUNCTION OF FUEL INJECTOR-II

Provide battery voltage between the following terminals, and then interrupt it. Listen to each fuel injector operating sound.

Cylinder	Harness connector F221 terminal		
Cylinder	(+)	(–)	
1		6	
2 3 4 5	5	4	
		2	
		3	
		1	
6		7	

Operating sound should exist.

OK or NG

OK >> GO TO 10.

NG >> Perform trouble diagnosis for FUEL INJECTOR, refer to <u>EC-594</u>.

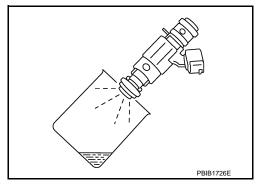
< SERVICE INFORMATION > [VQ35DE]

10. CHECK FUEL INJECTOR

- 1. Turn ignition switch OFF.
- 2. Confirm that the engine is cooled down and there are no fire hazards near the vehicle.
- Reconnect all harness connectors disconnected.
- 4. Disconnect all fuel injector harness connectors.
- 5. Remove fuel tube assembly. Refer to <u>EM-46</u>. Keep fuel hose and all fuel injectors connected to fuel tube.
- 6. For DTC P0171, reconnect fuel injector harness connectors on bank 1. For DTC P0174, reconnect fuel injector harness connectors on bank 2.
- 7. Disconnect all ignition coil harness connectors.
- 8. Prepare pans or saucers under each fuel injector.
- Crank engine for about 3 seconds.
 For DTC P0171, make sure that fuel sprays out from fuel injectors on bank 1.

For DTC P0174, make sure that fuel sprays out from fuel injectors on bank 2.

OK or NG


OK >> GO TO 11.

NG >> Replace fuel injectors from which fuel does not spray out. Always replace O-ring with new ones.

Refer to EC-140.

>> INSPECTION END

EC

С

D

Е

1

K

L

M

Ν

 \cap

P

< SERVICE INFORMATION >

[VQ35DE]

DTC P0172, P0175 FUEL INJECTION SYSTEM FUNCTION

On Board Diagnosis Logic

INFOID:0000000002954292

With the Air/Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the theoretical mixture ratio based on the mixture ratio feedback signal from the A/F sensors 1. The ECM calculates the necessary compensation to correct the offset between the actual and the theoretical ratios. In case the amount of the compensation value is extremely large (The actual mixture ratio is too rich.), the ECM judges the condition as the fuel injection system malfunction and lights up the MIL (2 trip detection logic).

Sensor	Input signal to ECM	ECM function	Actuator
A/F sensor 1	Density of oxygen in exhaust gas (Mixture ratio feedback signal)	Fuel injection control	Fuel injector

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0172 0172 (Bank 1) P0175 0175 (Bank 2)	Fuel injection system too rich	Fuel injection system does not operate properly. The amount of mixture ratio compensation is too large. (The mixture ratio is too rich.)	A/F sensor 1 Fuel injector Exhaust gas leaks Incorrect fuel pressure Mass air flow sensor

DTC Confirmation Procedure

INFOID:0000000002954293

NOTE:

Check vehicle specifications and VIN, then select the procedure to be performed. (Refer to the table below.)

Vehicle specification	Vehicle serial number	Procedure	
Drive	venicle serial number		
2WD	Up to 606709	A	
ZWD	From 606710	В	
AWD	Up to 655057	A	
	From 655058	В	

PROCEDURE A

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) With CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON and select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CON-SULT-III.
- 4. Clear the self-learning control coefficient by touching "CLEAR".
- Start engine
 - If it is difficult to start engine, the fuel injection system has a malfunction. Perform the following procedure is advised.
- a. Crank engine while depressing accelerator pedal.
- b. If engine starts, go to <a>EC-299, "Diagnosis Procedure".
- Keep engine at idle for at least 10 minutes.
- Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-299, "Diagnosis Procedure"</u>.
 If 1st trip DTC is not detected, performing the following procedure is advised.
- a. Turn ignition switch OFF and wait at least 10 seconds.

< SERVICE INFORMATION >

[VQ35DE]

Start engine and drive the vehicle under the similar conditions to (1st trip) Freeze Frame Data for 10 minutes. Refer to the table below.

Hold the accelerator pedal as steady as possible.

The similar conditions to (1st trip) Freeze Frame Data means the vehicle operation that the following conditions should be satisfied at the same time.

Engine speed	Engine speed in the freeze frame data $\pm400~\text{rpm}$	
Vehicle speed	Vehicle speed in the freeze frame data \pm 10 km/h (6 MPH)	
Engine coolant temperature (T)	When the freeze frame data shows lower than 70 °C (158 °F), T should be lower than 70 °C (158 °F).	
condition	When the freeze frame data shows higher than or equal to 70 °C (158 °F), T should be higher than or equal to 70 °C (158 °F).	

Check 1st trip DTC.

10. The 1st trip is detected, go to EC-299, "Diagnosis Procedure".

With GST

- 1. Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- Disconnect mass air flow sensor (1) harness connector.
- Restart engine and let it idle for at least 5 seconds. 4.
- 5. Stop engine and reconnect mass air flow sensor harness connector.
- Select Service \$03 with GST. Make sure DTC P0102 is detected.
- Select Service \$04 with GST and erase the DTC P0102. 7.
- 8. Start engine again and let it idle for at least 10 minutes.
- Select Service \$07 with GST. The 1st trip DTC P0172 or P0175 should be detected at this stage, if a malfunction exists. If so, go to EC-299, "Diagnosis Procedure".

NOTE:

If 1st trip DTC is not detected during above procedure, performing the following procedure is advised.

- Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and drive the vehicle under the similar conditions to (1st trip) Freeze Frame Data for 10 minutes. Refer to the table below.

Hold the accelerator pedal as steady as possible.

The similar conditions to (1st trip) Freeze Frame Data means the vehicle operation that the following conditions should be satisfied at the same time.

Engine speed	Engine speed in the freeze frame data $\pm400~\text{rpm}$
Vehicle speed	Vehicle speed in the freeze frame data \pm 10 km/h (6 MPH)
Engine coolant temperature (T)	When the freeze frame data shows lower than 70 °C (158 °F), T should be lower than 70 °C (158 °F).
condition	When the freeze frame data shows higher than or equal to 70 °C (158 °F), T should be higher than or equal to 70 °C (158 °F).

- 10. If it is difficult to start engine at step 8, the fuel injection system has a malfunction.
- 11. Crank engine while depressing accelerator pedal. If engine starts, go to EC-299, "Diagnosis Procedure". If engine does not start, check exhaust and intake air leak visually.

PROCEDURE B

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

EC-293 Revision: 2009 February 2008 M35/M45

D

Α

EC

Е

F

Н

K

L

Ν

Р

< SERVICE INFORMATION >

(P) With CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON and select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CON-SULT-III.
- 4. Clear the self-learning control coefficient by touching "CLEAR".
- Start engine.

If it is difficult to start engine, the fuel injection system has a malfunction.

Perform the following procedure is advised.

- a. Crank engine while depressing accelerator pedal.
- b. If engine starts, go to EC-299, "Diagnosis Procedure".
- 6. Keep engine at idle for at least 5 minutes.
- 7. Check 1st trip DTC.
- 8. If 1st trip DTC is detected, go to EC-299, "Diagnosis Procedure".
 - If 1st trip DTC is not detected, performing the following procedure is advised.
- Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and drive the vehicle under the similar conditions to (1st trip) Freeze Frame Data for 10 minutes. Refer to the table below.

Hold the accelerator pedal as steady as possible.

The similar conditions to (1st trip) Freeze Frame Data means the vehicle operation that the following conditions should be satisfied at the same time.

Engine speed	Engine speed in the freeze frame data \pm 400 rpm
Vehicle speed	Vehicle speed in the freeze frame data \pm 10 km/h (6 MPH)
Engine coolant temperature (T)	When the freeze frame data shows lower than 70 °C (158 °F), T should be lower than 70 °C (158 °F).
condition	When the freeze frame data shows higher than or equal to 70 °C (158 °F), T should be higher than or equal to 70 °C (158 °F).

- 9. Check 1st trip DTC.
- The 1st trip is detected, go to <u>EC-299</u>, "<u>Diagnosis Procedure</u>".

With GST

- 1. Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 3. Disconnect mass air flow sensor (1) harness connector.
- Restart engine and let it idle for at least 5 seconds.
- Stop engine and reconnect mass air flow sensor harness connector.
- Select Service \$03 with GST. Make sure DTC P0102 is 6 detected.
- 7. Select Service \$04 with GST and erase the DTC P0102.
- 8. Start engine again and let it idle for at least 5 minutes.
- Select Service \$07 with GST. The 1st trip DTC P0172 or P0175 should be detected at this stage, if a malfunction exists. If so, go to EC-299, "Diagnosis Procedure".

[VQ35DE]

NOTE:

If 1st trip DTC is not detected during above procedure, performing the following procedure is advised.

- a. Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and drive the vehicle under the similar conditions to (1st trip) Freeze Frame Data for 10 minutes. Refer to the table below.

Hold the accelerator pedal as steady as possible.

< SERVICE INFORMATION >

[VQ35DE]

The similar conditions to (1st trip) Freeze Frame Data means the vehicle operation that the following conditions should be satisfied at the same time.

Engine speed	Engine speed in the freeze frame data ± 400 rpm
Vehicle speed	Vehicle speed in the freeze frame data \pm 10 km/h (6 MPH)
Engine coolant temperature (T)	When the freeze frame data shows lower than 70 °C (158 °F), T should be lower than 70 °C (158 °F).
condition	When the freeze frame data shows higher than or equal to 70 °C (158 °F), T should be higher than or equal to 70 °C (158 °F).

^{10.} If it is difficult to start engine at step 8, the fuel injection system has a malfunction.

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

Α

С

D

Е

EC

F

G

Н

J

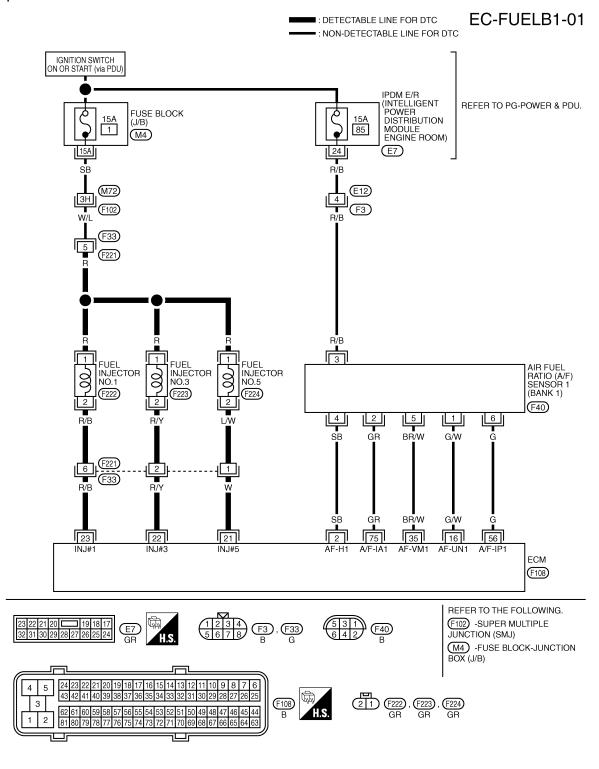
Κ

L

M

Ν

O


Р

^{11.} Crank engine while depressing accelerator pedal. If engine starts, go to <u>EC-299</u>, "<u>Diagnosis Procedure</u>". If engine does not start, check exhaust and intake air leak visually.

[VQ35DE]

Wiring Diagram

BANK 1

TBWT0956E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

CAUTION:

< SERVICE INFORMATION >

[VQ35DE]

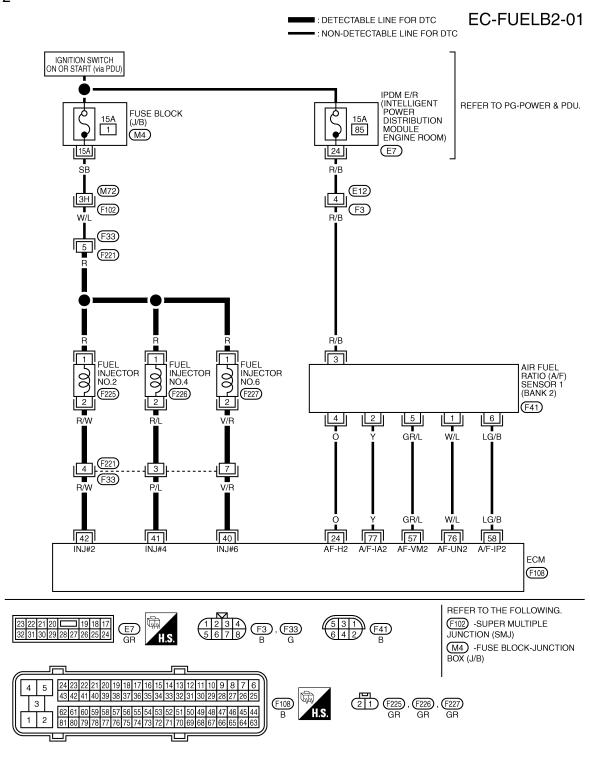
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECMs transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
2	SB	A/F sensor 1 heater (bank 1)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V★ → 10.0V/Div 10 ms/Div T PBIB1584E	C D
16	G/W			Approximately 3.1V	_
35	BR/W	A/F sensor 1 (bank 1)	[Engine is running] • Warm-up condition	Approximately 2.6V	
56	G	Avi selisol i (balik i)	Idle speed	Approximately 2.3V	F
75	GR			Approximately 2.3V	
21 22		Fuel injector No. 5	 [Engine is running] Warm-up condition Idle speed NOTE: The pulse cycle changes depending on rpm at idle 	BATTERY VOLTAGE (11 - 14V)★ → 10.0V/Div 50 ms/Div PBIB0042E	G H
22 23	R/Y R/B	Fuel injector No. 3 Fuel injector No. 1	[Engine is running] • Warm-up condition • Engine speed: 2,000 rpm	BATTERY VOLTAGE (11 - 14V)★ Description Description	J K L

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Revision: 2009 February **EC-297** 2008 M35/M45

M


Ν

0

Р

[VQ35DE]

BANK 2

TBWT0957E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECMs transistor. Use a ground other than ECM terminals, such as the ground.

< SERVICE INFORMATION >

[VQ35DE]

Α

D

Е

F

Н

K

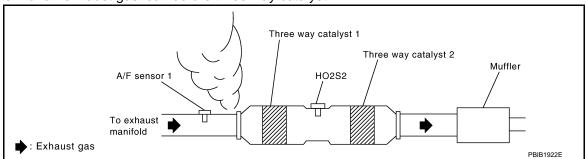
M

Ν

0

Р

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
24	0	A/F sensor 1 heater (bank 2)	[Engine is running]Warm-up conditionIdle speed	Approximately 5V★ → 10.0V/Div 10 ms/Div T PBIB1584E
40 V/R 41 P/L 42 R/W	-	Fuel injector No. 6	[Engine is running] • Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle	BATTERY VOLTAGE (11 - 14V)★ Discription 50 ms/Div PBIB0042E
	P/L Fuel injector No. 4 R/W Fuel injector No. 2 [Engine is • Warm-up	[Engine is running]Warm-up conditionEngine speed: 2,000 rpm	BATTERY VOLTAGE (11 - 14V)★ → 10.0V/Div 50 ms/Div PBIB0043E	
57	GR/L			Approximately 2.6V
58	LG/B	A/F sensor 1 (bank 2)	[Engine is running]	Approximately 2.3V
76	W/L		Warm-up condition Idle speed	Approximately 3.1V
77	Υ			Approximately 2.3V


★: Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnosis Procedure

INFOID:0000000002954295

1. CHECK EXHAUST GAS LEAK

- Start engine and run it at idle.
- Listen for an exhaust gas leak before three way catalyst 1.

OK or NG

OK >> GO TO 2.

NG >> Repair or replace.

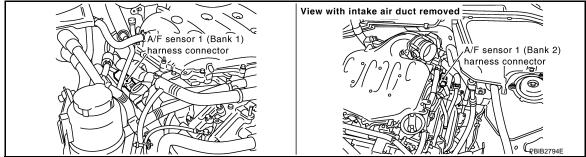
2. CHECK FOR INTAKE AIR LEAK

< SERVICE INFORMATION >

[VQ35DE]

Listen for an intake air leak after the mass air flow sensor.

OK or NG


OK >> GO TO 3.

NG >> Repair or replace.

3.check a/f sensor 1 input signal circuit

1. Turn ignition switch OFF.

2. Disconnect corresponding A/F sensor 1 harness connector.

- 3. Disconnect ECM harness connector.
- 4. Check harness continuity between the following terminals. Refer to Wiring Diagram.

	A/F sensor 1 terminal	ECM terminal
	1	16
Bank 1	2	75
Dalik i	5	35
	6	56
	1	76
Bank 2	2	77
Dalik 2	5	57
	6	58

Continuity should exist.

5. Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

Bank 1		Bank 2	
A/F sensor 1 terminal	ECM terminal	A/F sensor 1 terminal	ECM terminal
1	16	1	76
2	75	2	77
5	35	5	57
6	56	6	58

Continuity should not exist.

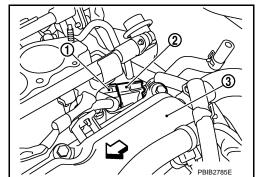
Also check harness for short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK FUEL PRESSURE


- Release fuel pressure to zero. Refer to <u>EC-84, "Fuel Pressure Check"</u>.
- 2. Install fuel pressure gauge and check fuel pressure. Refer to EC-84, "Fuel Pressure Check".

< SERVICE INFORMATION >

[VQ35DE]

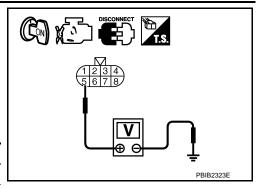
At idling: Approximately 350 kPa (3.57 kg/cm², 51 psi) Α OK or NG OK >> GO TO 6. EC NG >> GO TO 5. 5. DETECT MALFUNCTIONING PART Check the following. • Fuel pump and circuit (Refer to EC-600.) • Fuel pressure regulator (Refer to EC-84, "Fuel Pressure Check".) D >> Repair or replace. **6.**CHECK MASS AIR FLOW SENSOR (P) With CONSULT-III 1. Install all removed parts. Check "MASS AIR FLOW" in "DATA MONITOR" mode with CONSULT-III. F 2.0 - 6.0 q·m/sec: at idling 7.0 - 20.0 g·m/sec: at 2,500 rpm **With GST** 1. Install all removed parts. Check mass air flow sensor signal in "Service \$01" with GST. 2.0 - 6.0 g·m/sec: at idling 7.0 - 20.0 g·m/sec: at 2,500 rpm OK or NG OK (With CONSULT-III)>>GO TO 7. OK (Without CONSULT-III)>>GO TO 8. NG >> Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or grounds. Refer to EC-176. CHECK FUNCTION OF FUEL INJECTOR K (P) With CONSULT-III Start engine. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-III. 3. Make sure that each circuit produces a momentary engine speed drop. OK or NG OK >> GO TO 10. NG >> Perform trouble diagnosis for FUEL INJECTOR, refer to EC-594. 8.CHECK FUNCTION OF FUEL INJECTOR-I Without CONSULT-III Turn ignition switch OFF. Disconnect harness connectors F221 (1), F33 (2). ∀: vehicle front Cylinder head (bank 2) (3)

Turn ignition switch ON.

Revision: 2009 February

Р

< SERVICE INFORMATION >


[VQ35DE]

4. Check voltage between harness connector F33 terminal 5 and ground with CONSULT-III or tester.

Voltage: Battery voltage

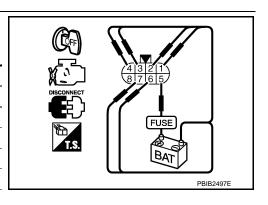
- 5. Turn ignition switch OFF.
- 6. Disconnect ECM harness connector.
- 7. Check harness continuity between the following terminals.

Cylinder	Harness connector F33 terminal	ECM terminal
1	6	23
2	4	42
3	2	22
4	3	41
5	1	21
6	7	40

Continuity should exist.

8. Also check harness for short to ground and short to power.

OK or NG


OK >> GO TO 9.

NG >> Perform trouble diagnosis for FUEL INJECTOR, refer to <u>EC-594</u>.

9. CHECK FUNCTION OF FULE INJECTOR-II

Provide battery voltage between the following terminals, and then interrupt it. Listen to each fuel injector operating sound.

Cylinder	Harness connector F221 terminal		
Cymidei	(+)	(-)	
1		6	
2		4	
3	5	2	
4		3	
5		1	
6		7	

Operating sound should exist.

OK or NG

OK >> GO TO 10.

NG >> Perform trouble diagnosis for FUEL INJECTOR, refer to <u>EC-594</u>.

10. CHECK FUEL INJECTOR

- 1. Remove fuel injector assembly. Refer to EM-46.
 - Keep fuel hose and all fuel injectors connected to fuel tube.
- 2. Confirm that the engine is cooled down and there are no fire hazards near the vehicle.
- 3. Reconnect all harness connectors disconnected.
- 4. Disconnect all fuel injector harness connectors.
- 5. Disconnect all ignition coil harness connectors.
- 6. Prepare pans or saucers under each fuel injectors.
- 7. Crank engine for about 3 seconds.

Make sure fuel does not drip from fuel injector.

OK or NG

OK (Does not drip.)>>GO TO 11.

< SERVICE INFORMATION >

[VQ35DE]

NG (Drips.)>>Replace the fuel injectors from which fuel is dripping. Always replace O-ring with new one. 11.CHECK INTERMITTENT INCIDENT

Refer to EC-140.

>> INSPECTION END

EC

Α

D

Е

F

G

Н

J

Κ

L

 \mathbb{N}

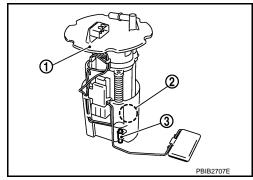
Ν

0

Р

INFOID:0000000002954296

INFOID:0000000002954297


INFOID:0000000002954298

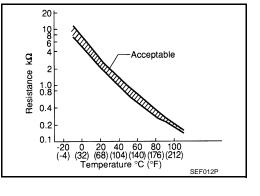
DTC P0181 FTT SENSOR

Component Description

The fuel tank temperature sensor (3) is used to detect the fuel temperature inside the fuel tank. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the fuel temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

- Fuel level sensor unit and fuel pump (1)
- Fuel pressure regulator (2)

<Reference data>


Fluid temperature °C (°F)	Voltage* V	Resistance kΩ
20 (68)	3.5	2.3 - 2.7
50 (122)	2.2	0.79 - 0.90

^{*:} This data is reference value and is measured between ECM terminal 107 (Fuel tank temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0181 0181	Fuel tank temperature sensor circuit range/performance	Rationally incorrect voltage from the sensor is sent to ECM, compared with the voltage signals from engine coolant temperature sensor and intake air temperature sensor.	(The sensor circuit is onen or shorted)

DTC Confirmation Procedure

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-III

- 1. Turn ignition switch ON and wait at least 10 seconds.
- 2. Check 1st trip DTC.

If 1st trip DTCis detected, go to <u>EC-306. "Diagnosis Procedure"</u>. If 1st trip DTC is not detected.

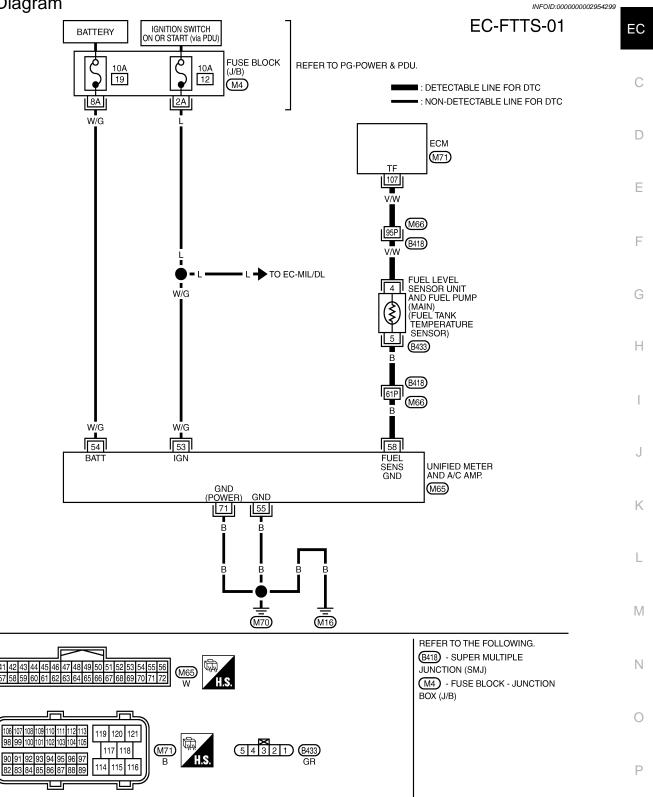
- 3. Select "DATA MONITOR"
- 4. Check "COOLAN TEMP/S" value.

If "COOLAN TEMP/S" is less than 60°C (140°F), the result will be OK. If "COOLAN TEMP/S" is above 60°C (140°F), go to the following step.

- 5. Cool engine down until "COOLAN TEMP/S" is less than 60°C (140°F).
- 6. Wait at least 10 seconds.
- 7. Check 1st trip DTC.
- 8. If 1st trip DTC is detected, go to EC-306. "Diagnosis Procedure".

Revision: 2009 February **EC-304** 2008 M35/M45

[VQ35DE]

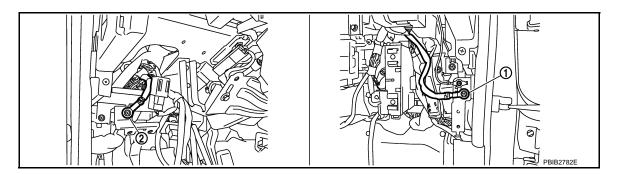

TBWT1952E

Α

WITH GST

Follow the procedure "WITH CONSULT-III" above.

Wiring Diagram



Diagnosis Procedure

INFOID:0000000002954300

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws on the body. Refer to <u>EC-146</u>, "Ground Inspection".

1. Body ground M70

2. Body ground M16

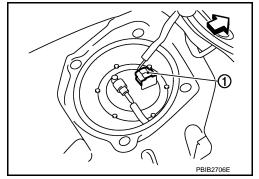
OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK DTC WITH "UNIFIED METER AND A/C AMP."

Refer to DI-27, "CONSULT-III Function (METER/M&A)".

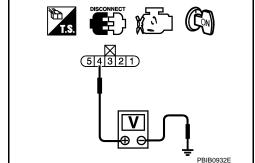

OK or NG

OK >> GO TO 3.

NG >> Go to DI-22, "Fuel Level Sensor Signal Inspection".

3.CHECK FUEL TANK TEMPERATURE SENSOR POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect "fuel level sensor unit and fuel pump" harness connector (1).
- Illustration shows the view with rear seat cushion and inspection hole cover (RH) removed.
- <□: Vehicle front
- 3. Turn ignition switch ON.



4. Check voltage between "fuel level sensor unit and fuel pump" terminal 4 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

• Harness connectors M66, B418

DTC P0181 FTT SENSOR

< SERVICE INFORMATION >

[VQ35DE]

- Harness for open or short between ECM and "fuel level sensor unit and fuel pump"
 - >> Repair open circuit or short to ground or short to power in harness or connector.

5. CHECK FUEL TANK TEMPERATURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- Disconnect "unified meter and A/C amp." harness connector.
- 3. Check harness continuity between "fuel level sensor unit and fuel pump" terminal 5 and "unified meter and A/C amp." terminal 58. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M66, B418
- Harness for open or short between "fuel level sensor unit and fuel pump" and "unified meter and A/C amp."
 - >> Repair open circuit or short to ground or short to power in harness or connector.

7.CHECK FUEL TANK TEMPERATURE SENSOR

Refer to EC-307, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace "fuel level sensor unit and fuel pump".

8. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

>> INSPECTION END

Component Inspection

FUEL TANK TEMPERATURE SENSOR

- 1. Remove fuel level sensor unit.
- Check resistance between "fuel level sensor unit and fuel pump" terminals 4 and 5 by heating with hot water as shown in the figure.

Temperature °C (°F)	Resistance $k\Omega$
20 (68)	2.3 - 2.7
50 (122)	0.79 - 0.90

If NG, replace fuel level sensor unit.

Hot water (1|2|3|4|5 PBIB0931E

INFOID:0000000002954302

Removal and Installation

FUEL TANK TEMPERATURE SENSOR

Refer to FL-4.

EC-307 Revision: 2009 February 2008 M35/M45

EC

Α

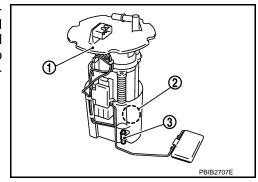
D

Е

K

INFOID:0000000002954301

N


INFOID:0000000002954303

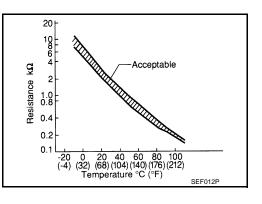
DTC P0182, P0183 FTT SENSOR

Component Description

The fuel tank temperature sensor (3) is used to detect the fuel temperature inside the fuel tank. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the fuel temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

- Fuel level sensor unit and fuel pump (1)
- Fuel pressure regulator (2)

<Reference data>


Fluid temperature °C (°F)	Voltage* V	Resistance kΩ
20 (68)	3.5	2.3 - 2.7
50 (122)	2.2	0.79 - 0.90

^{*:} This data is reference value and is measured between ECM terminal 107 (Fuel tank temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0182 0182	Fuel tank temperature sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)
P0183 0183	Fuel tank temperature sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	Fuel tank temperature sensor

DTC Confirmation Procedure

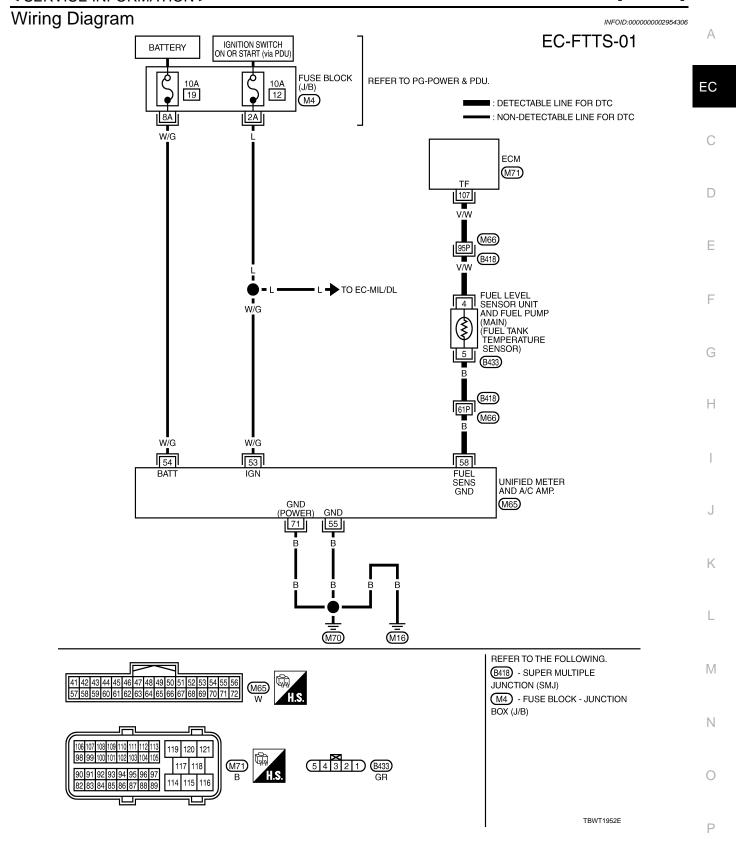
INFOID:0000000002954305

INFOID:0000000002954304

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

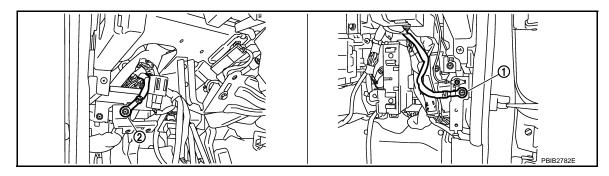
(P) WITH CONSULT-III


- Turn ignition switch ON.
- 2. Wait at least 5 seconds.
- 3. Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-309</u>, "<u>Diagnosis Procedure</u>".

WITH GST

Follow the procedure "WITH CONSULT-III" above.

[VQ35DE]


INFOID:0000000002954307

Diagnosis Procedure

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- Loosen and retighten two ground screws on the body. Refer to <u>EC-146</u>, "Ground Inspection".

- 1. Body ground M70
- 2. Body ground M16

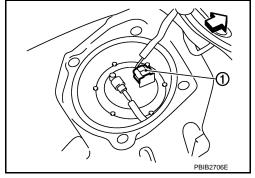
OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK DTC WITH "UNIFIED METER AND A/C AMP."

Refer to DI-27, "CONSULT-III Function (METER/M&A)".

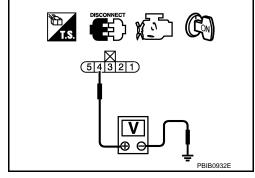

OK or NG

OK >> GO TO 3.

NG >> Go to DI-22, "Fuel Level Sensor Signal Inspection".

3.CHECK FUEL TANK TEMPERATURE SENSOR POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect "fuel level sensor unit and fuel pump" harness connector (1).
- Illustration shows the view with rear seat cushion and inspection hole cover (RH) removed.
- <: Vehicle front
- 3. Turn ignition switch ON.



4. Check voltage between "fuel level sensor unit and fuel pump" terminal 4 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M66, B418
- Harness for open or short between ECM and "fuel level sensor unit and fuel pump"
 - >> Repair open circuit or short to ground or short to power in harness or connector.

5. CHECK FUEL TANK TEMPERATURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

1. Turn ignition switch OFF.

DTC P0182, P0183 FTT SENSOR

< SERVICE INFORMATION >

[VQ35DE]

- 2. Disconnect "unified meter and A/C amp." harness connector.
- 3. Check harness continuity between "fuel level sensor unit and fuel pump" terminal 5 and "unified meter and A/C amp." terminal 58. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M66, B418
- Harness for open or short between "fuel level sensor unit and fuel pump" and "unified meter and A/C amp."
 - >> Repair open circuit or short to ground or short to power in harness or connector.

7. CHECK FUEL TANK TEMPERATURE SENSOR

Refer to EC-311, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace "fuel level sensor unit and fuel pump".

8. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

>> INSPECTION END

Component Inspection

FUEL TANK TEMPERATURE SENSOR

1. Remove fuel level sensor unit.

Check resistance between "fuel level sensor unit and fuel pump" terminals 4 and 5 by heating with hot water as shown in the figure.

Temperature °C (°F)	Resistance kΩ
20 (68)	2.3 - 2.7
50 (122)	0.79 - 0.90

If NG, replace fuel level sensor unit.

Hot water 1 2 3 4 5 PBIB0931E

INFOID:0000000002954309

2008 M35/M45

Removal and Installation

FUEL TANK TEMPERATURE SENSOR

Refer to FL-4.

С

EC

D

Е

F

G

Н

INFOID:0000000002954308

K

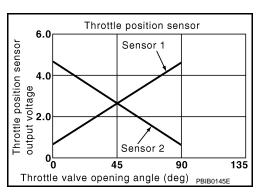
ı

M

N

0

Р


INFOID:0000000002954310

DTC P0222, P0223 TP SENSOR

Component Description

Electric throttle control actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002954311

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
THRTL SEN 1	Ignition switch: ON	Accelerator pedal: Fully released	More than 0.36V
THRTL SEN 2*	(Engine stopped) • Selector lever: D	Accelerator pedal: Fully depressed	Less than 4.75V

^{*:} Throttle position sensor 2 signal is converted by ECM internally. Thus, it differs from ECM terminal voltage signal.

On Board Diagnosis Logic

INFOID:0000000002954312

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0222 0222	Throttle position sensor 1 circuit low input	An excessively low voltage from the TP sensor 1 is sent to ECM.	Harness or connectors (TP sensor 1 circuit is open or shorted.)
P0223 0223	Throttle position sensor 1 circuit high input	An excessively high voltage from the TP sensor 1 is sent to ECM.	 (APP sensor 2 circuit is shorted.) Electric throttle control actuator (TP sensor 1) Accelerator pedal position sensor (APP sensor 2)

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operation condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

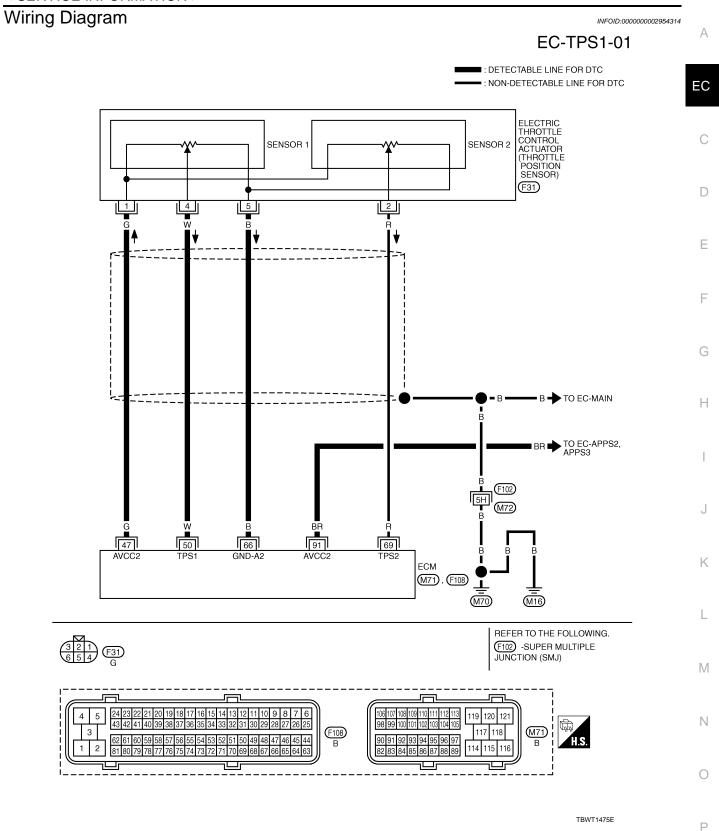
The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

DTC Confirmation Procedure

INFOID:0000000002954313

NOTE:


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

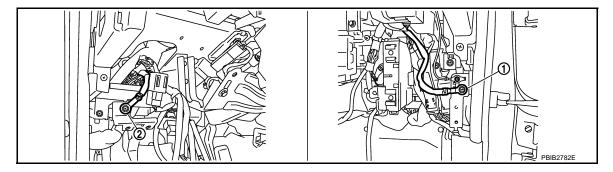
Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

- Start engine and let it idle for 1 second.
- Check DTC.
- If DTC is detected, go to <u>EC-314, "Diagnosis Procedure"</u>.

[VQ35DE]

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
47	G	Sensor power supply (Throt- tle position sensor)	[Ignition switch: ON]	Approximately 5V
50	w	Throttle position sensor 1	[Ignition switch: ON]Engine stoppedSelector lever: DAccelerator pedal: Fully released	More than 0.36V
50	VV		 [Ignition switch: ON] Engine stopped Selector lever: D Accelerator pedal: Fully depressed 	Less than 4.75V
66	В	Sensor ground (Throttle position sensor)	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
60	69 R	Throttle position sensor 2	[Ignition switch: ON]Engine stoppedSelector lever: DAccelerator pedal: Fully released	Less than 4.75V
			 [Ignition switch: ON] Engine stopped Selector lever: D Accelerator pedal: Fully depressed 	More than 0.36V
91	BR	Sensor power supply (APP sensor 2)	[Ignition switch: ON]	Approximately 5V

Diagnosis Procedure

INFOID:0000000002954315

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws on the body. Refer to <u>EC-146</u>, "<u>Ground Inspection</u>".

1. Body ground M70

2. Body ground M16

OK or NG

OK >> GO TO 2.

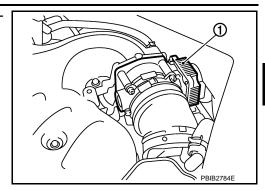
NG >> Repair or replace ground connections.

2.CHECK THROTTLE POSITION SENSOR 1 POWER SUPPLY CIRCUIT-I

< SERVICE INFORMATION >

[VQ35DE]

Α

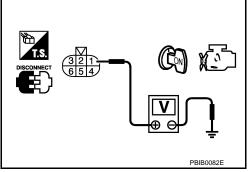

EC

D

Е

Disconnect electric throttle control actuator (1) harness connector.

2. Turn ignition switch ON.



Check voltage between electric throttle control actuator terminal 1 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 7. NG >> GO TO 3.

3.check throttle position sensor 1 power supply circuit-ii

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between electric throttle control actuator terminal 1 and ECM terminal 47. Refer to Wiring Diagram.

Continuity should exist.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit.

4. CHECK THROTTLE POSITION SENSOR 1 POWER SUPPLY CIRCUIT-III

Check harness for short to power and short to ground, between the following terminals.

ECM terminal	Sensor terminal	Reference Wiring Diagram
47	Electric throttle control actuator terminal 1	EC-313
91	APP sensor terminal 5	EC-556

OK or NG

OK >> GO TO 5.

NG >> Repair short to ground or short to power in harness or connectors.

5. CHECK APP SENSOR

Refer to EC-560, "Component Inspection".

OK or NG

OK >> GO TO 11. NG >> GO TO 6.

6. REPLACE ACCELERATOR PEDAL ASSEMBLY

- 1. Replace accelerator pedal assembly.
- Perform <u>EC-82</u>, "Accelerator <u>Pedal Released Position Learning</u>".
- 3. Perform EC-82, "Throttle Valve Closed Position Learning".
- 4. Perform EC-82, "Idle Air Volume Learning".

.

K

n.

Ν

0

Р

Ρ

>> INSPECTION END

7.check throttle position sensor 1 ground circuit for open and short

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between electric throttle control actuator terminal 5 and ECM terminal 66. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

8.CHECK THROTTLE POSITION SENSOR 1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal 50 and electric throttle control actuator terminal 4. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK THROTTLE POSITION SENSOR

Refer to EC-316, "Component Inspection".

OK or NG

OK >> GO TO 11.

NG >> GO TO 10.

10. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-82. "Throttle Valve Closed Position Learning".
- 3. Perform EC-82, "Idle Air Volume Learning".

>> INSPECTION END

11. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

>> INSPECTION END

Component Inspection

INFOID:0000000002954316

THROTTLE POSITION SENSOR

- Reconnect all harness connectors disconnected.
- 2. Perform EC-82, "Throttle Valve Closed Position Learning".
- 3. Turn ignition switch ON.
- Set selector lever to D position.

DTC P0222, P0223 TP SENSOR

< SERVICE INFORMATION >

[VQ35DE]

Α

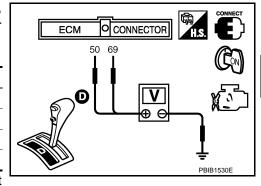
EC

C

D

Е

F


Н

K

M

Check voltage between ECM terminals 50 (TP sensor 1 signal),
 (TP sensor 2 signal) and ground under the following conditions.

Terminal	Accelerator pedal	Voltage
50	Fully released	More than 0.36V
(Throttle position sensor 1)	Fully depressed	Less than 4.75V
69	Fully released	Less than 4.75V
(Throttle position sensor 2)	Fully depressed	More than 0.36V

- 6. If NG, replace electric throttle control actuator and go to the next step.
- 7. Perform EC-82, "Throttle Valve Closed Position Learning".
- 8. Perform EC-82, "Idle Air Volume Learning".

Removal and Installation

INFOID:0000000002954317

ELECTRIC THROTTLE CONTROL ACTUATOR Refer to EM-25.

N O

Revision: 2009 February **EC-317** 2008 M35/M45

< SERVICE INFORMATION >

[VQ35DE]

DTC P0300, P0301, P0302, P0303, P0304, P0305, P0306 MULTIPLE CYL-INDER MISFIRE, NO. 1 - 6 CYLINDER MISFIRE

On Board Diagnosis Logic

INFOID:0000000002954318

When a misfire occurs, engine speed will fluctuate. If the engine speed fluctuates enough to cause the crank-shaft position (CKP) sensor (POS) signal to vary, ECM can determine that a misfire is occurring.

Sensor	Input signal to ECM	ECM function	
Crankshaft position sensor (POS)	Engine speed	On board diagnosis of misfire	

The misfire detection logic consists of the following two conditions.

One Trip Detection Logic (Three Way Catalyst Damage)

On the 1st trip that a misfire condition occurs that can damage the three way catalyst (TWC) due to over-heating, the MIL will blink.

When a misfire condition occurs, the ECM monitors the CKP sensor signal every 200 engine revolutions for a change.

When the misfire condition decreases to a level that will not damage the TWC, the MIL will turn off.

If another misfire condition occurs that can damage the TWC on a second trip, the MIL will blink.

When the misfire condition occurs that can damage the TWC, the MIL will remain on. If another misfire condition occurs that can damage the TWC, the MIL will begin to blink again.

2. Two Trip Detection Logic (Exhaust quality deterioration)

For misfire conditions that will not damage the TWC (but will affect vehicle emissions), the MIL will only light when the misfire is detected on a second trip. During this condition, the ECM monitors the CKP sensor signal every 1,000 engine revolutions.

A misfire malfunction can be detected on any one cylinder or on multiple cylinders.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0300 0300	Multiple cylinder misfire detected	Multiple cylinder misfire.	
P0301 0301	No.1 cylinder misfire detected	No. 1 cylinder misfires.	Improper spark plug Insufficient compression
P0302 0302	No. 2 cylinder misfire detected	No. 2 cylinder misfires.	Incorrect fuel pressure The fuel injector circuit is open or shorted Fuel injector
P0303 0303	No. 3 cylinder misfire detected	No. 3 cylinder misfires.	Intake air leak The ignition signal circuit is open or short-
P0304 0304	No. 4 cylinder misfire detected	No. 4 cylinder misfires.	ed Lack of fuel Signal plate
P0305 0305	No. 5 cylinder misfire detected	No. 5 cylinder misfires.	A/F sensor 1 Incorrect PCV hose connection
P0306 0306	No. 6 cylinder misfire detected	No. 6 cylinder misfires.	

DTC Confirmation Procedure

INFOID:0000000002954319

CAUTION:

Always drive vehicle in safe manner according to traffic conditions and obey all traffic laws when driving.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

- Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 3. Restart engine and let it idle for about 15 minutes.
- 4. Check 1st trip DTC.
- 5. If 1st trip DTC is detected, go to EC-319, "Diagnosis Procedure".

< SERVICE INFORMATION > [VQ35DE]

NOTE:

If 1st trip DTC is not detected during above procedure, performing the following procedure is advised.

- a. Turn ignition switch OFF and wait at least 10 seconds.
- b. Start engine and drive the vehicle under the similar conditions to (1st trip) Freeze Frame Data for a certain time. Refer to the table below.

Hold the accelerator pedal as steady as possible.

The similar conditions to (1st trip) Freeze Frame Data means the vehicle operation that the following conditions should be satisfied at the same time.

Engine speed	Engine speed in the freeze frame data \pm 400 rpm
Vehicle speed	Vehicle speed in the freeze frame data \pm 10 km/h (6 MPH)
Engine coolant temperature (T)	When the freeze frame data shows lower than 70 °C (158 °F), T should be lower than 70 °C (158 °F).
condition	When the freeze frame data shows higher than or equal to 70 °C (158 °F), T should be higher than or equal to 70 °C (158 °F).

The time to driving varies according to the engine speed in the freeze frame data.

Engine speed	Time	
Around 1,000 rpm	Approximately 10 minutes	
Around 2,000 rpm	Approximately 5 minutes	
More than 3,000 rpm	Approximately 3.5 minutes	

Diagnosis Procedure

1. CHECK FOR INTAKE AIR LEAK AND PCV HOSE

- 1. Start engine and run it at idle speed.
- 2. Listen for the sound of the intake air leak.
- 3. Check PCV hose connection.

OK or NG

OK >> GO TO 2.

NG >> Discover air leak location and repair.

2.CHECK FOR EXHAUST SYSTEM CLOGGING

Stop engine and visually check exhaust tube, three way catalyst and muffler for dents.

OK or NG

OK (With CONSULT-III)>>GO TO 3.

OK (Without CONSULT-III>>GO TO 4.

NG >> Repair or replace it.

3.PERFORM POWER BALANCE TEST

- (II) With CONSULT-III
- 1. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-III.
- Is there any cylinder which does not produces a momentary engine speed drop?

Yes or No

Yes >> GO TO 4.

No >> GO TO 10.

4. CHECK FUNCTION OF FUEL INJECTOR-I

W Without CONSULT-III

1. Turn ignition switch OFF.

EC

Α

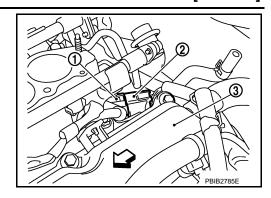
Е

D

F

Н

Ν

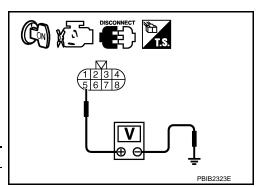

Р

INFOID:0000000002954320

< SERVICE INFORMATION >

[VQ35DE]

- 2. Disconnect harness connectors F221 (1), F33 (2).
- <: vehicle front
- Cylinder head (bank 2) (3)
- 3. Turn ignition switch ON.



Check voltage between harness connector F33 terminal 5 and ground with CONSULT-III or tester.

Voltage: Battery voltage

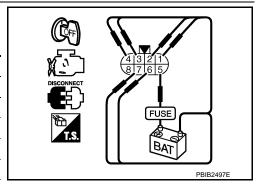
- 5. Turn ignition switch OFF.
- 6. Disconnect ECM harness connector.
- 7. Check harness continuity between the following terminals.

Cylinder	Harness connector F33 terminal	ECM terminal
1	6	23
2	4	42
3	2	22
4	3	41
5	1	21
6	7	40

Continuity should exist.

8. Also check harness for short to ground and short to power.

OK or NG


OK >> GO TO 5.

NG >> Perform trouble diagnosis for FUEL INJECTOR, refer to <u>EC-594</u>.

5. CHECK FUNCTION OF FUEL INJECTOR-II

Provide battery voltage between the following terminals, and then interrupt it. Listen to each fuel injector operating sound.

Cylinder	Harness connector F221 terminal			
Cylinder	(+)	(–)		
1		6		
2 3 4	5	4		
		2		
		3		
5		1		
6		7		

Operating sound should exist.

OK or NG

OK >> GO TO 6.

NG >> Perform trouble diagnosis for FUEL INJECTOR, refer to <u>EC-594</u>.

IVQ35DE1 < SERVICE INFORMATION >

6.CHECK FUNCTION OF IGNITION COIL-I

Do the following procedure in the place where ventilation is good without the combustible.

- Turn ignition switch OFF.
- 2. Remove fuel pump fuse (1) in IPDM E/R (2) to release fuel pressure.

NOTE:

Do not use CONSULT-III to release fuel pressure, or fuel pressure applies again during the following procedure.

- Start engine.
- 4. After engine stalls, crank it two or three times to release all fuel pressure.
- 5. Turn ignition switch OFF.
- 6. Remove all ignition coil harness connectors to avoid the electrical discharge from the ignition coils.
- 7. Remove ignition coil and spark plug of the cylinder to be checked.
- 8. Crank engine for 5 seconds or more to remove combustion gas in the cylinder.
- 9. Connect spark plug and harness connector to ignition coil.
- 10. Fix ignition coil using a rope etc. with gap of 13 17 mm between the edge of the spark plug and grounded metal portion as shown in the figure.
- 11. Crank engine for about 3 seconds, and check whether spark is generated between the spark plug and the grounded metal por-

CAUTION:

- Do not approach to the spark plug and the ignition coil within 50cm. Be careful not to get an electrical shock while checking, because the electrical discharge voltage becomes 20kV or more.
- It might cause to damage the ignition coil if the gap of more than 17 mm is taken.

When the gap is less than 13 mm, the spark might be generated even if the coil is malfunctioning.

OK or NG

OK >> GO TO 10. NG >> GO TO 7.

.CHECK FUNCTION OF IGNITION COIL-II

- Turn ignition switch OFF.
- 2. Disconnect spark plug and connect a known-good spark plug.
- 3. Crank engine for about 3 seconds, and recheck whether spark is generated between the spark plug and the grounded metal portion.

Spark should be generated.

OK or NG

OK >> GO TO 8.

NG >> Check ignition coil, power transistor and their circuits. Refer to <u>EC-614</u>.

6.CHECK SPARK PLUG

PBIB2697E

F

EC

D

Е

Н

13 - 17 mm

ากกกกก้ากก้ากก้ากก

(Cylinder head, cylinder block, etc.)

Grounded metal portion

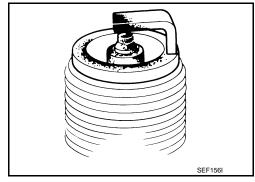
L

M

Ν

< SERVICE INFORMATION >

[VQ35DE]


Check the initial spark plug for fouling, etc.

OK or NG

OK >> Replace spark plug(s) with standard type one(s). For spark plug type, refer to <u>EM-44</u>.

NG >> 1. Repair or clean spark plug.

2. GO TO 9.

9. CHECK FUNCTION OF IGNITION COIL-III

- 1. Reconnect the initial spark plugs.
- 2. Crank engine for about 3 seconds, and recheck whether spark is generated between the spark plug and the grounded portion.

Spark should be generated.

OK or NG

OK >> INSPECTION END

NG >> Replace spark plug(s) with standard type one(s). For spark plug type, refer to MA-18, "Changing Spark Plugs (Platinum-Tipped Type)".

10. CHECK COMPRESSION PRESSURE

Check compression pressure. Refer to EM-101, "On-Vehicle Service".

OK or NG

OK >> GO TO 11.

NG >> Check pistons, piston rings, valves, valve seats and cylinder head gaskets.

11. CHECK FUEL PRESSURE

- Install all removed parts.
- Release fuel pressure to zero. Refer to <u>EC-84, "Fuel Pressure Check"</u>.
- Install fuel pressure gauge and check fuel pressure. Refer to EC-84, "Fuel Pressure Check".

At idling: Approximately 350 kPa (3.57 kg/cm², 51 psi)

OK or NG

OK >> GO TO 13.

NG >> GO TO 12.

12. DETECT MALFUNCTIONING PART

Check the following.

- Fuel pump and circuit (Refer to <u>EC-600</u>.)
- Fuel pressure regulator (Refer to EC-84, "Fuel Pressure Check".)
- Fuel lines (Refer to FL-3.)
- Fuel filter for clogging

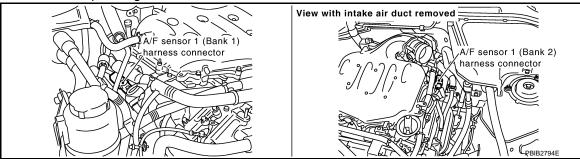
>> Repair or replace.

13. CHECK IGNITION TIMING

Check the following items. Refer to EC-76, "Basic Inspection".

Items	Specifications	
Target idle speed	650 ± 50 rpm (in P or N position)	
Ignition timing	15 ± 5° BTDC (in P or N position)	

OK or NG


OK >> GO TO 14.

[VQ35DE] < SERVICE INFORMATION >

>> Follow the EC-76, "Basic Inspection".

14. CHECK A/F SENSOR 1 INPUT SIGNAL CIRCUIT

- Turn ignition switch OFF.
- Disconnect corresponding A/F sensor 1 harness connector.

- Disconnect ECM harness connector.
- Check harness continuity between the following terminals. Refer to Wiring Diagram.

	A/F sensor 1 terminal	ECM terminal
	1	16
Bank 1	2	75
Dalik i	5	35
	6	56
	1	76
Bank 2	2	77
Dailk 2	5	57
	6	58

Continuity should exist.

Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

Bai	nk 1	Bank 2	
A/F sensor 1 terminal	ECM terminal	A/F sensor 1 terminal	ECM terminal
1	16	1	76
2	75	2	77
5	35	5	57
6	56	6	58

Continuity should not exist.

6. Also check harness for short to power.

OK or NG

OK >> GO TO 15.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

15. CHECK A/F SENSOR 1 HEATER

Refer to EC-159, "Component Inspection".

OK or NG

OK >> GO TO 17.

>> GO TO 16. NG

16.replace air fuel ratio (a/f) sensor 1

EC-323 Revision: 2009 February 2008 M35/M45

EC

Α

D

Е

F

Н

Ν

Ρ

< SERVICE INFORMATION >

[VQ35DE]

Replace malfunctioning air fuel ratio (A/F) sensor 1.

CAUTION:

- Discard any A/F sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new A/F sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

>> INSPECTION END

17. CHECK MASS AIR FLOW SENSOR

(P)With CONSULT-III

- 1. Install all removed parts.
- Start engine and warm it up to normal operating temperature.
- Check mass air flow sensor signal in "DATA MONITOR" mode with CONSULT-III.

2.0 - 6.0 g·m/sec: at idling 7.0 - 20.0 g·m/sec: at 2,500 rpm

With GST

- 1. Install all removed parts.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Check mass air flow sensor signal in Service \$01 with GST.

2.0 - 6.0 g·m/sec: at idling 7.0 - 20.0 g·m/sec: at 2,500 rpm

OK or NG

OK >> GO TO 18.

NG >> Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or ground. Refer to <u>EC-176</u>.

18. CHECK SYMPTOM MATRIX CHART

Check items on the rough idle symptom in EC-93, "Symptom Matrix Chart".

OK or NG

OK >> GO TO 19.

NG >> Repair or replace.

19. ERASE THE 1ST TRIP DTC

Some tests may cause a 1st trip DTC to be set.

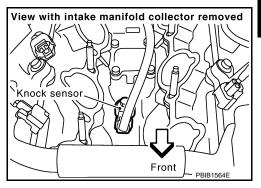
Erase the 1st trip DTC from the ECM memory after performing the tests. Refer to <u>EC-55</u>, "<u>Emission-Related Diagnostic Information</u>".

>> GO TO 20.

20. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

>> INSPECTION END


[VQ35DE]

INFOID:0000000002954321

DTC P0327, P0328 KS

Component Description

The knock sensor is attached to the cylinder block. It senses engine knocking using a piezoelectric element. A knocking vibration from the cylinder block is sensed as vibrational pressure. This pressure is converted into a voltage signal and sent to the ECM.

On Board Diagnosis Logic

The MIL will not light up for these diagnoses.

DTC No.	Trouble diagnosis name	DTC detected condition	Possible cause	
P0327 0327	Knock sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)	
P0328 0328	Knock sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.		

DTC Confirmation Procedure

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

- 1. Start engine and run it for at least 5 seconds at idle speed.
- 2. Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-327</u>, "<u>Diagnosis Procedure</u>".

EC

Α

D

Е

F

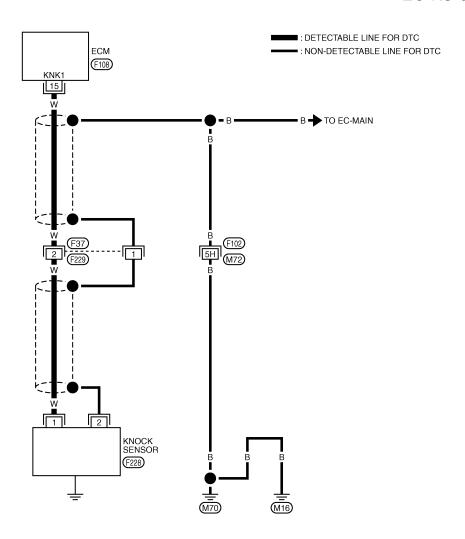
Н

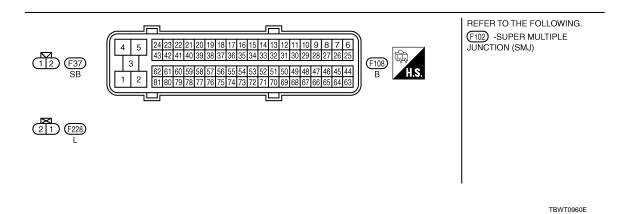
INFOID:0000000002954322

INFOID:0000000002954323

K

M


Ν


0

Wiring Diagram

INFOID:0000000002954324

EC-KS-01

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

INFOID:0000000002954325

< SERVICE INFORMATION >

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
15	W	Knock sensor	[Engine is running] • Idle speed	Approximately 2.5V

EC

D

Е

Α

Diagnosis Procedure

1. CHECK KNOCK SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT-I

- Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check resistance between ECM terminal 15 and ground. Refer to Wiring Diagram.

It is necessary to use an ohmmeter which can measure more than 10 M Ω .

Resistance: Approximately 532 - 588 k Ω [at 20°C (68°F)]

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 2.

M

2.CHECK KNOCK SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT-II

- Disconnect knock sensor harness connector.
- 2. Check harness continuity between ECM terminal 15 and knock sensor terminal 1.

Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

View with intake manifold collector removed Front

3.DETECT MALFUNCTIONING PART

Check the following.

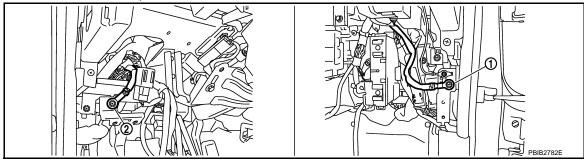
- Harness connectors F37, F229
- Harness for open or short between ECM and knock sensor

>> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK KNOCK SENSOR

Refer to EC-328, "Component Inspection".

OK or NG


OK >> GO TO 5.

NG >> Replace knock sensor.

${f 5.}$ CHECK GROUND CONNECTIONS

Loosen and retighten two ground screws on the body.

Refer to EC-146, "Ground Inspection"

- 1. Body ground M70
- 2. Body ground M16

OK or NG

OK >> GO TO 6.

NG >> Repair or replace ground connections.

6.CHECK KNOCK SENSOR SHIELD CIRCUIT FOR OPEN AND SHORT

- Disconnect knock sensor harness connector.
- 2. Check harness continuity between knock sensor terminal 2 and ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F37, F229
- Harness connectors F102, M72
- Harness for open or short between knock sensor terminal 2 and ground
 - >> Repair open circuit or short to power in harness or connectors.

8. CHECK INTERMITTENT INCIDENT

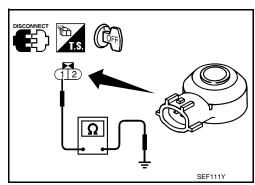
Refer to EC-140.

>> INSPECTION END

Component Inspection

INFOID:0000000002954326

KNOCK SENSOR


Check resistance between knock sensor terminal 1 and ground.

It is necessary to use an ohmmeter which can measure more than 10 $\mbox{M}\Omega.$

Resistance: Approximately 532 - 588 k Ω [at 20°C (68°F)]

CAUTION:

Do not use any knock sensors that have been dropped or physically damaged. Use only new ones.

DTC P0327, P0328 KS

< SERVICE INFORMATION > [VQ35DE]

Removal and Installation

KNOCK SENSOR Refer to EM-123.

EC

Α

С

D

Е

F

G

Н

1

J

Κ

L

M

Ν

0

Ρ

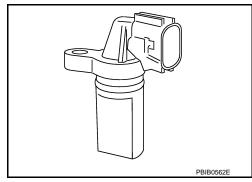
INFOID:0000000002954328

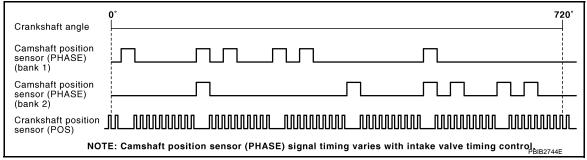
DTC P0335 CKP SENSOR (POS)

Component Description

The crankshaft position sensor (POS) is located on the oil pan facing the gear teeth (cogs) of the signal plate. It detects the fluctuation of the engine revolution.

The sensor consists of a permanent magnet and Hall IC.


When the engine is running, the high and low parts of the teeth cause the gap with the sensor to change.


The changing gap causes the magnetic field near the sensor to change.

Due to the changing magnetic field, the voltage from the sensor changes.

The ECM receives the voltage signal and detects the fluctuation of the engine revolution.

ECM receives the signals as shown in the figure.

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002954329

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
ENG SPEED	Run engine and compare CONSULT-III value with the tachometer indication.	Almost the same speed as the tachometer indication.

On Board Diagnosis Logic

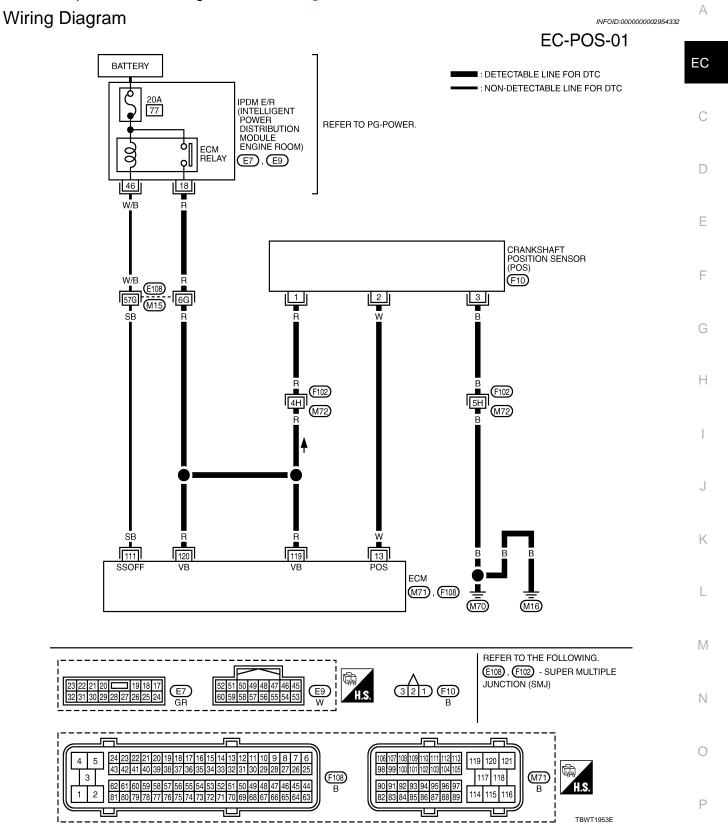
INFOID:0000000002954330

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0335 0335	Crankshaft position sensor (POS) circuit	 The crankshaft position sensor (POS) signal is not detected by the ECM during the first few seconds of engine cranking. The proper pulse signal from the crankshaft position sensor (POS) is not sent to ECM while the engine is running. The crankshaft position sensor (POS) signal is not in the normal pattern during engine running. 	Harness or connectors (The sensor circuit is open or shorted) Crankshaft position sensor (POS) Signal plate

DTC Confirmation Procedure

INFOID:0000000002954331

NOTE:


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V with ignition switch ON.

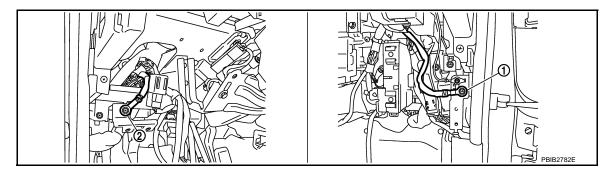
- 1. Crank engine for at least 2 seconds and run it for at least 5 seconds at idle speed.
- Check 1st trip DTC.

3. If 1st trip DTC is detected, go to EC-332, "Diagnosis Procedure".

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III. CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
13	W	Crankshaft position sensor	 [Engine is running] Warm-up condition Idle speed NOTE: The pulse cycle changes depending on rpm at idle 	1.0 - 2.0V★ ≥ 5.0 V/Div 1 ms/Div T PBIB1041E
13	VV	(POS)	[Engine is running] • Engine speed: 2,000 rpm	1.0 - 2.0V★ >> 5.0 V/Div 1 ms/Div T PBIB1042E
111	SB	ECM relay (Self shut-off)	[Engine is running] [Ignition switch: OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V
	(Sell Stiut-Off)	[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)	
119 120	R R	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)


^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnosis Procedure

INFOID:0000000002954333

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws on the body. Refer to EC-146, "Ground Inspection".

1. Body ground M70

2. Body ground M16

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

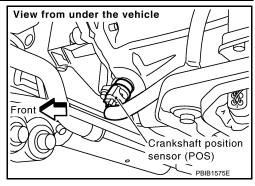
2.CHECK CRANKSHAFT POSITION (CKP) SENSOR (POS) POWER SUPPLY CIRCUIT

DTC P0335 CKP SENSOR (POS)

< SERVICE INFORMATION >

[VQ35DE]

Α

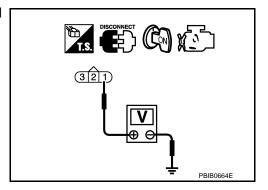

EC

D

Е

F

- Disconnect crankshaft position (CKP) sensor (POS) harness connector.
- 2. Turn ignition switch ON.



Check voltage between CKP sensor (POS) terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- Harness connectors F102, M72
- Harness for open or short between crankshaft position sensor (POS) and ECM
- Harness for open or short between crankshaft position sensor (POS) and IPDM E/R

>> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK CKP SENSOR (POS) GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Check harness continuity between CKP sensor (POS) terminal 3 and ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 6.

NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F102, M72
- Harness for open or short between crankshaft position sensor (POS) and ground

>> Repair open circuit or short to power in harness or connectors.

6.CHECK CKP SENSOR (POS) INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 13 and CKP sensor (POS) terminal 2. Refer to Wiring Diagram.

Continuity should exist.

Н

J

Κ

IVI

Ν

< SERVICE INFORMATION >

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

7.check crankshaft position sensor (pos)

Refer to EC-334, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace crankshaft position sensor (POS).

8. CHECK GEAR TOOTH

Visually check for chipping signal plate gear tooth.

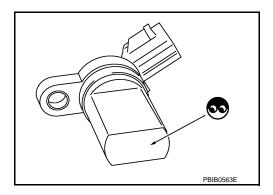
OK or NG

OK >> GO TO 9.

NG >> Replace the signal plate.

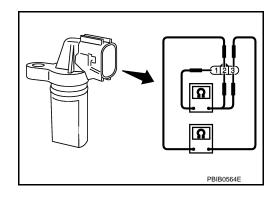
9. CHECK INTERMITTENT INCIDENT

Refer to EC-140.


>> INSPECTION END

Component Inspection

INFOID:0000000002954334


CRANKSHAFT POSITION SENSOR (POS)

- 1. Loosen the fixing bolt of the sensor.
- 2. Disconnect crankshaft position sensor (POS) harness connector.
- 3. Remove the sensor.
- 4. Visually check the sensor for chipping.

5. Check resistance as shown in the figure.

Terminal No. (Polarity)	Resistance Ω [at 25°C (77°F)]
1 (+) - 2 (-)	
1 (+) - 3 (-)	Except 0 or ∞
2 (+) - 3 (-)	7

Removal and Installation

INFOID:0000000002954335

CRANKSHAFT POSITION SENSOR (POS) Refer to EM-30.

[VQ35DE]

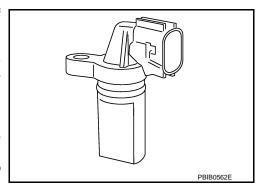
INFOID:0000000002954336

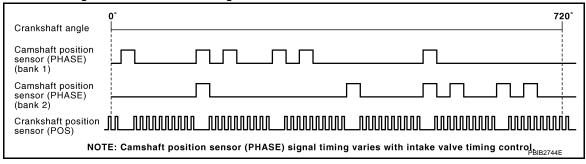
DTC P0340, P0345 CMP SENSOR (PHASE)

Component Description

The camshaft position sensor (PHASE) senses the retraction of camshaft (INT) to identify a particular cylinder. The camshaft position sensor (PHASE) senses the piston position.

When the crankshaft position sensor (POS) system becomes inoperative, the camshaft position sensor (PHASE) provides various controls of engine parts instead, utilizing timing of cylinder identification signals.


The sensor consists of a permanent magnet and Hall IC.


When engine is running, the high and low parts of the teeth cause the gap with the sensor to change.

The changing gap causes the magnetic field near the sensor to change.

Due to the changing magnetic field, the voltage from the sensor changes.

ECM receives the signals as shown in the figure.

CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
ENG SPEED	Run engine and compare CONSULT-III value with the ta- chometer indication.	Almost the same speed as the tachometer indication.

On Board Diagnosis Logic

INFOID:0000000002954338

INFOID:0000000002954339

INFOID:0000000002954337

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0340 0340 (Bank 1) P0345 0345 (Bank 2)	Camshaft position sensor (PHASE) circuit	 The cylinder No. signal is not sent to ECM for the first few seconds during engine cranking. The cylinder No. signal is not sent to ECM during engine running. The cylinder No. signal is not in the normal pattern during engine running. 	Harness or connectors (The sensor circuit is open or shorted) Camshaft position sensor (PHASE) Camshaft (INT) Starter motor (Refer to SC-8.) Starting system circuit (Refer to SC-8.) Dead (Weak) battery

DTC Confirmation Procedure

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V with ignition switch ON.

- 1. Crank engine for at least 2 seconds and run it for at least 5 seconds at idle speed.
- Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-339</u>, "<u>Diagnosis Procedure</u>".

Revision: 2009 February **EC-335** 2008 M35/M45

EC

Α

D

Е

J

K

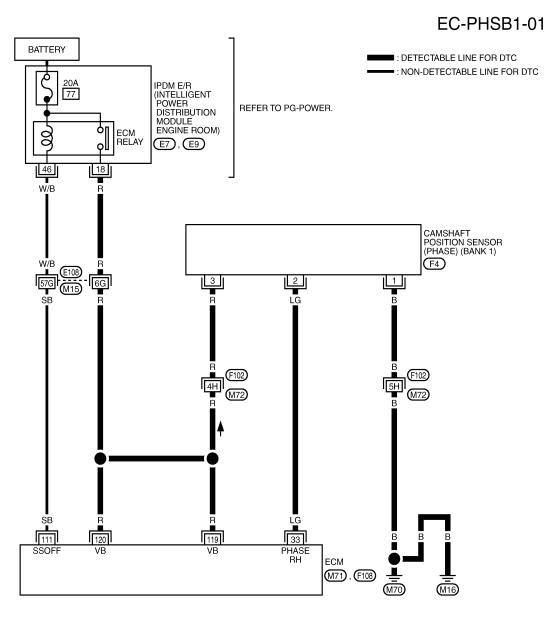
1

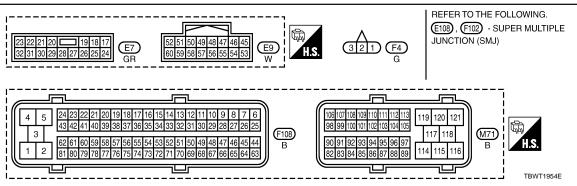
M

Ν

_

[VQ35DE]


If 1st trip DTC is not detected, go to next step.


- 4. Maintaining engine speed at more than 800 rpm for at least 5 seconds.
- 5. Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-339</u>. "<u>Diagnosis Procedure</u>".

Wiring Diagram

INFOID:0000000002954340

BANK 1

DTC P0340, P0345 CMP SENSOR (PHASE)

< SERVICE INFORMATION >

[VQ35DE]

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
22	16	Camshaft position sensor (PHASE) (bank 1)	 [Engine is running] Warm-up condition Idle speed NOTE: The pulse cycle changes depending on rpm at idle 	1.0 - 4.0V★ >> 5.0 V/Div 20 ms/Div T PBIB1039E
33	33 LG		[Engine is running] • Engine speed is 2,000 rpm	1.0 - 4.0V★ >>> 5.0V/Div 20 ms/Div PBIB1040E
111	SB	ECM relay	[Engine is running][Ignition switch: OFF]For a few seconds after turning ignition switch OFF	0 - 1.5V
	(Self shut-off)	[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)	
119 120	R R	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

EC

Α

D

C

Е

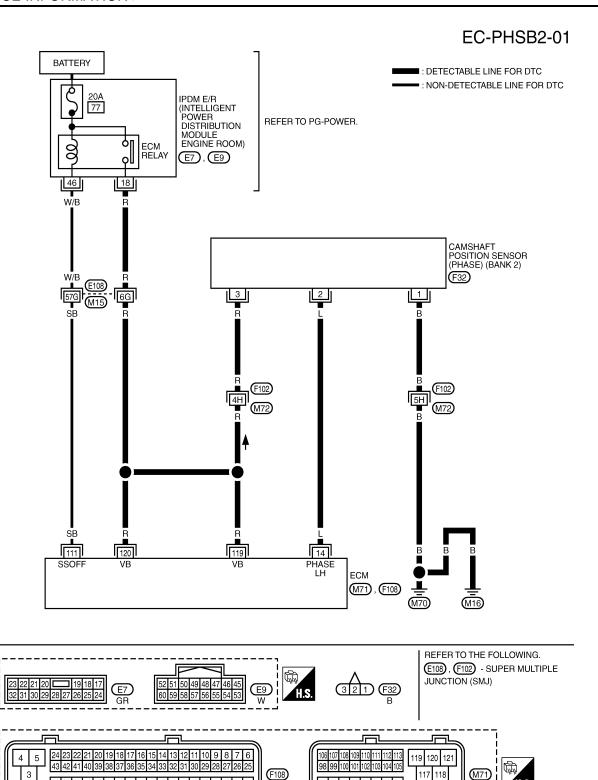
F

Н

1

J

Κ


M

Ν

0

[VQ35DE]

BANK 2

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

DTC P0340, P0345 CMP SENSOR (PHASE)

< SERVICE INFORMATION >

[VQ35DE]

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
14		Camshaft position sensor	 [Engine is running] Warm-up condition Idle speed NOTE: The pulse cycle changes depending on rpm at idle 	1.0 - 4.0 V★ >>> 5.0 V/Div 20 ms/Div T PBIB1039E
14	14 L	(PHASE) (bank 2)	[Engine is running] • Engine speed: 2,000 rpm	1.0 - 4.0V★ >>> 5.0 V/Div 20 ms/Div PBIB1040E
111	111 SB	B ECM relay (Self shut-off)	[Engine is running] [Ignition switch: OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V
			[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
119 120	R R	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

★: Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnosis Procedure

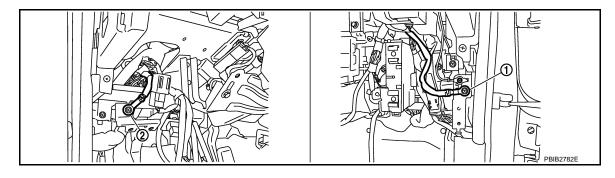
1. CHECK STARTING SYSTEM

Turn ignition switch to START position.

Does the engine turn over?

Does the starter motor operate?

Yes or No


Yes >> GO TO 2.

No >> Check starting system. (Refer to <u>SC-8</u>.)

2. CHECK GROUND CONNECTIONS

1. Turn ignition switch OFF.

2. Loosen and retighten ground two screws on the body. Refer to EC-146, "Ground Inspection".

Α

Е

D

F

G

Н

INFOID:0000000002954341

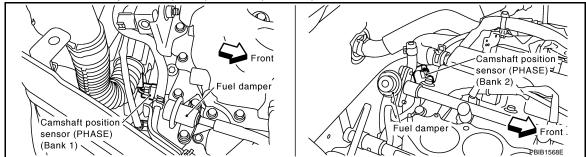
I\ /I

K

M

Ν

- 1. Body ground M70
- Body ground M16

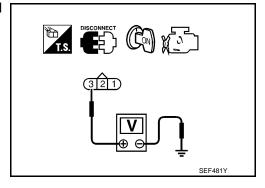

OK or NG

OK >> GO TO 3.

NG >> Repair or replace ground connections.

3.check camshaft position (cmp) sensor (phase) power supply circuit

1. Disconnect camshaft position (CMP) sensor (PHASE) harness connector.



- 2. Turn ignition switch ON.
- 3. Check voltage between CMP sensor (PHASE) terminal 3 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- Harness connectors F102, M72
- Harness for open or short between camshaft position sensor (PHASE) and ECM
- Harness for open or short between camshaft position sensor (PHASE) and IPDM E/R
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK CMP SENSOR (PHASE) GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Check harness continuity between CMP sensor (PHASE) terminal 1 and ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F102, M72
- Harness for open or short between CMP sensor (PHASE) and ground
 - >> Repair open circuit or short to power in harness or connectors.

DTC P0340, P0345 CMP SENSOR (PHASE)

< SERVICE INFORMATION >

[VQ35DE]

7.CHECK CMP SENSOR (PHASE) INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

1. Disconnect ECM harness connector.

2. Check harness continuity between ECM terminal 33 (Bank 1) or 14 (Bank 2) and CMP sensor (PHASE) terminal 2.

Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

8.CHECK CAMSHAFT POSITION SENSOR (PHASE)

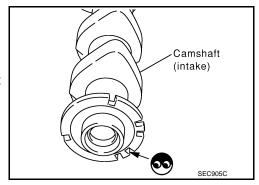
Refer to EC-341, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace malfunctioning camshaft position sensor (PHASE).

9. CHECK CAMSHAFT (INT)


Check the following.

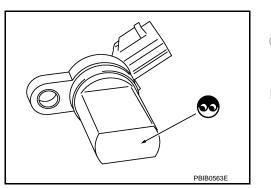
- · Accumulation of debris to the signal plate of camshaft rear end
- · Chipping signal plate of camshaft rear end

OK or NG

OK >> GO TO 10.

NG >> Remove debris and clean the signal plate of camshaft rear end or replace camshaft.

10. CHECK INTERMITTENT INCIDENT


Refer to EC-140.

>> INSPECTION END

Component Inspection

CAMSHAFT POSITION SENSOR (PHASE)

- Loosen the fixing bolt of the sensor.
- 2. Disconnect camshaft position sensor (PHASE) harness connector.
- Remove the sensor.
- Visually check the sensor for chipping.

EC

D

F

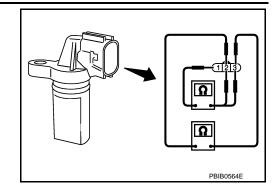
Е

G

Н

INFOID:0000000002954342

Ν


DTC P0340, P0345 CMP SENSOR (PHASE)

< SERVICE INFORMATION >

[VQ35DE]

5. Check resistance as shown in the figure.

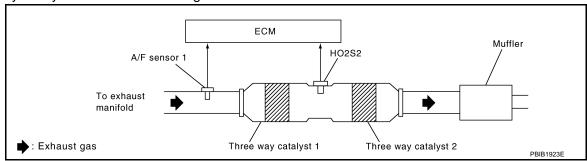
Terminal No. (Polarity)	Resistance Ω [at 25°C (77°F)]
1 (+) - 2 (-)	
1 (+) - 3 (-)	Except 0 or ∞
2 (+) - 3 (-)	

INFOID:0000000002954343

Removal and Installation

CAMSHAFT POSITION SENSOR (PHASE) Refer to $\underline{\mathsf{EM-84}}$.

[VQ35DE]


INFOID:0000000002954344

DTC P0420, P0430 THREE WAY CATALYST FUNCTION

On Board Diagnosis Logic

The ECM monitors the switching frequency ratio of air fuel ratio (A/F) sensor 1 and heated oxygen sensor 2. A three way catalyst 1 with high oxygen storage capacity will indicate a low switching frequency of heated oxygen sensor 2. As oxygen storage capacity decreases, the heated oxygen sensor 2 switching frequency will

When the frequency ratio of A/F sensor 1 and heated oxygen sensor 2 approaches a specified limit value, the three way catalyst 1 malfunction is diagnosed.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0420 0420 (Bank 1) P0430 0430 (Bank 2)	Catalyst system efficiency below threshold	 Three way catalyst (manifold) does not operate properly. Three way catalyst (manifold) does not have enough oxygen storage capacity. 	 Three way catalyst (manifold) Exhaust tube Intake air leaks Fuel injector Fuel injector leaks Spark plug Improper ignition timing

DTC Confirmation Procedure

INFOID:0000000002954345

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-III

TESTING CONDITION:

Do not hold engine speed for more than the specified minutes below.

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-III.
- 2. Start engine and warm it up to the normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds. 3.
- Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load. 4.
- Let engine idle for 1 minute.
- Make sure that "COOLAN TEMP/S" indicates more than 70°C (158°F). If not, warm up engine and go to next step when "COOLAN TEMP/S" indication reaches to 70°C (158°F).
- 7. Open engine hood.
- Select "DTC & SRT CONFIRMATION" then "SRT WORK SUPPORT" mode with CONSULT-III.
- Rev engine up to 2,000 to 3,000 rpm and hold it for 3 consecutive minutes then release the accelerator pedal completely. If "INCMP" of "CATALYST" changed to "CMPLT", go to step 12.
- 10. Wait 5 seconds at idle.
- 11. Rev engine up to 2,000 to 3,000 rpm and maintain it until "INCMP" of "CATALYST" changes to "CMPLT" (It will take approximately 5 minutes). If not "CMPLT", stop engine and cool it down to less than 70°C (158°F) and then retest from step 1.
- 12. Select "SELF-DIAG RESULTS" mode with CONSULT-III.
- 13. Confirm that the 1st trip DTC is not detected.

EC-343 Revision: 2009 February 2008 M35/M45

EC

Α

D

Е

F

Н

M

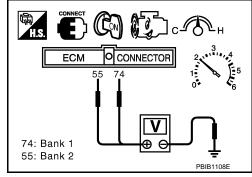
Ν

[VQ35DE]

If the 1st trip DTC is detected, go to EC-344, "Diagnosis Procedure".

Overall Function Check

INFOID:0000000002954346


Use this procedure to check the overall function of the three way catalyst (manifold). During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Open engine hood.
- Set voltmeter probe between ECM terminals ECM terminals 55 [HO2S2 (bank 2) signal], 74 [HO2S2 (bank 1) signal] and ground.
- 7. Keep engine speed at 2,500 rpm constant under no load.
- Make sure that the voltage does not vary for more than 5 seconds.

If the voltage fluctuation cycle takes less than 5 seconds, go to <u>EC-344, "Diagnosis Procedure"</u>.

• 1 cycle: $0.6 - 1.0 \rightarrow 0 - 0.3 \rightarrow 0.6 - 1.0$

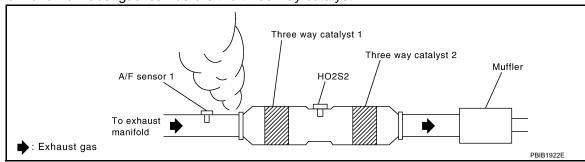
INFOID:0000000002954347

2008 M35/M45

Diagnosis Procedure

1. CHECK EXHAUST SYSTEM

Visually check exhaust tubes and muffler for dent.


OK or NG

OK >> GO TO 2.

NG >> Repair or replace.

2.CHECK EXHAUST GAS LEAK

- 1. Start engine and run it at idle.
- Listen for an exhaust gas leak before the three way catalyst 1.

OK or NG

OK >> GO TO 3.

NG >> Repair or replace.

3.CHECK INTAKE AIR LEAK

Listen for an intake air leak after the mass air flow sensor.

OK or NG

OK >> GO TO 4.

NG >> Repair or replace.

4. CHECK IGNITION TIMING

Check the following items. Refer to EC-76, "Basic Inspection".

DTC P0420, P0430 THREE WAY CATALYST FUNCTION

< SERVICE INFORMATION >

[VQ35DE]

Items	Specifications	
Target idle speed	650 ± 50 rpm (in P or N position)	
Ignition timing	15 ± 5° BTDC (in P or N position)	

EC

D

Е

Н

Α

OK or NG

OK >> GO TO 5.

NG >> Follow the EC-76, "Basic Inspection".

5. CHECK FUEL INJECTORS

Stop engine and then turn ignition switch ON.

2. Check voltage between ECM terminals 21, 22, 23, 40, 41, 42 and ground with CONSULT-III or tester. Refer to Wiring Diagram for fuel Injectors, EC-595, "Wiring Dia-

gram".

Voltage: Battery voltage

OK or NG

OK >> GO TO 6.

NG >> Perform <u>EC-596</u>, "Diagnosis Procedure".

CONNECTOR ECM 21, 22, 23, 40, 41, 42

6.check function of ignition coil-i

CAUTION:

Do the following procedure in the place where ventilation is good without the combustible.

Turn ignition switch OFF.

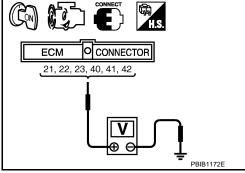
Remove fuel pump fuse (1) in IPDM E/R (2) to release fuel pressure.

NOTE:

Do not use CONSULT-III to release fuel pressure, or fuel pressure applies again during the following procedure.

- Start engine.
- 4. After engine stalls, crank it two or three times to release all fuel pressure.
- Turn ignition switch OFF.
- 6. Remove all ignition coil harness connectors to avoid the electrical discharge from the ignition coils.
- 7. Remove ignition coil and spark plug of the cylinder to be checked.
- 8. Crank engine for 5 seconds or more to remove combustion gas in the cylinder.
- 9. Connect spark plug and harness connector to ignition coil.
- 10. Fix ignition coil using a rope etc. with gap of 13 17 mm between the edge of the spark plug and grounded metal portion as shown in the figure.
- 11. Crank engine for about 3 seconds, and check whether spark is generated between the spark plug and the grounded metal portion.

Spark should be generated.


CAUTION:

 Do not approach to the spark plug and the ignition coil within 50cm. Be careful not to get an electrical shock while checking, because the electrical discharge voltage becomes 20kV or more.

 It might cause to damage the ignition coil if the gap of more than 17 mm is taken. NOTE:

When the gap is less than 13 mm, the spark might be generated even if the coil is malfunctioning.

OK or NG

Ν

P

113 - 17 mm

PBIB2325E

Grounded metal portion

(Cylinder head, cylinder block, etc.)

DTC P0420, P0430 THREE WAY CATALYST FUNCTION

< SERVICE INFORMATION >

OK >> GO TO 10. NG >> GO TO 7.

7.CHECK FUNCTION OF IGNITION COIL-II

- Turn ignition switch OFF.
- 2. Disconnect spark plug and connect a known-good spark plug.
- Crank engine for about 3 seconds, and recheck whether spark is generated between the spark plug and the grounded metal portion.

Spark should be generated.

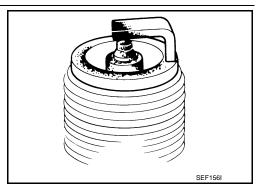
OK or NG

OK >> GO TO 8.

NG >> Check ignition coil, power transistor and their circuits. Refer to EC-614.

8.CHECK SPARK PLUG

Check the initial spark plug for fouling, etc.


OK or NG

OK

>> Replace spark plug(s) with standard type one(s). For spark plug type, refer to MA-18, "Changing Spark Plugs (Platinum-Tipped Type)".

NG

>> 1. Repair or clean spark plug. 2. GO TO 9.

[VQ35DE]

9. CHECK FUNCTION OF IGNITION COIL-III

- Reconnect the initial spark plugs.
- Crank engine for about 3 seconds, and recheck whether spark is generated between the spark plug and the grounded portion.

Spark should be generated.

OK or NG

OK >> INSPECTION END

NG >> Replace spark plug(s) with standard type one(s). For spark plug type, refer to MA-18, "Changing Spark Plugs (Platinum-Tipped Type)".

10. CHECK FUEL INJECTOR

- 1. Turn ignition switch OFF.
- 2. Remove fuel injector assembly.

Refer to EM-46.

Keep fuel hose and all fuel injectors connected to fuel tube.

- 3. Disconnect all ignition coil harness connectors.
- Reconnect all fuel injector harness connectors disconnected.
- Turn ignition switch ON.

Make sure fuel does not drip from fuel injector.

OK or NG

OK (Does not drip.)>>GO TO 11.

NG (Drips.)>>Replace the fuel injector(s) from which fuel is dripping.

11. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

Trouble is fixed.>>INSPECTION END

Trouble is not fixed.>>Replace three way catalyst assembly.

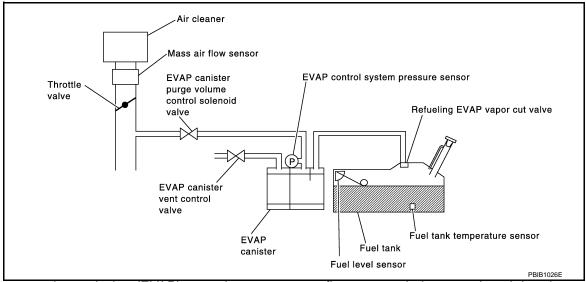
[VQ35DE]

DTC P0441 EVAP CONTROL SYSTEM

System Description

INFOID:0000000002954348

Α


EC

D

F

NOTE:

If DTC P0441 is displayed with other DTC such as P2122, P2123, P2127, P2128 or P2138, first perform trouble diagnosis for other DTC.

In this evaporative emission (EVAP) control system, purge flow occurs during non-closed throttle conditions. Purge volume is related to air intake volume. Under normal purge conditions (non-closed throttle), the EVAP canister purge volume control solenoid valve is open to admit purge flow. Purge flow exposes the EVAP control system pressure sensor to intake manifold vacuum.

On Board Diagnosis Logic

INFOID:0000000002954349

Under normal conditions (non-closed throttle), sensor output voltage indicates if pressure drop and purge flow are adequate. If not, a malfunction is determined.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	K
P0441 0441	EVAP control system incorrect purge flow	EVAP control system does not operate properly, EVAP control system has a leak between intake manifold and EVAP control system pressure sensor.	EVAP canister purge volume control solenoid valve stuck closed EVAP control system pressure sensor and the circuit Loose, disconnected or improper connection of rubber tube Blocked rubber tube Cracked EVAP canister EVAP canister purge volume control solenoid valve circuit Accelerator pedal position sensor Blocked purge port EVAP canister vent control valve	L M

DTC Confirmation Procedure

INFOID:0000000002954350

Р

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Always perform test at a temperature of 5°C (41°F) or more.

(P) WITH CONSULT-III

1. Start engine and warm it up to normal operating temperature.

Revision: 2009 February **EC-347** 2008 M35/M45

< SERVICE INFORMATION >

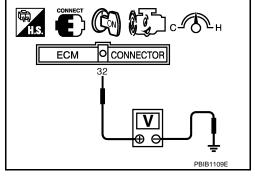
- Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and let it idle for at least 70 seconds.
- Select "PURG FLOW P0441" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CON-SULT-III.
- 5. Touch "START".
 - If "COMPLETED" is displayed, go to step 7.
- When the following conditions are met, "TESTING" will be displayed on the CONSULT-III screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take at least 35 seconds.)

Selector lever	Suitable position
VHCL SPEED SE	32 - 120 km/h (20 - 75 MPH)
ENG SPEED	500 - 3,000 rpm
B/FUEL SCHDL	1.3 - 9.0 msec
COOLAN TEMP/S	70 - 100°C (158 - 212°F)

If "TESTING" is not changed for a long time, retry from step 2.

7. Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to EC-348, "Diagnosis Procedure".

Overall Function Check


INFOID:0000000002954351

Use this procedure to check the overall monitoring function of the EVAP control system purge flow monitoring. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Lift up drive wheels.
- 2. Start engine (VDC switch OFF) and warm it up to normal operating temperature.
- 3. Turn ignition switch OFF, wait at least 10 seconds.
- Start engine and wait at least 70 seconds.
- 5. Set voltmeter probes to ECM terminals 32 (EVAP control system pressure sensor signal) and ground.
- Check EVAP control system pressure sensor value at idle speed and note it.
- Establish and maintain the following conditions for at least 1 minute.

Air conditioner switch	ON
Headlamp switch	ON
Rear window defogger switch	ON
Engine speed	Approx. 3,000 rpm
Gear position	Any position other than P, N or R

- Verify that EVAP control system pressure sensor value stays 0.1V less than the value at idle speed (measured at step 6) for at least 1 second.
- 9. If NG, go to EC-348, "Diagnosis Procedure".

Diagnosis Procedure

INFOID:0000000002954352

1. CHECK EVAP CANISTER

- 1. Turn ignition switch OFF.
- Check EVAP canister for cracks.

OK or NG

OK (With CONSULT-III)>>GO TO 2.

OK (Without CONSULT-III)>>GO TO 3.

NG >> Replace EVAP canister.

2.CHECK PURGE FLOW

(I) With CONSULT-III

Revision: 2009 February **EC-348** 2008 M35/M45

< SERVICE INFORMATION >

[VQ35DE]

- 1. Disconnect vacuum hose connected to EVAP canister purge volume control solenoid valve at EVAP service port and install vacuum gauge. For the location of EVAP service port, refer to EC-40, "Description".
- 2. Start engine and let it idle.
- 3. Select "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-III.
- 4. Rev engine up to 2,000 rpm.
- 5. Touch "Qd" and "Qu" on CONSULT-III screen to adjust "PURG VOL CONT/V" opening and check vacuum existence.

Ī	\circ
	U

Α

PURG VOL CONT/V	Vacuum
100%	Should exist.
0%	Should not exist.

OK or NG

OK >> GO TO 7. NG >> GO TO 4.

3.CHECK PURGE FLOW

(R) Without CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- Stop engine
- Disconnect vacuum hose connected to EVAP canister purge volume control solenoid valve at EVAP service port and install vacuum gauge. For the location of EVAP service port, refer to EC-40, "Description"
- 4. Start engine and let it idle.

Do not depress accelerator pedal even slightly.

5. Check vacuum gauge indication before 60 seconds passed after starting engine.

Vacuum should not exist.

6. Revving engine up to 2,000rpm after 100 seconds passed after starting engine.

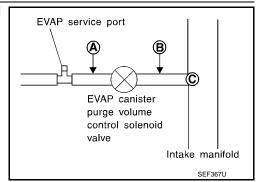
Vacuum should exist.

OK or NG

OK >> GO TO 7. NG >> GO TO 4. J

4. CHECK EVAP PURGE LINE

- 1. Turn ignition switch OFF.
- Check EVAP purge line for improper connection or disconnection. Refer to <u>EC-40</u>, "<u>Description</u>".


OK or NG

OK >> GO TO 5. NG >> Repair it.

M

CHECK EVAP PURGE HOSE AND PURGE PORT

- Disconnect purge hoses connected to EVAP service port A and EVAP canister purge volume control solenoid valve B.
- Blow air into each hose and EVAP purge port C.

D

Е

F

G

Н

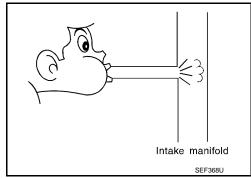
K

L

Ν

< SERVICE INFORMATION >

[VQ35DE]


3. Check that air flows freely.

OK or NG

OK (With CONSULT-III)>>GO TO 6.

OK (Without CONSULT-III)>>GO TO 7.

NG >> Repair or clean hoses and/or purge port.

6. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(P) With CONSULT-III

- Start engine.
- Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-III. Check that engine speed varies according to the valve opening.

OK or NG

OK >> GO TO 8.

NG >> GO TO 7.

.CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-371, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace EVAP canister purge volume control solenoid valve.

8. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR CONNECTOR

- 1. Disconnect EVAP control system pressure sensor harness connector.
- 2. Check connectors for water.

Water should not exist.

OK or NG

OK >> GO TO 9.

NG >> Replace EVAP control system pressure sensor.

9.CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR FUNCTION

Refer to <u>EC-387</u>. "DTC Confirmation Procedure" for DTC P0452, <u>EC-393</u>. "DTC Confirmation Procedure" for DTC P0453.

OK or NG

OK >> GO TO 10.

NG >> Replace EVAP control system pressure sensor.

10.CHECK RUBBER TUBE FOR CLOGGING

- 1. Disconnect rubber tube connected to EVAP canister vent control valve.
- 2. Check the rubber tube for clogging.

OK or NG

OK >> GO TO 11.

NG >> Clean the rubber tube using an air blower.

11. CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-376, "Component Inspection".

OK or NG

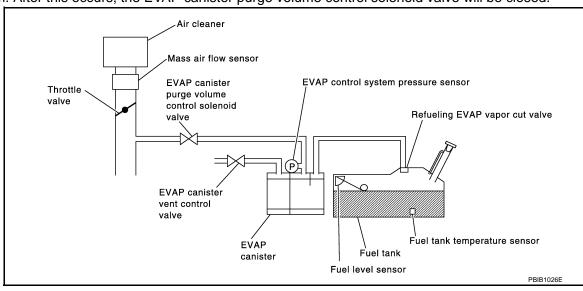
OK >> GO TO 12.

NG >> Replace EVAP canister vent control valve.

12. CHECK EVAP PURGE LINE

DTC P0441 EVAP CONTROL SYSTEM		
< SERVICE INFORMATION >	[VQ35DE]	
Inspect EVAP purge line (pipe and rubber tube). Check for evidence of leaks. Refer to EC-40 , "Description".	ı	А
OK or NG		
OK >> GO TO 13. NG >> Replace it.	E	С
13.clean evap purge line		
Clean EVAP purge line (pipe and rubber tube) using air blower.		С
>> GO TO 14.	,	
14. CHECK INTERMITTENT INCIDENT	1	D
Refer to EC-140.		
>> INSPECTION END	!	Е
		F
	(G
	ı	Н
		ı
		J
	1	K
	I	L
	ľ	M
		N.I.
	ı	N
		0
	(

EC-351 Revision: 2009 February 2008 M35/M45


On Board Diagnosis Logic

INFOID:0000000002954353

This diagnosis detects leaks in the EVAP purge line using engine intake manifold vacuum.

If pressure does not increase, the ECM will check for leaks in the line between the fuel tank and EVAP canister purge volume control solenoid valve, under the following "Vacuum test" conditions.

The EVAP canister vent control valve is closed to shut the EVAP purge line off. The EVAP canister purge volume control solenoid valve will then be opened to depressurize the EVAP purge line using intake manifold vacuum. After this occurs, the EVAP canister purge volume control solenoid valve will be closed.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0442 0442	EVAP control system small leak detected (negative pressure)	EVAP control system has a leak, EVAP control system does not operate properly.	 Incorrect fuel tank vacuum relief valve Incorrect fuel filler cap used Fuel filler cap remains open or fails to close. Foreign matter caught in fuel filler cap. Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve. Foreign matter caught in EVAP canister vent control valve. EVAP canister or fuel tank leaks EVAP purge line (pipe and rubber tube) leaks EVAP purge line rubber tube bent Loose or disconnected rubber tube EVAP canister vent control valve and the circuit EVAP canister purge volume control solenoid valve and the circuit Fuel tank temperature sensor O-ring of EVAP canister vent control valve is missing or damaged EVAP canister is saturated with water EVAP control system pressure sensor Fuel level sensor and the circuit Refueling EVAP vapor cut valve ORVR system leaks

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

DTC Confirmation Procedure

INFOID:0000000002954354

NOTE:

Revision: 2009 February **EC-352** 2008 M35/M45

< SERVICE INFORMATION >

[VQ35DE]

 If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 and 3/4 full, and vehicle is placed on flat level surface.
- Always perform test at a temperature of 0 to 30°C (32 to 86°F).

(P) WITH CONSULT-III

- 1. Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-III.
- 4. Make sure that the following conditions are met.

COOLAN TEMP/S: 0 - 70°C (32 - 158°F) INT/A TEMP SE: 0 - 30°C (32 - 86°F)

5. Select "EVAP SML LEAK P0442/P1442" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-III.

Follow the instruction displayed.

NOTE:

If the engine speed cannot be maintained within the range displayed on the CONSULT-III screen, go to EC-76, "Basic Inspection".

Make sure that "OK" is displayed.

If "NG" is displayed, refer to EC-353, "Diagnosis Procedure".

NOTE:

Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

WITH GST

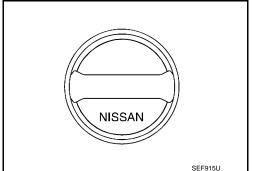
NOTE:

Be sure to read the explanation of EC-55, "Emission-Related Diagnostic Information" before driving vehicle.

- Start engine.
- Drive vehicle according to EC-55, "Emission-Related Diagnostic Information".
- Stop vehicle.
- Turn ignition switch OFF, wait at least 10 seconds and then turn ON.
- Select Service \$07 with GST.
 - If P0442 is displayed on the screen, go to EC-353, "Diagnosis Procedure".
 - If P0441 is displayed on the screen, go to <u>EC-348</u>, "Diagnosis Procedure".

Diagnosis Procedure

INFOID:0000000002954355


1. CHECK FUEL FILLER CAP DESIGN

- Turn ignition switch OFF.
- Check for genuine NISSAN fuel filler cap design.

OK or NG

OK >> GO TO 2.

NG >> Replace with genuine NISSAN fuel filler cap.

2.CHECK FUEL FILLER CAP INSTALLATION

Check that the cap is tightened properly by rotating the cap clockwise.

OK or NG

>> GO TO 3. OK

NG >> 1. Open fuel filler cap, then clean cap and fuel filler neck threads using air blower.

Retighten until ratcheting sound is heard.

EC

Α

D

Е

Н

K

M

N

< SERVICE INFORMATION >

3.check fuel filler cap function

Check for air releasing sound while opening the fuel filler cap.

OK or NG

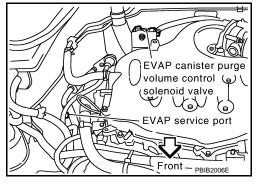
OK >> GO TO 5. NG >> GO TO 4.

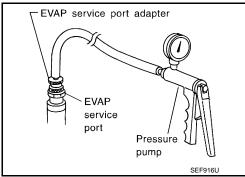
4. CHECK FUEL TANK VACUUM RELIEF VALVE

Refer to EC-42, "Component Inspection".

OK or NG

OK >> GO TO 5.


NG >> Replace fuel filler cap with a genuine one.


5. INSTALL THE PRESSURE PUMP

To locate the EVAP leak, install EVAP service port adapter and pressure pump to EVAP service port securely.

NOTE:

Improper installation of the EVAP service port adapter to the EVAP service port may cause leaking.

With CONSULT-III>>GO TO 6. Without CONSULT-III>>GO TO 7.

6. CHECK FOR EVAP LEAK

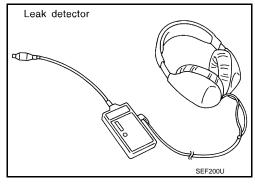
(P) With CONSULT-III

- 1. Turn ignition switch ON.
- 2. Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-III.
- Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph.

CAUTION:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.

< SERVICE INFORMATION >


[VQ35DE]

Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to EC-40, "Description".

OK or NG

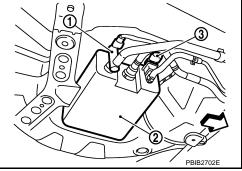
OK >> GO TO 8.

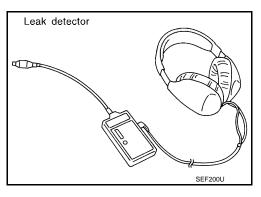
NG >> Repair or replace.

7 . CHECK FOR EVAP LEAK

(R) Without CONSULT-III

- Turn ignition switch OFF.
- Apply 12 volts DC to EVAP canister vent control valve (1). The valve will close. (Continue to apply 12 volts until the end of test.)
- Illustration shows the view from under the vehicle
- ⟨□: Vehicle front
- EVAP canister (2)
- EVAP control system pressure sensor (3)
- 3. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.


CAUTION:


- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 4. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to EC-40, "Description".

OK >> GO TO 8.

NG >> Repair or replace.

8.CHECK EVAP CANISTER VENT CONTROL VALVE

Check the following.

- EVAP canister vent control valve is installed properly. Refer to EC-44, "Removal and Installation".
- EVAP canister vent control valve. Refer to EC-376, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Repair or replace EVAP canister vent control valve and O-ring.

9.CHECK IF EVAP CANISTER SATURATED WITH WATER

Remove EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.

EC-355

2008 M35/M45

Revision: 2009 February

EC

Α

D

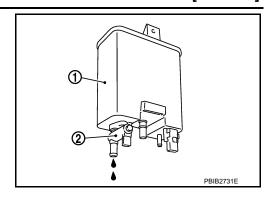
F

Н

N

< SERVICE INFORMATION >

[VQ35DE]


- 2. Does water drain from the EVAP canister (1)?
- EVAP canister vent control valve (2)

Yes or No

Yes >> GO TO 10.

No (With CONSULT-III)>>GO TO 12.

No (Without CONSULT-III)>>GO TO 13.

10. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve and EVAP control system pressure sensor attached.

The weight should be less than 2.0 kg (4.4 lb).

OK or NG

OK (With CONSULT-III)>>GO TO 12.

OK (Without CONSULT-III)>>GO TO 13.

NG >> GO TO 11.

11. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and vehicle frame for clogging or poor connection

>> Repair hose or replace EVAP canister.

12. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(P) With CONSULT-III

- 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 2. Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- 4. Touch "Qu" on CONSULT-III screen to increase "PURG VOL CONT/V" opening to 100%.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

OK or NG

OK >> GO TO 15.

NG >> GO TO 14.

13. Check evap canister purge volume control solenoid valve operation

⋈ Without CONSULT-III

- Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- Start engine and let it idle for at least 80 seconds.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

Vacuum should exist.

OK or NG

OK >> GO TO 16.

NG >> GO TO 14.

14. CHECK VACUUM HOSE

Check vacuum hoses for clogging or disconnection. Refer to EC-105, "Vacuum Hose Drawing".

OK or NG

OK >> GO TO 15.

NG >> Repair or reconnect the hose.

DIC PU442 EVAP CONTROL STSTEM
< SERVICE INFORMATION > [VQ35D]
15. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE
Refer to EC-365, "Component Inspection".
OK or NG
OK >> GO TO 16. NG >> Replace EVAP canister purge volume control solenoid valve.
16. CHECK FUEL TANK TEMPERATURE SENSOR
Refer to EC-307, "Component Inspection".
OK or NG
OK >> GO TO 17.
NG >> Replace fuel level sensor unit.
17. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR
Refer to EC-352, "DTC Confirmation Procedure".
OK or NG
OK >> GO TO 18. NG >> Replace EVAP control system pressure sensor.
18. CHECK EVAP PURGE LINE
Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks or improper connection.
Refer to EC-40. "Description".
OK or NG
OK >> GO TO 19. NG >> Repair or reconnect the hose.
19. CLEAN EVAP PURGE LINE
Clean EVAP purge line (pipe and rubber tube) using air blower.
Clean LVAF purge line (pipe and rubber tube) using all blower.
>> GO TO 20.
20. CHECK EVAP/ORVR LINE
Check EVAP/ORVR line between EVAP canister and fuel tank for clogging, kink, looseness and improper conection. For location, refer to <u>EC-46</u> .
OK or NG
OK >> GO TO 21. NG >> Repair or replace hoses and tubes.
21. CHECK RECIRCULATION LINE
Check recirculation line between filler neck tube and fuel tank for clogging, kink, cracks, looseness a
improper connection.
OK or NG
OK >> GO TO 22.
NG >> Repair or replace hose, tube or filler neck tube.
22.CHECK REFUELING EVAP VAPOR CUT VALVE
Refer to EC-48, "Component Inspection".
OK or NG OK >> GO TO 23.
NG >> Replace refueling EVAP vapor cut valve with fuel tank.
23. CHECK FUEL LEVEL SENSOR
Refer to DI-24, "Electrical Component Inspection".
OK or NG
OK >> GO TO 24.
NG >> Replace fuel level sensor unit.

Revision: 2009 February **EC-357** 2008 M35/M45

NG

>> Replace fuel level sensor unit.

< SERVICE INFORMATION >

[VQ35DE]

24. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

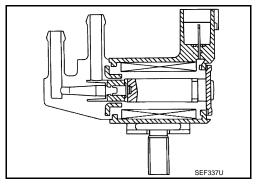
>> INSPECTION END

DTC P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE < SERVICE INFORMATION > [VQ35DE]

DTC P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Description INFOID-000000002954356

SYSTEM DESCRIPTION


Sensor	Input signal to ECM	ECM function	Actuator
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed*1		
Mass air flow sensor	Amount of intake air	Engine coolant temperature Battery voltage*1	
Engine coolant temperature sensor	Engine coolant temperature		
Battery	Battery voltage*1		
Throttle position sensor	Throttle position	EVAP canister purge flow control	EVAP canister purge vol- ume control solenoid valve
Accelerator pedal position sensor	Accelerator pedal position	_ parge new control	and control colonida varvo
Air fuel ratio (A/F) sensor 1	Density of oxygen in exhaust gas (Mixture ratio feedback signal)		
Fuel tank temperature sensor Fuel temperature in fuel tank			
Wheel sensor	Vehicle speed*2		

^{*1:} ECM determines the start signal status by the signals of engine speed and battery voltage.

This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass passage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor from the EVAP canister is regulated as the air flow changes.

COMPONENT DESCRIPTION

The EVAP canister purge volume control solenoid valve uses a ON/ OFF duty to control the flow rate of fuel vapor from the EVAP canister. The EVAP canister purge volume control solenoid valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of fuel vapor that will flow through the valve.

CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
PURG VOL C/V	Engine: After warming upSelector lever: P or NAir conditioner switch: OFF	Idle (Accelerator pedal: Not depressed even slightly, after engine starting.)	0%
	No load	2,000 rpm	_

Revision: 2009 February **EC-359** 2008 M35/M45

EC

Α

D

Е

Н

J

K

L

M

. .

N

INFOID:0000000002954357

^{*2:} This signal is sent to the ECM through CAN communication line.

DTC P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE [VQ35DE]

< SERVICE INFORMATION >

On Board Diagnosis Logic

INFOID:0000000002954358

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0443 0443	EVAP canister purge volume control solenoid valve	The canister purge flow is detected during the specified driving conditions, even when EVAP canister purge volume control solenoid valve is completely closed.	EVAP control system pressure sensor EVAP canister purge volume control solenoid valve (The valve is stuck open.) EVAP canister vent control valve EVAP canister Hoses (Hoses are connected incorrectly or clogged.)

DTC Confirmation Procedure

INFOID:0000000002954359

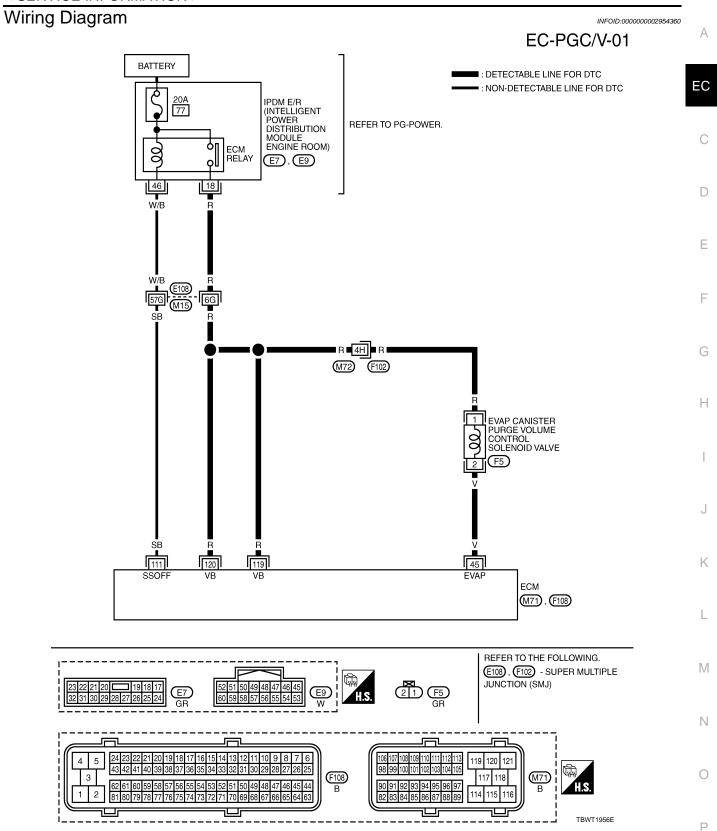
NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Always perform test at a temperature of 5°C (41°F) or more.

(P) WITH CONSULT-III


- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON.
- 4. Select "PURG VOL CN/V P1444" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-III.
- 5. Touch "START".
- 6. Start engine and let it idle until "TESTING" on CONSULT-III changes to "COMPLETED". (It will take approximately 10 seconds.)
 - If "TESTING" is not displayed after 5 minutes, retry from step 2.
- 7. Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to EC-362, "Diagnosis Procedure".

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and let it idle for at least 20 seconds.
- 4. Select Service \$07 with GST.
- 5. If 1st trip DTC is detected, go to EC-362, "Diagnosis Procedure".

DTC P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

< SERVICE INFORMATION > [VQ35DE]

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

CAUTION:

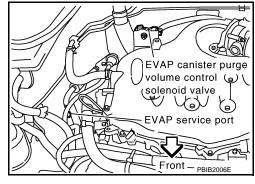
DTC P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

< SERVICE INFORMATION >

[VQ35DE]

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
45	V	EVAP canister purge volume	 [Engine is running] Idle speed Accelerator pedal: Not depressed even slightly, after engine starting 	BATTERY VOLTAGE (11 - 14V)★ In the second of the second
45	V	control solenoid valve	 [Engine is running] Engine speed: About 2,000 rpm (More than 100 seconds after starting engine) 	BATTERY VOLTAGE (11 - 14V)★ 10.0 V/Div 50 ms/Div IT SEC991C
111	SB	ECM relay (Self shut-off)	[Engine is running][Ignition switch: OFF]For a few seconds after turning ignition switch OFF	0 - 1.5V
			 [Ignition switch: OFF] More than a few seconds after turning ignition switch OFF 	BATTERY VOLTAGE (11 - 14V)
119 120	R R	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)


^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

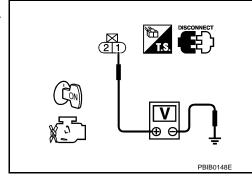
Diagnosis Procedure

INFOID:0000000002954361

1. Check evap canister purge volume control solenoid valve power supply circuit

- 1. Turn ignition switch OFF.
- 2. Disconnect EVAP canister purge volume control solenoid valve harness connector.
- 3. Turn ignition switch ON.

DTC P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE


< SERVICE INFORMATION >

 Check voltage between EVAP canister purge volume control solenoid valve terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- Harness connectors M72, F102
- Harness for open or short between EVAP canister purge volume control solenoid valve and IPDM E/R
- Harness for open or short between EVAP canister purge volume control solenoid valve and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

3.CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 45 and EVAP canister purge volume control solenoid valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR CONNECTOR

- Disconnect EVAP control system pressure sensor harness connector.
- Check connectors for water.

Water should not exist.

OK or NG

OK >> GO TO 5.

NG >> Replace EVAP control system pressure sensor.

${f 5.}$ CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-385, "Component Inspection".

OK or NG

OK (With CONSULT-III)>>GO TO 6.

OK (Without CONSULT-III)>>GO TO 7.

NG >> Replace EVAP control system pressure sensor.

6.CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(P) With CONSULT-III

- 1. Turn ignition switch OFF.
- Reconnect harness connectors disconnected.
- Start engine.
- 4. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-III. Check that engine speed varies according to the valve opening.

EC

Α

[VQ35DE]

D

Е

F

G

Н

ı

K

. .

L

Ν

0

Р

DTC P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE [VQ35DE]

< SERVICE INFORMATION >

OK or NG

OK >> GO TO 8.

NG >> GO TO 7.

7.CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-365, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace EVAP canister purge volume control solenoid valve.

$oldsymbol{8}.$ CHECK RUBBER TUBE FOR CLOGGING

- Disconnect rubber tube connected to EVAP canister vent control valve.
- Check the rubber tube for clogging.

OK or NG

OK >> GO TO 9.

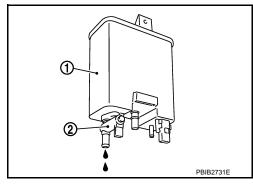
NG >> Clean the rubber tube using an air blower.

$oldsymbol{9}.$ CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-376, "Component Inspection".

OK or NG

OK >> GO TO 10.


NG >> Replace EVAP canister vent control valve.

10.CHECK IF EVAP CANISTER SATURATED WITH WATER

- Remove EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.
- Does water drain from the EVAP canister (1)?
- EVAP canister vent control valve (2)

Yes or No

Yes >> GO TO 11. Nο >> GO TO 13.

11. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve and EVAP control system pressure sensor attached.

The weight should be less than 2.0 kg (4.4 lb).

OK or NG

OK >> GO TO 13.

>> GO TO 12. NG

12. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and vehicle frame for clogging or poor connection

>> Repair hose or replace EVAP canister.

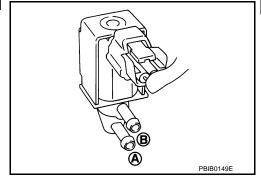
13. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

>> INSPECTION END

DTC P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE [VQ35DE]

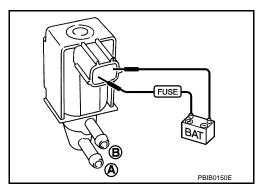
< SERVICE INFORMATION >


Component Inspection

EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(II) With CONSULT-III

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.


Condition (PURG VOL CONT/V value)	Air passage continuity between A and B	
100%	Yes	
0%	No	

Without CONSULT-III

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	Yes
No supply	No

Removal and Installation

Revision: 2009 February

EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE Refer to EM-20.

INFOID:0000000002954363

INFOID:0000000002954362

Α

EC

D

Е

Н

K

L

Ν

0

Р

EC-365 2008 M35/M45

DTC P0444, P0445 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

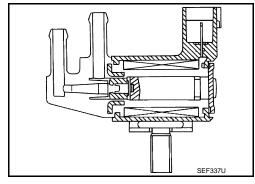
< SERVICE INFORMATION >

[VQ35DE]

DTC P0444, P0445 EVAP CANISTER PURGE VOLUME CONTROL SOLE-NOID VALVE

Description INFOID:000000002954364

SYSTEM DESCRIPTION


Sensor	Input signal to ECM	ECM function	Actuator	
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed*1			
Mass air flow sensor	Amount of intake air			
Engine coolant temperature sensor	Engine coolant temperature			
Battery	Battery voltage*1			
Throttle position sensor	Throttle position		EVAP canister purge vol- ume control solenoid valve	
Accelerator pedal position sensor	Accelerator pedal position		unio control colonicia valvo	
Air fuel ratio (A/F) sensor 1	Density of oxygen in exhaust gas (Mixture ratio feedback signal)		1	
Fuel tank temperature sensor	Fuel temperature in fuel tank			
Wheel sensor	Vehicle speed*2			

^{*1:} ECM determines the start signal status by the signals of engine speed and battery voltage.

This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass passage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor from the EVAP canister is regulated as the air flow changes.

COMPONENT DESCRIPTION

The EVAP canister purge volume control solenoid valve uses a ON/ OFF duty to control the flow rate of fuel vapor from the EVAP canister. The EVAP canister purge volume control solenoid valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of fuel vapor that will flow through the valve.

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002954365

Specification data are reference values.

MONITOR ITEM	CC	SPECIFICATION	
PURG VOL C/V	Engine: After warming upSelector lever: P or NAir conditioner switch: OFF	Idle (Accelerator pedal: Not depressed even slightly, after engine starting.)	0%
	No load	2,000 rpm	_

^{*2:} This signal is sent to the ECM through CAN communication line.

DTC P0444, P0445 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

< SERVICE INFORMATION >

[VQ35DE]

On Board Diagnosis Logic

INFOID:0000000002954366

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0444 0444	EVAP canister purge volume control solenoid valve circuit open	An excessively low voltage signal is sent to ECM through the valve	Harness or connectors (The solenoid valve circuit is open or shorted.) EVAP canister purge volume control solenoid valve
P0445 0445	EVAP canister purge volume control solenoid valve circuit shorted	An excessively high voltage signal is sent to ECM through the valve	Harness or connectors (The solenoid valve circuit is shorted.) EVAP canister purge volume control solenoid valve

DTC Confirmation Procedure

INFOID:0000000002954367

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm battery voltage is more than 11V at idle.

- 1. Start engine and let it idle for at least 13 seconds.
- Check 1st trip DTC.
- 3. If 1st trip DTC is detected, go to EC-369, "Diagnosis Procedure".

EC

Α

С

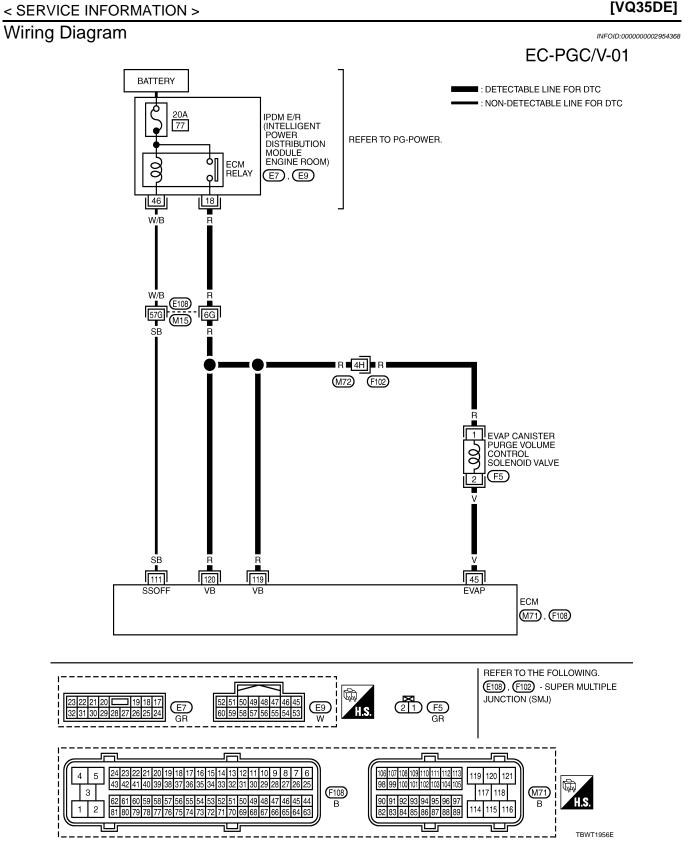
D

F

G

Н

I


K

L

Ν

Р

VALVE

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III. **CAUTION:**

DTC P0444, P0445 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID **VALVE**

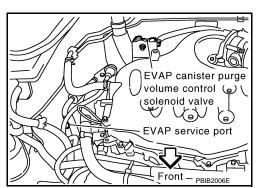
< SERVICE INFORMATION >

[VQ35DE]

M

Ν

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
45	V	EVAP canister purge volume	 [Engine is running] Idle speed Accelerator pedal: Not depressed even slightly, after engine starting 	BATTERY VOLTAGE (11 - 14V)★	C D
45	V	control solenoid valve	 [Engine is running] Engine speed: About 2,000 rpm (More than 100 seconds after starting engine) 	BATTERY VOLTAGE (11 - 14V)* Indicates the second content of th	F G
111	SB	ECM relay (Self shut-off)	[Engine is running] [Ignition switch: OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V	1
		(Sell Stiut-Oil)	[Ignition switch: OFF]More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)	J
119 120	R R	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)	

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnosis Procedure

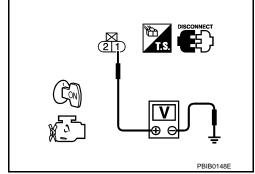
1. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- Disconnect EVAP canister purge volume control solenoid valve 2. harness connector.
- 3. Turn ignition switch ON.

INFOID:0000000002954369

DTC P0444, P0445 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

< SERVICE INFORMATION >


[VQ35DE]

 Check voltage between EVAP canister purge volume control solenoid valve terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- Harness connectors M72, F102
- Harness for open or short between EVAP canister purge volume control solenoid valve and IPDM E/R
- Harness for open or short between EVAP canister purge volume control solenoid valve and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 45 and EVAP canister purge volume control solenoid valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK (With CONSULT-III)>>GO TO 4.

OK (Without CONSULT-III)>>GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4.CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(II) With CONSULT-III

- Reconnect all harness connectors disconnected.
- Start engine.
- Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-III. Check that engine speed varies according to the valve opening.

OK or NG

OK >> GO TO 6.

NG >> GO TO 5.

5. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-371, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace EVAP canister purge volume control solenoid valve.

6. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

>> INSPECTION END

DTC P0444, P0445 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

< SERVICE INFORMATION >

[VQ35DE]

Component Inspection

INFOID:0000000002954370

Α

EC

D

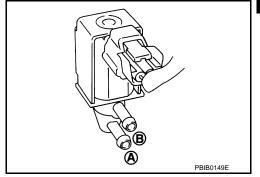
Е

Н

K

L

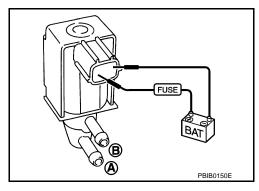
Ν


Р

EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(P) With CONSULT-III

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.


Condition (PURG VOL CONT/V value)	Air passage continuity between A and B
100%	Yes
0%	No

Without CONSULT-III

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	Yes
No supply	No

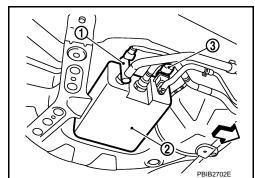
Removal and Installation

EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE Refer to <u>EM-20</u>.

INFOID:0000000002954371

Revision: 2009 February **EC-371** 2008 M35/M45

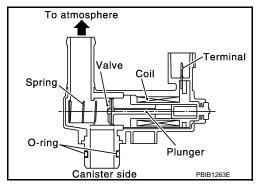
[VQ35DE]


INFOID:0000000002954372

DTC P0447 EVAP CANISTER VENT CONTROL VALVE

Component Description

The EVAP canister vent control valve (1) is located on the EVAP canister (2) and is used to seal the canister vent.


- Illustration shows the view from under the vehicle.
- <=: Vehicle front
- EVAP control system pressure sensor (3)

This solenoid valve responds to signals from the ECM. When the ECM sends an ON signal, the coil in the solenoid valve is energized. A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows EVAP control system diagnosis.

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002954373

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	/ENT CONT/V • Ignition switch: ON	

On Board Diagnosis Logic

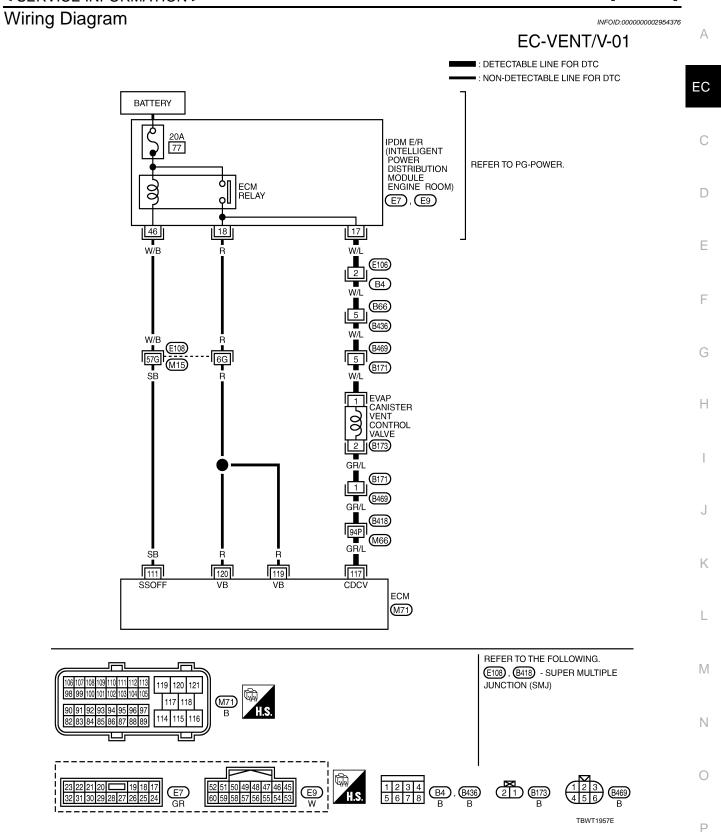
INFOID:0000000002954374

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0447 0447	EVAP canister vent control valve circuit open	An improper voltage signal is sent to ECM through EVAP canister vent control valve.	Harness or connectors (The valve circuit is open or shorted.) EVAP canister vent control valve

DTC Confirmation Procedure

INFOID:0000000002954375

NOTE:


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm battery voltage is more than 11V at idle.

- 1. Start engine and wait at least 8 seconds.
- Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-374</u>, "<u>Diagnosis Procedure</u>".

[VQ35DE]

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

< SERVICE INFORMATION >

[VQ35DE]

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
111	SB	ECM relay (Self shut-off)	[Engine is running] [Ignition switch: OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V
		(Sell Stut-Oil)	[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
117	GR/L	EVAP canister vent control valve	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)
119 120	R R	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

Diagnosis Procedure

INFOID:0000000002954377

1.INSPECTION START

Do you have CONSULT-III?

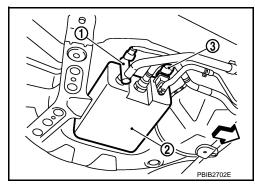
Yes or No

Yes >> GO TO 2. No >> GO TO 3.

2.CHECK EVAP CANISTER VENT CONTROL VALVE CIRCUIT

(II) With CONSULT-III

- 1. Turn ignition switch OFF and then turn ON.
- 2. Select "VENT CONTROL/V" in "ACTIVE TEST" mode with CONSULT-III.
- 3. Touch "ON/OFF" on CONSULT-III screen.
- 4. Check for operating sound of the valve.


Clicking noise should be heard.

OK or NG

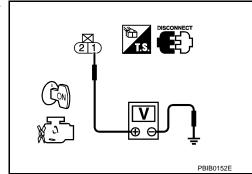
OK >> GO TO 7. NG >> GO TO 3.

3.CHECK EVAP CANISTER VENT CONTROL VALVE POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect EVAP canister vent control valve (1) harness connector.
- Illustration shows the view from under the vehicle.
- <□: Vehicle front
- EVAP canister (2)
- EVAP control system pressure sensor (3)
- 3. Turn ignition switch ON.

2008 M35/M45

< SERVICE INFORMATION >


[VQ35DE]

Check voltage between EVAP canister vent control valve terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. >> GO TO 4. NG

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E106, B4
- Harness connectors E66, B436
- Harness connectors B469, B171
- Harness for open or short between EVAP canister vent control valve and IPDM E/R

>> Repair open circuit or short to ground or short to power in harness or connectors.

${f 5.}$ CHECK EVAP CANISTER VENT CONTROL VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 117 and EVAP canister vent control valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

$\mathsf{6}.\mathsf{DETECT}$ MALFUNCTIONING PART

Check the following.

- Harness connectors B171, B469
- Harness connectors B418, M66
- Harness for open or short between EVAP canister vent control valve and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

7.CHECK RUBBER TUBE FOR CLOGGING

- Disconnect rubber tube connected to EVAP canister vent control valve.
- Check the rubber tube for clogging.

OK or NG

OK >> GO TO 8.

NG >> Clean the rubber tube using an air blower.

$oldsymbol{8}$.CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-376, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace EVAP canister vent control valve.

9. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

EC

Α

D

Е

F

Н

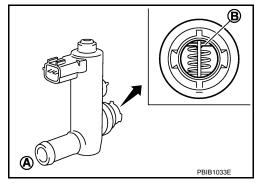
M

N

Р

2008 M35/M45

>> INSPECTION END


Component Inspection

INFOID:0000000002954378

EVAP CANISTER VENT CONTROL VALVE

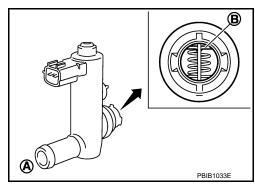
(II) With CONSULT-III

- 1. Remove EVAP canister vent control valve from EVAP canister.
- Check portion (B) of EVAP canister vent control valve for being rusted.
 - If NG, replace EVAP canister vent control valve. If OK, go to next step.
- 3. Reconnect harness connectors disconnected.
- 4. Turn ignition switch ON.

- 5. Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.
- Check air passage continuity and operation delay time.
 Make sure new O-ring is installed properly.

Condition VENT CONTROL/V	Air passage continuity between A and B
ON	No
OFF	Yes

Operation takes less than 1 second.

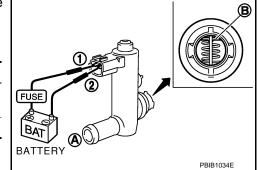

If NG, replace EVAP canister vent control valve.

If OK, go to next step.

- 7. Clean the air passage [portion (A) to (B)] of EVAP canister vent control valve using an air blower.
- 8. Perform step 6 again.

Without CONSULT-III

- 1. Remove EVAP canister vent control valve from EVAP canister.
- 2. Check portion (B) of EVAP canister vent control valve for being rusted.


< SERVICE INFORMATION >

[VQ35DE]

3. Check air passage continuity and operation delay time under the following conditions.

Make sure new O-ring is installed properly.

Condition	Air passage continuity between (A) and (B)
12V direct current supply between terminals (1) and (2)	No
OFF	Yes

Operation takes less than 1 second.

If NG, replace EVAP canister vent control valve. If OK, go to next step.

- 4. Clean the air passage [portion (A) to (B)] of EVAP canister vent control valve using an air blower.
- 5. Perform step 3 again.

Α

EC

С

D

Е

F

Н

J

Κ

M

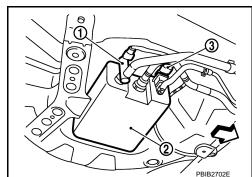
L

Ν

0

Р

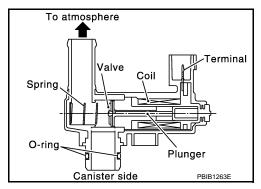
[VQ35DE]


INFOID:0000000002954379

DTC P0448 EVAP CANISTER VENT CONTROL VALVE

Component Description

The EVAP canister vent control valve (1) is located on the EVAP canister (2) and is used to seal the canister vent.


- Illustration shows the view from under the vehicle.
- <=: Vehicle front
- EVAP control system pressure sensor (3)

This solenoid valve responds to signals from the ECM. When the ECM sends an ON signal, the coil in the solenoid valve is energized. A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows "EVAP Control System" diagnosis.

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002954380

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	Ignition switch: ON	OFF

On Board Diagnosis Logic

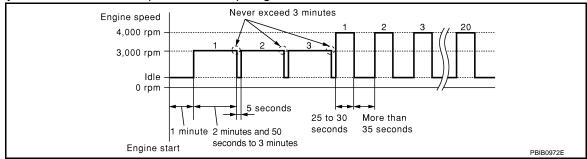
INFOID:0000000002954381

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0448 0448	EVAP canister vent control valve close	EVAP canister vent control valve remains closed under specified driving conditions.	EVAP canister vent control valve EVAP control system pressure sensor and the circuit Blocked rubber tube to EVAP canister vent control valve EVAP canister is saturated with water

DTC Confirmation Procedure

INFOID:0000000002954382

NOTE:


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

- 1. Turn ignition switch ON and wait at least 5 seconds.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and let it idle for at least 1 minute.
- Repeat next procedures three times.
- a. Increase the engine speed up to 3,000 to 3,500 rpm and keep it for 2 minutes and 50 seconds to 3 minutes.

Never exceed 3 minutes.

[VQ35DE] < SERVICE INFORMATION >

- Fully released accelerator pedal and keep engine idle for about 5 seconds.
- 5. Check 1st trip DTC.
- If 1st trip DTC is detected, go to EC-381, "Diagnosis Procedure". If 1st trip DTC is not detected, go to the next step.
- Repeat next procedure 20 times. 7.
- Quickly increase the engine speed up to 4,000 to 4,500 rpm or more and keep it for 25 to 30 seconds. a.
- Fully released accelerator pedal and keep engine idle for at least 35 seconds. b.

- 8. Check 1st trip DTC.
- If 1st trip DTC is detected, go to EC-381, "Diagnosis Procedure".

EC

Α

C

D

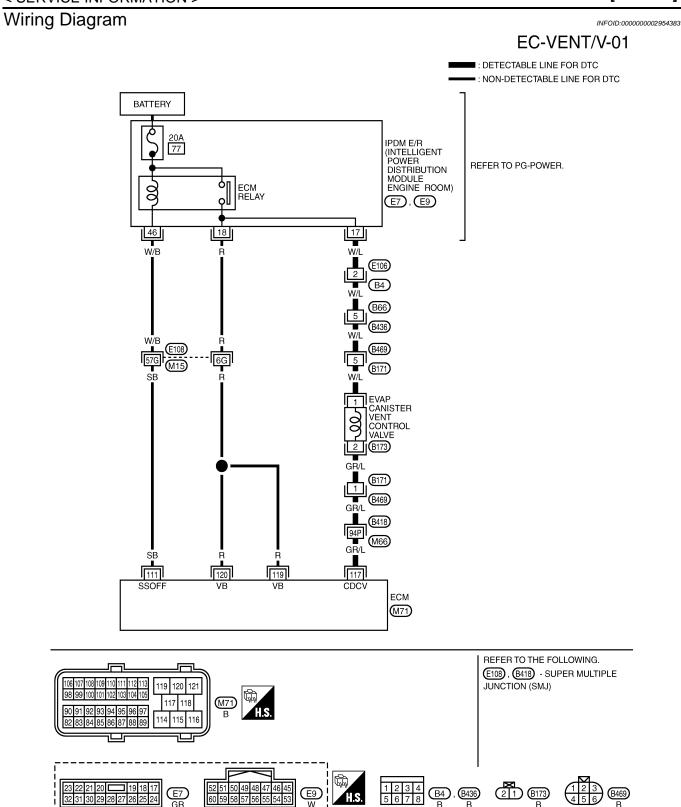
Е

F

Н

K

L


M

Ν

Р

[VQ35DE]

TBWT1957E

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

< SERVICE INFORMATION >

[VQ35DE]

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
111	SB	ECM relay	[Engine is running] [Ignition switch: OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V
(Self shut-off)	[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)		
117	GR/L	EVAP canister vent control valve	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)
119 120	R R	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

Diagnosis Procedure

1. CHECK RUBBER TUBE

1. Turn ignition switch OFF.

- 2. Disconnect rubber tube connected to EVAP canister vent control valve (1).
- Illustration shows the view from under the vehicle.
- · <: Vehicle front
- EVAP canister (2)
- EVAP control system pressure sensor (3)
- 3. Check the rubber tube for clogging.

OK or NG

OK >> GO TO 2.

NG >> Clean rubber tube using an air blower.

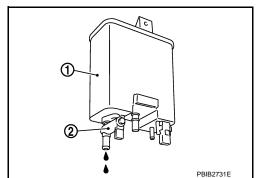
2.CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-382, "Component Inspection".

OK or NG

OK >> GO TO 3.

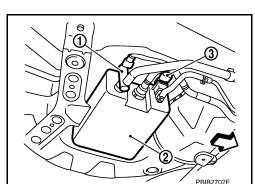
NG >> Replace EVAP canister vent control valve.


3. CHECK IF EVAP CANISTER SATURATED WITH WATER

- Remove EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.
- 2. Check if water will drain from the EVAP canister (1).
- EVAP canister vent control valve (2)

Yes or No

Yes >> GO TO 4.


No >> GO TO 6.

4. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve and EVAP control system pressure sensor attached.

The weight should be less than 2.0 kg (4.4 lb).

Α

D

Е

INFOID:00000000002954384

G

Н

I

Κ

D.

Ν

0

Р

< SERVICE INFORMATION >

[VQ35DE]

OK or NG

OK >> GO TO 6.

NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and vehicle frame for clogging or poor connection
 - >> Repair hose or replace EVAP canister.

6. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR CONNECTOR

- 1. Disconnect EVAP control system pressure sensor harness connector.
- Check connectors for water.

Water should not exist.

OK or NG

OK >> GO TO 7.

NG >> Replace EVAP control system pressure sensor.

7. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-385, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace EVAP control system pressure sensor.

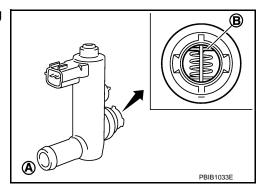
8. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

>> INSPECTION END

Component Inspection

INFOID:0000000002954385


EVAP CANISTER VENT CONTROL VALVE

- (II) With CONSULT-III
- 1. Remove EVAP canister vent control valve from EVAP canister.
- 2. Check portion (B) of EVAP canister vent control valve for being rusted.

If NG, replace EVAP canister vent control valve.

If OK, go to next step.

- 3. Reconnect harness connectors disconnected.
- 4. Turn ignition switch ON.

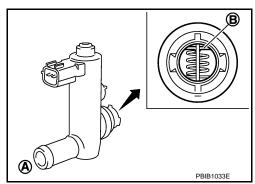
- 5. Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.
- Check air passage continuity and operation delay time.
 Make sure new O-ring is installed properly.

Condition VENT CONTROL/V	Air passage continuity between A and B
ON	No
OFF	Yes

DIC PU446 EVAP CANISTER VENT CONTROL VALV

Operation takes less than 1 second.

If NG, replace EVAP canister vent control valve.


If OK, go to next step.

< SERVICE INFORMATION >

- 7. Clean the air passage [portion (A) to (B)] of EVAP canister vent control valve using an air blower.
- 8. Perform step 6 again.

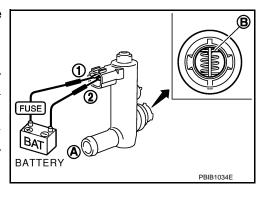
Without CONSULT-III

- 1. Remove EVAP canister vent control valve from EVAP canister.
- Check portion (B) of EVAP canister vent control valve for being rusted.

Check air passage continuity and operation delay time under the following conditions.

Make sure new O-ring is installed properly.

Condition	Air passage continuity between (A) and (B)
12V direct current supply between terminals (1) and (2)	No
OFF	Yes



If NG, replace EVAP canister vent control valve.

If OK, go to next step.

5. Perform step 3 again.

EC

Α

[VQ35DE]

D

C

Е

F

G

Н

J

Κ

M

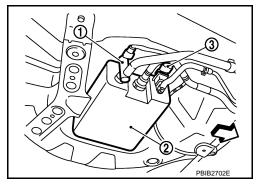
L

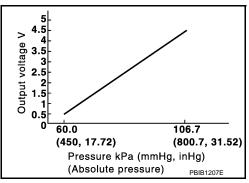
Ν

0

Р

[VQ35DE]


INFOID:0000000002954386


DTC P0451 EVAP CONTROL SYSTEM PRESSURE SENSOR

Component Description

The EVAP control system pressure sensor (3) detects pressure in the purge line. The sensor output voltage to the ECM increases as pressure increases.

- Illustration shows the view from under the vehicle.
- ✓⊇: Vehicle front
- EVAP canister vent control valve (1)
- EVAP canister (2)

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002954387

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
EVAP SYS PRES	Ignition switch: ON	Approx. 1.8 - 4.8V

On Board Diagnosis Logic

INFOID:0000000002954388

NOTE:

If DTC P0451 is displayed with DTC P0643, first perform the trouble diagnosis for DTC P0643. Refer to <u>EC-436</u>.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0451 0451	EVAP control system pressure sensor performance	ECM detects a sloshing signal from the EVAP control system pressure sensor	Harness or connectors EVAP control system pressure sensor

DTC Confirmation Procedure

INFOID:0000000002954389

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

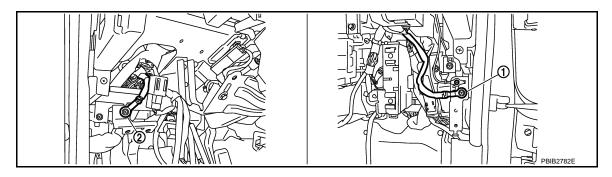
- Turn ignition switch OFF and wait at least 10 seconds.
- 2. Start engine and wait at least 40 seconds.

NOTE:

Do not depress accelerator pedal even slightly.

- Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-385</u>, "<u>Diagnosis Procedure</u>".

< SERVICE INFORMATION >


Diagnosis Procedure

INFOID:0000000002954390

[VQ35DE]

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws on the body. Refer to EC-146, "Ground Inspection".

1. Body ground M70

2. Body ground M16

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR CONNECTOR FOR WATER

- Disconnect EVAP control system pressure sensor (3) harness connector.
- Illustration shows the view from under the vehicle.
- <□: Vehicle front</p>
- EVAP canister vent control valve (1)
- EVAP canister (2)
- 2. Check sensor harness connector for water.

Water should not exist.

OK or NG

OK >> GO TO 3.

NG >> Repair or replace harness connector.

3.check evap control system pressure sensor

Refer to EC-385, "Component Inspection".

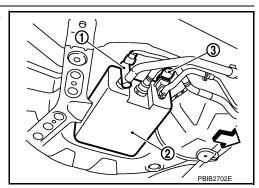
OK or NG

OK >> GO TO 4.

NG >> Replace EVAP control system pressure sensor.

4. CHECK INTERMITTENT INCIDENT

Refer to EC-140.


For Wiring Diagram, refer to EC-389, "Wiring Diagram".

>> INSPECTION END

Component Inspection

EVAP CONTROL SYSTEM PRESSURE SENSOR 1. Remove EVAP control system pressure sensor with its harness connector con

- Remove EVAP control system pressure sensor with its harness connector connected from EVAP canister.
 Always replace O-ring with a new one.
- Install a vacuum pump to EVAP control system pressure sensor.

EC

Α

D

Е

F

Н

J

K

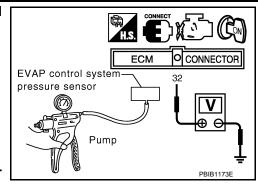
IVI

Ν

. .

INFOID:0000000002954391

< SERVICE INFORMATION >


[VQ35DE]

3. Turn ignition switch ON and check output voltage between ECM terminal 32 and ground under the following conditions.

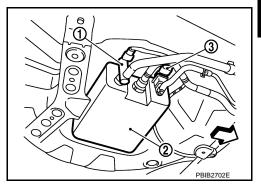
Applied vacuum kPa (mmHg, inHg)	Voltage V
Not applied	1.8 - 4.8
-26.7 (-200, -7.87)	2.1 to 2.5V lower than above value

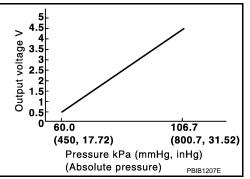
CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -93.3 kPa (-700 mmHg, -27.56 inHg) or pressure over 101.3 kPa (760 mmHg, 29.92 inHg).
- 4. If NG, replace EVAP control system pressure sensor.

< SERVICE INFORMATION >

[VQ35DE]


INFOID:0000000002954392


DTC P0452 EVAP CONTROL SYSTEM PRESSURE SENSOR

Component Description

The EVAP control system pressure sensor (3) detects pressure in the purge line. The sensor output voltage to the ECM increases as pressure increases.

- Illustration shows the view from under the vehicle.
- ✓⊇: Vehicle front
- EVAP canister vent control valve (1)
- EVAP canister (2)

CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
EVAP SYS PRES	Ignition switch: ON	Approx. 1.8 - 4.8V

On Board Diagnosis Logic

INFOID:0000000002954394

INFOID:0000000002954393

NOTE:

If DTC P0452 is displayed with DTC P0643, first perform the trouble diagnosis for DTC P0643. Refer to EC-436.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0452 0452	EVAP control system pressure sensor low input	An excessively low voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted.) EVAP control system pressure sensor

DTC Confirmation Procedure

INFOID:0000000002954395

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Always perform test at a temperature of 5°C (41°F) or more.

WITH CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-III.

EC-387 Revision: 2009 February 2008 M35/M45

EC

Α

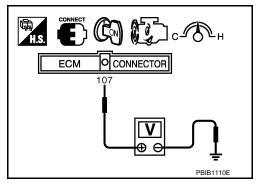
D

Е

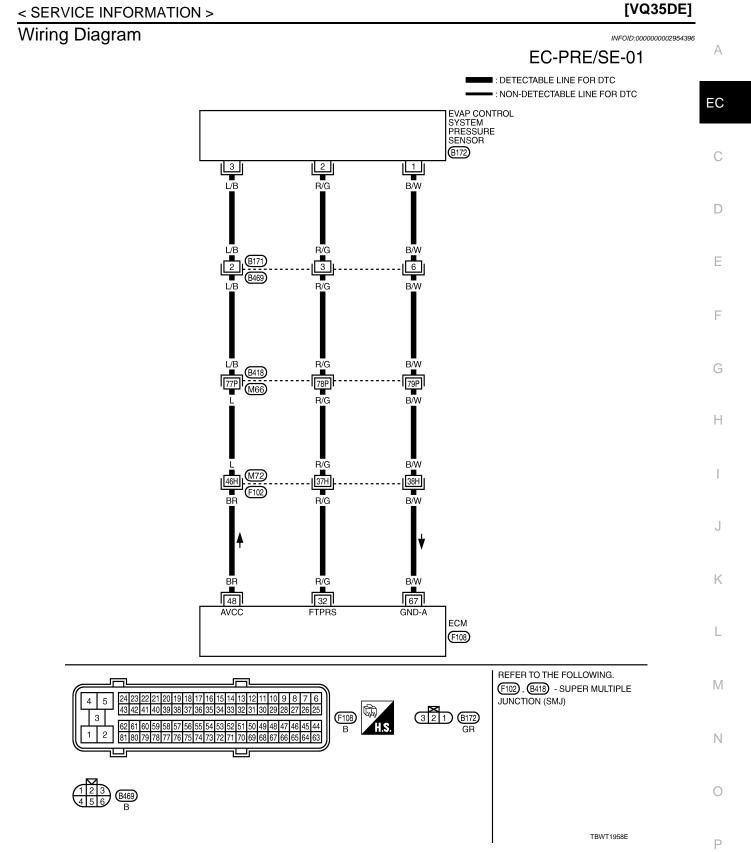
M

Ν

Ρ


- Make sure that "FUEL T/TMP SE" is more than 0°C (32°F).
- 6. Start engine and wait at least 20 seconds.
- 7. Check 1st trip DTC.

< SERVICE INFORMATION >


If 1st trip DTC is detected, go to EC-390, "Diagnosis Procedure".

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Check that voltage between ECM terminal 107 (Fuel tank temperature sensor signal) and ground is less than 4.2V.
- Turn ignition switch OFF and wait at least 10 seconds.
- 4. Start engine and wait at least 20 seconds.
- 5. Select Service \$07 with GST. If 1st trip DTC is detected, go to EC-390, "Diagnosis Procedure".

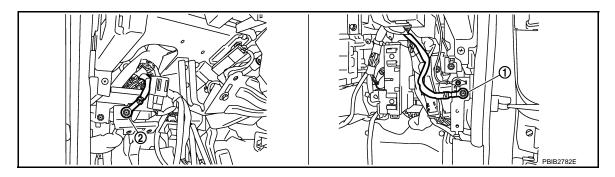
[VQ35DE]

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
32	R/G	EVAP control system pres- sure sensor	[Ignition switch: ON]	Approximately 1.8 - 4.8V
48	BR	Sensor power supply (EVAP control system pressure sensor)	[Ignition switch: ON]	Approximately 5V
67	B/W	Sensor ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V

Diagnosis Procedure


< SERVICE INFORMATION >

INFOID:0000000002954397

[VQ35DE]

1. CHECK GROUND CONNECTIONS

- Turn ignition switch OFF.
- Loosen and retighten two ground screws on the body. Refer to EC-146, "Ground Inspection".

1. Body ground M70

2. Body ground M16

OK or NG

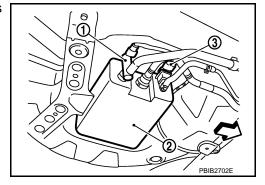
OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. CHECK CONNECTOR

- Disconnect EVAP control system pressure sensor (3) harness connector.
- Illustration shows the view from under the vehicle.
- ⟨□: Vehicle front
- EVAP canister vent control valve (1)
- EVAP canister (2)
- Check sensor harness connector for water.

Water should not exist.


OK or NG

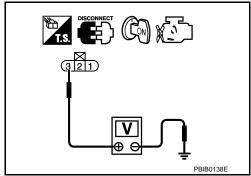
OK >> GO TO 3.

NG >> Repair or replace harness connector.

3.CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR POWER SUPPLY CIRCUIT

Turn ignition switch ON.

< SERVICE INFORMATION >


[VQ35DE]

Check voltage between EVAP control system pressure sensor terminal 3 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 5. >> GO TO 4. NG

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B171, B469
- Harness connectors B418, M66
- Harness connectors M72, F102
- Harness for open or short between EVAP control system pressure sensor and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

${f 5.}$ CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check harness continuity between EVAP control system pressure sensor terminal 1 and ECM terminal

Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

$oldsymbol{6}.$ DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B171, B469
- Harness connectors B418, M66
- Harness connectors M72, F102
- Harness for open or short between EVAP control system pressure sensor and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

7.check evap control system pressure sensor input signal circuit for open and SHORT

Check harness continuity between ECM terminal 32 and EVAP control system pressure sensor terminal

Refer to Wiring Diagram.

Continuity should exist.

Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9. NG >> GO TO 8.

$oldsymbol{\mathsf{8}}.\mathsf{DETECT}$ MALFUNCTIONING PART

Check the following.

EC

Α

D

Е

F

K

M

Ν

Р

DIC P0452 EVAP CONTROL SYSTEM PRESSURE SENSOR

- SERVICE INFORMATION >
 Harness connectors B171, B469
- Harness connectors B418, M66
- Harness connectors M72, F102
- Harness for open or short between EVAP control system pressure sensor and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-392, "Component Inspection".

OK or NG

OK >> GO TO 10.

NG >> Replace EVAP control system pressure sensor.

10. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

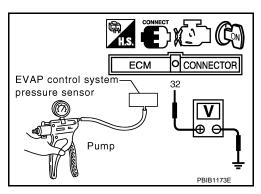
>> INSPECTION END

Component Inspection

INFOID:0000000002954398

2008 M35/M45

[VQ35DE]


EVAP CONTROL SYSTEM PRESSURE SENSOR

- Remove EVAP control system pressure sensor with its harness connector connected from EVAP canister.
 Always replace O-ring with a new one.
- 2. Install a vacuum pump to EVAP control system pressure sensor.
- Turn ignition switch ON and check output voltage between ECM terminal 32 and ground under the following conditions.

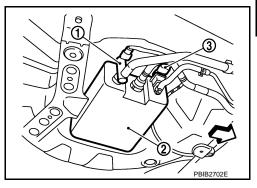
Applied vacuum kPa (mmHg, inHg)	Voltage V	
Not applied	1.8 - 4.8	
-26.7 (-200, -7.87)	2.1 to 2.5V lower than above value	

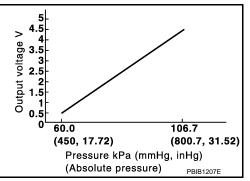
CAUTION:

- · Always calibrate the vacuum pump gauge when using it.
- Do not apply below -93.3 kPa (-700 mmHg, -27.56 inHg) or pressure over 101.3 kPa (760 mmHg, 29.92 inHg).
- 4. If NG, replace EVAP control system pressure sensor.

< SERVICE INFORMATION >

[VQ35DE]


INFOID:0000000002954399


DTC P0453 EVAP CONTROL SYSTEM PRESSURE SENSOR

Component Description

The EVAP control system pressure sensor (3) detects pressure in the purge line. The sensor output voltage to the ECM increases as pressure increases.

- Illustration shows the view from under the vehicle.
- ✓⊇: Vehicle front
- EVAP canister vent control valve (1)
- EVAP canister (2)

CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
EVAP SYS PRES	Ignition switch: ON	Approx. 1.8 - 4.8V

On Board Diagnosis Logic

INFOID:0000000002954401

INFOID:0000000002954400

NOTE:

If DTC P0453 is displayed with DTC P0643, first perform the trouble diagnosis for DTC P0643. Refer to EC-436.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	1
P0453 0453	EVAP control system pressure sensor high input	An excessively high voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.) EVAP control system pressure sensor EVAP canister vent control valve EVAP canister Rubber hose from EVAP canister vent control valve to vehicle frame	N

DTC Confirmation Procedure

INFOID:0000000002954402

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Always perform test at a temperature of 5°C (41°F) or more.

(P) WITH CONSULT-III

Start engine and warm it up to normal operating temperature.

EC-393 Revision: 2009 February 2008 M35/M45

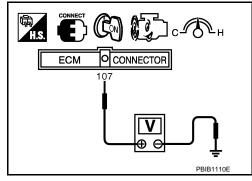
EC

Α

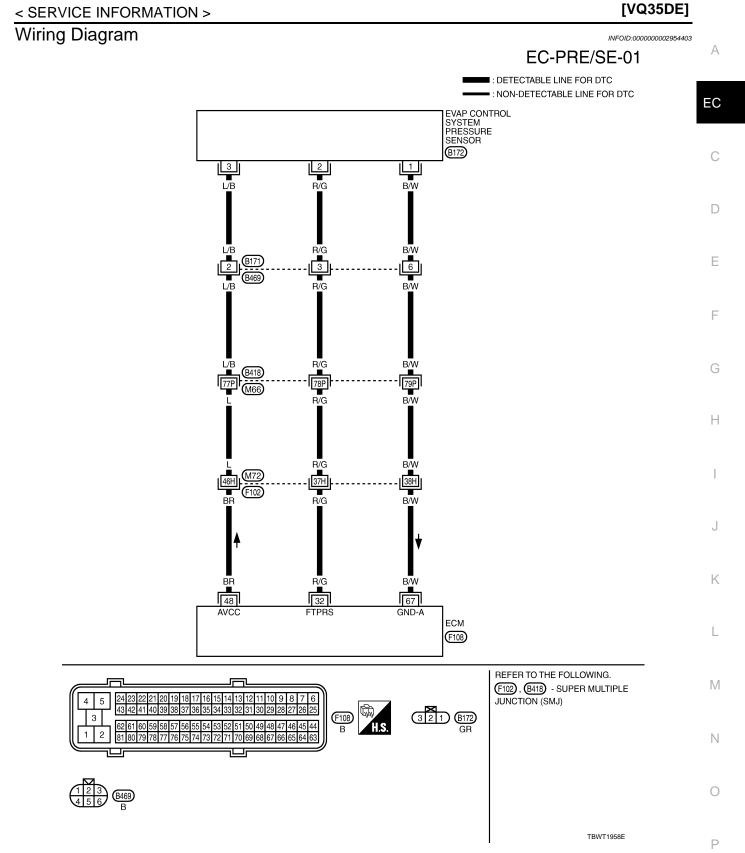
D

Е

DIC P0453 EVAP CONTROL STSTEM PRESSURE SENSOR


- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON.

< SERVICE INFORMATION >


- 4. Select "DATA MONITOR" mode with CONSULT-III.
- 5. Make sure that "FUEL T/TMP SE" is more than 0°C (32°F).
- 6. Start engine and wait at least 20 seconds.
- 7. Check 1st trip DTC.
- 8. If 1st trip DTC is detected, go to <u>EC-396, "Diagnosis Procedure"</u>.

WITH GST

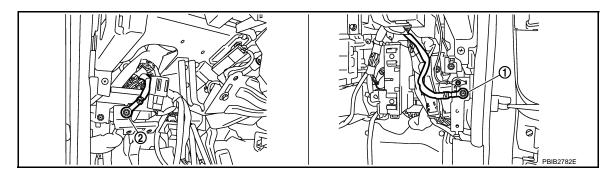
- 1. Start engine and warm it up to normal operating temperature.
- 2. Check that voltage between ECM terminal 107 (Fuel tank temperature sensor signal) and ground is less than 4.2V.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Start engine and wait at least 20 seconds.
- Select Service \$07 with GST.
 If 1st trip DTC is detected, go to <u>EC-396</u>, "<u>Diagnosis Procedure</u>".

[VQ35DE]

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

< SERVICE INFORMATION >


TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
32	R/G	EVAP control system pres- sure sensor	[Ignition switch: ON]	Approximately 1.8 - 4.8V
48	BR	Sensor power supply (EVAP control system pressure sensor)	[Ignition switch: ON]	Approximately 5V
67	B/W	Sensor ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V

Diagnosis Procedure

INFOID:0000000002954404

1. CHECK GROUND CONNECTIONS

- Turn ignition switch OFF.
- Loosen and retighten two ground screws on the body. Refer to <u>EC-146</u>, "Ground Inspection".

1. Body ground M70

2. Body ground M16

OK or NG

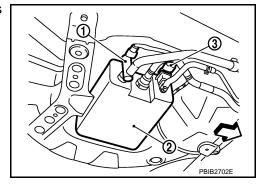
OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. CHECK CONNECTOR

- Disconnect EVAP control system pressure sensor (3) harness connector.
- Illustration shows the view from under the vehicle.
- <⊐: Vehicle front
- EVAP canister vent control valve (1)
- EVAP canister (2)
- 2. Check sensor harness connector for water.

Water should not exist.


OK or NG

OK >> GO TO 3.

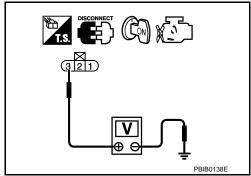
NG >> Repair or replace harness connector.

${f 3.}$ CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR POWER SUPPLY CIRCUIT

1. Turn ignition switch ON.

DTC P0453 EVAP CONTROL SYSTEM PRESSURE SENSOR

< SERVICE INFORMATION >


[VQ35DE]

Check voltage between EVAP control system pressure sensor terminal 3 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 5. >> GO TO 4. NG

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B171, B469
- Harness connectors B418, M66
- Harness connectors M72, F102
- Harness for open or short between EVAP control system pressure sensor and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

${f 5.}$ CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check harness continuity between EVAP control system pressure sensor terminal 1 and ECM terminal

Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

$oldsymbol{6}.$ DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B171, B469
- Harness connectors B418, M66
- Harness connectors M72, F102
- Harness for open or short between EVAP control system pressure sensor and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

7.check evap control system pressure sensor input signal circuit for open and SHORT

Check harness continuity between ECM terminal 32 and EVAP control system pressure sensor terminal

Refer to Wiring Diagram.

Continuity should exist.

Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9. NG >> GO TO 8.

$oldsymbol{8}.$ DETECT MALFUNCTIONING PART

Check the following.

EC

Α

D

Е

F

K

M

Ν

Р

2008 M35/M45

DTC P0453 EVAP CONTROL SYSTEM PRESSURE SENSOR

- < SERVICE INFORMATION > Harness connectors B171, B469
- Harness connectors B418, M66
- Harness connectors M72, F102
- Harness for open or short between EVAP control system pressure sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK RUBBER TUBE

- Disconnect rubber tube connected to EVAP canister vent control valve.
- Check the rubber tube for clogging.

OK or NG

OK >> GO TO 10.

NG >> Clean the rubber tube using an air blower, repair or replace rubber tube.

10.CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-376, "Component Inspection".

OK or NG

OK >> GO TO 11.

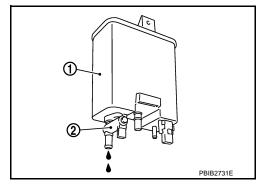
NG >> Replace EVAP canister vent control valve.

11. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-399, "Component Inspection".

OK or NG

OK >> GO TO 12.


NG >> Replace EVAP control system pressure sensor.

12.CHECK IF EVAP CANISTER SATURATED WITH WATER

- Remove EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.
- Check if water will drain from the EVAP canister (1).
- EVAP canister vent control valve (2)

Yes or No

Yes >> GO TO 13. No >> GO TO 15.

[VQ35DE]

13. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve and EVAP control system pressure sensor attached.

The weight should be less than 2.0 kg (4.4 lb).

OK or NG

OK >> GO TO 15. >> GO TO 14. NG

14. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and vehicle frame for clogging or poor connection
 - >> Repair hose or replace EVAP canister.

15. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

DTC P0453 EVAP CONTROL SYSTEM PRESSURE SENSOR

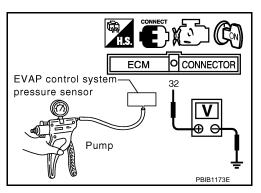
< SERVICE INFORMATION >

>> INSPECTION END

Component Inspection

INFOID:0000000002954405

[VQ35DE]


EVAP CONTROL SYSTEM PRESSURE SENSOR

- Remove EVAP control system pressure sensor with its harness connector connected from EVAP canister.
 Always replace O-ring with a new one.
- 2. Install a vacuum pump to EVAP control system pressure sensor.
- 3. Turn ignition switch ON and check output voltage between ECM terminal 32 and ground under the following conditions.

Applied vacuum kPa (mmHg, inHg)	Voltage V	
Not applied	1.8 - 4.8	
-26.7 (-200, -7.87)	2.1 to 2.5V lower than above value	

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -93.3 kPa (-700 mmHg, -27.56 inHg) or pressure over 101.3 kPa (760 mmHg, 29.92 inHg).
- 4. If NG, replace EVAP control system pressure sensor.

EC

Α

D

C

Е

F

G

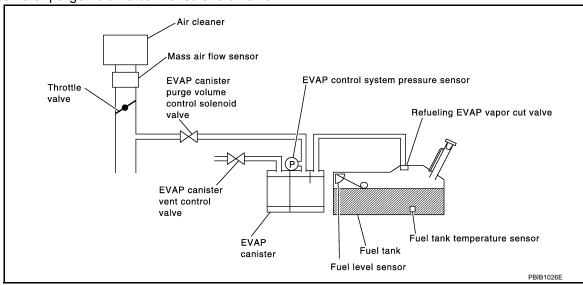
Н

Κ

L

M

Ν


0

Р

On Board Diagnosis Logic

INFOID:0000000002954406

This diagnosis detects a very large leak (fuel filler cap fell off etc.) in EVAP system between the fuel tank and EVAP canister purge volume control solenoid valve.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0455 0455	EVAP control system gross leak detected	EVAP control system has a very large leak such as fuel filler cap fell off, EVAP control system does not operate properly.	Fuel filler cap remains open or fails to close. Incorrect fuel tank vacuum relief valve Incorrect fuel filler cap used Foreign matter caught in fuel filler cap. Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve. Foreign matter caught in EVAP canister vent control valve. EVAP canister or fuel tank leaks EVAP purge line (pipe and rubber tube) leaks EVAP purge line rubber tube bent. Loose or disconnected rubber tube EVAP canister vent control valve and the circuit EVAP canister purge volume control solenoid valve and the circuit Fuel tank temperature sensor O-ring of EVAP canister vent control valve is missing or damaged. EVAP control system pressure sensor Refueling EVAP vapor cut valve ORVR system leaks

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

DTC Confirmation Procedure

INFOID:0000000002954407

CAUTION:

Never remove fuel filler cap during the DTC Confirmation Procedure. NOTE:

[VQ35DE] < SERVICE INFORMATION >

- Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.
- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 and 3/4 full, and vehicle is placed on flat level surface.
- Open engine hood before conducting the following procedures.

(P) WITH CONSULT-III

- 1. Tighten fuel filler cap securely until ratcheting sound is heard.
- Turn ignition switch ON.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-III.
- Make sure that the following conditions are met.

COOLAN TEMP/S: 0 - 70°C (32 - 158°F)

INT/A TEMP SE: 0 - 60°C (32 - 140°F)

Select "EVAP SML LEAK P0442/P1442" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-III.

Follow the instruction displayed.

NOTE:

If the engine speed cannot be maintained within the range displayed on the CONSULT-III screen, go to EC-76, "Basic Inspection".

7. Make sure that "OK" is displayed.

If "NG" is displayed, select "SELF-DIAG RESULTS" mode and make sure that "EVAP GROSS LEAK [P0455]" is displayed. If it is displayed, refer to EC-401, "Diagnosis Procedure".

If P0442 is displayed, perform Diagnostic Procedure for DTC P0442 EC-353, "Diagnosis Procedure".

WITH GST

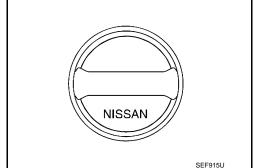
NOTE:

Be sure to read the explanation of EC-55, "Emission-Related Diagnostic Information" before driving vehicle.

- Start engine.
- Drive vehicle according to EC-55, "Emission-Related Diagnostic Information".
- 3. Stop vehicle.
- Turn ignition switch OFF, wait at least 10 seconds and then turn ON.
- Select Service \$07 with GST.
 - If P0441 is displayed on the screen, go to <u>EC-348</u>. "Diagnosis Procedure".
 - If P0442 is displayed on the screen, go to EC-353, "Diagnosis Procedure".
 - If P0455 is displayed on the screen, go to EC-401, "Diagnosis Procedure".

Diagnosis Procedure

1. CHECK FUEL FILLER CAP DESIGN


- Turn ignition switch OFF.
- Check for genuine NISSAN fuel filler cap design.

OK or NG

>> GO TO 2. OK

Revision: 2009 February

NG >> Replace with genuine NISSAN fuel filler cap.

2 . CHECK FUEL FILLER CAP INSTALLATION

Check that the cap is tightened properly by rotating the cap clockwise.

Α

EC

D

Е

INFOID:0000000002954408

Ν

Р

2008 M35/M45

< SERVICE INFORMATION >

[VQ35DE]

OK or NG

OK >> GO TO 3.

NG >> 1. Open fuel filler cap, then clean cap and fuel filler neck threads using air blower.

2. Retighten until ratcheting sound is heard.

3. CHECK FUEL FILLER CAP FUNCTION

Check for air releasing sound while opening the fuel filler cap.

OK or NG

OK >> GO TO 5.

NG >> GO TO 4.

4. CHECK FUEL TANK VACUUM RELIEF VALVE

Refer to EC-42, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace fuel filler cap with a genuine one.

$\mathbf{5}.$ CHECK EVAP PURGE LINE

Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks, improper connection or disconnection.

Refer to EC-40, "Description".

OK or NG

OK >> GO TO 6.

NG >> Repair or reconnect the hose.

6.CLEAN EVAP PURGE LINE

Clean EVAP purge line (pipe and rubber tube) using air blower.

>> GO TO 7.

7.CHECK EVAP CANISTER VENT CONTROL VALVE

Check the following.

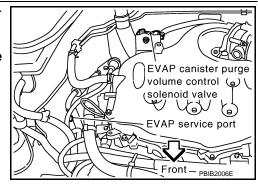
• EVAP canister vent control valve is installed properly. Refer to EC-44, "Removal and Installation".

EVAP canister vent control valve.

Refer to EC-376, "Component Inspection".

OK or NG

OK >> GO TO 8.


NG >> Repair or replace EVAP canister vent control valve and O-ring.

8.INSTALL THE PRESSURE PUMP

To locate the EVAP leak, install EVAP service port adapter and pressure pump to EVAP service port securely.

NOTE:

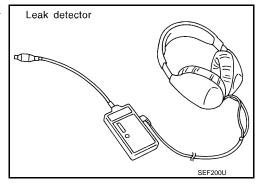
Improper installation of the EVAP service port adapter to the EVAP service port may cause leaking.

With CONSULT-III>>GO TO 9.
Without CONSULT-III>>GO TO 10.

9. CHECK FOR EVAP LEAK

(II) With CONSULT-III

- 1. Turn ignition switch ON.
- 2. Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-III.
- Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph.

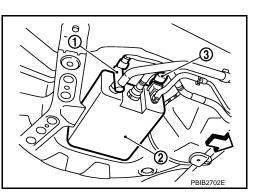

CAUTION:

- Do not use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to <u>EC-40</u>, "<u>Description</u>".

OK or NG

OK >> GO TO 11.

NG >> Repair or replace.


10.CHECK FOR EVAP LEAK

₩ Without CONSULT-III

- Turn ignition switch OFF.
- 2. Apply 12 volts DC to EVAP canister vent control valve (1). The valve will close. (Continue to apply 12 volts until the end of test.)
- Illustration shows the view from under the vehicle
- <: Vehicle front
- EVAP canister (2)
- EVAP control system pressure sensor (3)
- 3. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.

CAUTION:

- Do not use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.

EC

Α

0

D

Е

F

G

Н

|

J

K

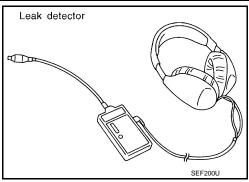
M

Ν

0

Р

< SERVICE INFORMATION >


[VQ35DE]

 Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to EC-40, "Description".

OK or NG

OK >> GO TO 12.

NG >> Repair or replace.

11. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(I) With CONSULT-III

- 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 2. Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- 4. Touch "Qu" on CONSULT-III screen to increase "PURG VOL CONT/V" opening to 100%.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

OK or NG

OK >> GO TO 14.

NG >> GO TO 13.

12. Check evap canister purge volume control solenoid valve operation

⋈ Without CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- Stop engine.
- 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 4. Start engine and let it idle for at least 80 seconds.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

Vacuum should exist.

OK or NG

OK >> GO TO 15.

NG >> GO TO 13.

13. CHECK VACUUM HOSE

Check vacuum hoses for clogging or disconnection. Refer to EC-105, "Vacuum Hose Drawing".

OK or NG

OK (With CONSULT-III)>>GO TO 14.

OK (Without CONSULT-III)>>GO TO 15.

NG >> Repair or reconnect the hose.

14.CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(P) With CONSULT-III

- Start engine.
- Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-III. Check that engine speed varies according to the valve opening.

OK or NG

OK >> GO TO 16.

NG >> GO TO 15.

15. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-365. "Component Inspection".

OK or NG

OK >> GO TO 16.

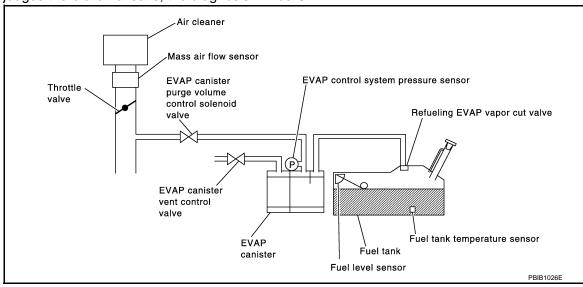
NG >> Replace EVAP canister purge volume control solenoid valve.

DTC P0455 EVAP CONTROL SYSTEM	_
< SERVICE INFORMATION > [VQ35DE	<u>]</u>
16.check fuel tank temperature sensor	
Refer to EC-307, "Component Inspection".	_
OK or NG	ı
OK >> GO TO 17. NG >> Replace fuel level sensor unit.	
17. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR	•
Refer to EC-385, "Component Inspection".	_
OK or NG	
OK >> GO TO 18.	
NG >> Replace EVAP control system pressure sensor.	
18.check evap/orvr line	
Check EVAP/ORVR line between EVAP canister and fuel tank for clogging, kink, looseness and improper conection. For location, refer to <u>EC-46</u> .	1-
<u>OK or NG</u> OK >> GO TO 19.	
NG >> Repair or replace hoses and tubes.	
19.check recirculation line	
Check recirculation line between filler neck tube and fuel tank for clogging, kink, cracks, looseness ar improper connection.	d
OK or NG	
OK >> GO TO 20. NG >> Repair or replace hose, tube or filler neck tube.	
20.check refueling evap vapor cut valve	
Refer to EC-48, "Component Inspection".	_
OK or NG	
OK >> GO TO 21.	
NG >> Replace refueling EVAP vapor cut valve with fuel tank. 21.CHECK INTERMITTENT INCIDENT	
	_
Refer to EC-140.	
>> INSPECTION END	

Revision: 2009 February **EC-405** 2008 M35/M45

INFOID:0000000002954409

DTC P0456 EVAP CONTROL SYSTEM


On Board Diagnosis Logic

This diagnosis detects very small leaks in the EVAP line between fuel tank and EVAP canister purge volume control solenoid valve, using the intake manifold vacuum in the same way as conventional EVAP small leak diagnosis.

If ECM judges a leak which corresponds to a very small leak, the very small leak P0456 will be detected.

If ECM judges a leak equivalent to a small leak, EVAP small leak P0442 will be detected.

If ECM judges there are no leaks, the diagnosis will be OK.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0456 0456	Evaporative emission control system very small leak (negative pressure check)	 EVAP system has a very small leak. EVAP system does not operate properly. 	 Incorrect fuel tank vacuum relief valve Incorrect fuel filler cap used Fuel filler cap remains open or fails to close. Foreign matter caught in fuel filler cap. Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve. Foreign matter caught in EVAP canister vent control valve. EVAP canister or fuel tank leaks EVAP purge line (pipe and rubber tube) leaks EVAP purge line rubber tube bent Loose or disconnected rubber tube EVAP canister vent control valve and the circuit EVAP canister purge volume control solenoid valve and the circuit Fuel tank temperature sensor O-ring of EVAP canister vent control valve is missing or damaged EVAP canister is saturated with water EVAP control system pressure sensor Refueling EVAP vapor cut valve ORVR system leaks Fuel level sensor and the circuit Foreign matter caught in EVAP canister purge volume control solenoid valve

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

< SERVICE INFORMATION >

[VQ35DE] **DTC Confirmation Procedure**

NOTE:

- If DTC P0456 is displayed with P0442, first perform trouble diagnosis for DTC P0456.
- After repair, make sure that the hoses and clips are installed properly.
- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Open engine hood before conducting following procedure.
- If any of following conditions are met just before the DTC confirmation procedure, leave the vehicle for more than 1 hour.
- Fuel filler cap is removed.
- Fuel is refilled or drained.
- EVAP component parts is/are removed.
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(P) WITH CONSULT-III

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-III.
- 2. Make sure the following conditions are met.

FUEL LEVEL SE: 0.25 - 1.4V

COOLAN TEMP/S: 0 - 32°C (32 - 90°F) **FUEL T/TMP SE: 0 - 35°C (32 - 95°F)** INT/A TEMP SE: More than 0°C (32°F)

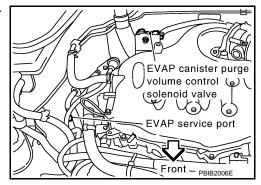
If NG, turn ignition switch OFF and leave the vehicle in a cool place (soak the vehicle) or refilling/draining fuel until the output voltage condition of the "FUEL LEVEL SE" meets within the range above and leave the vehicle for more than 1 hour. Then start from step 1).

- 3. Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- Select "EVAP V/S LEAK P0456/P1456" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-III.
 - Follow the instruction displayed.
- 6. Make sure that "OK" is displayed.

If "NG" is displayed, refer to EC-408, "Diagnosis Procedure".

NOTE:

- If the engine speed cannot be maintained within the range displayed on CONSULT-III screen, go to EC-76, "Basic Inspection".
- Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.


Overall Function Check

WITH GST

Use this procedure to check the overall function of the EVAP very small leak function. During this check, a 1st trip DTC might not be confirmed.

CAUTION:

- Do not use compressed air, doing so may damage the EVAP system.
- Do not start engine.
- Do not exceeded 4.12 kPa (0.042 kg/cm², 0.6 psi).
- Attach the EVAP service port adapter securely to the EVAP service port.

EC

Α

INFOID:0000000002954410

D

F

Е

Н

INFOID:0000000002954411

Ν

< SERVICE INFORMATION >

[VQ35DE]

Adapter for EVAP service port

EVAP

port

service

Pressure pump

- 2. Set the pressure pump and a hose.
- 3. Also set a vacuum gauge via 3-way connector and a hose.
- 4. Turn ignition switch ON.
- 5. Connect GST and select Service \$08.
- 6. Using Service \$08 control the EVAP canister vent control valve (close).
- Apply pressure and make sure the following conditions are satisfied.

Pressure to be applied: 2.7 kPa (20 mmHg, 0.79 inHg) Time to be waited after the pressure drawn in to the EVAP system and the pressure to be dropped: 60 seconds and the pressure should not be dropped more than 0.4 kPa (3 mmHg, 0.12 inHg).

If NG, go to EC-408, "Diagnosis Procedure".

If OK, go to next step.

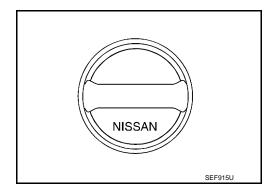
- Disconnect GST.
- 9. Start engine and warm it up to normal operating temperature.
- 10. Turn ignition switch OFF and wait at least 10 seconds.
- 11. Restart engine and let it idle for 90 seconds.
- 12. Keep engine speed at 2,000 rpm for 30 seconds.
- 13. Turn ignition switch OFF.

NOTE:

For more information, refer to GST Instruction Manual.

Diagnosis Procedure

INFOID:0000000002954412


1. CHECK FUEL FILLER CAP DESIGN

- 1. Turn ignition switch OFF.
- 2. Check for genuine NISSAN fuel filler cap design.

OK or NG

OK >> GO TO 2.

NG >> Replace with genuine NISSAN fuel filler cap.

2. CHECK FUEL FILLER CAP INSTALLATION

Check that the cap is tightened properly by rotating the cap clockwise.

OK or NG

OK >> GO TO 3.

NG >> 1. Open fuel filler cap, then clean cap and fuel filler neck threads using air blower.

2. Retighten until ratcheting sound is heard.

3. CHECK FUEL FILLER CAP FUNCTION

Check for air releasing sound while opening the fuel filler cap.

OK or NG

OK >> GO TO 5.

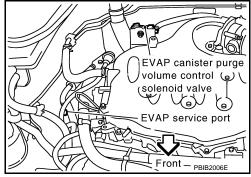
NG >> GO TO 4.

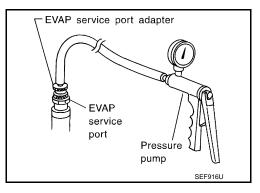
4. CHECK FUEL TANK VACUUM RELIEF VALVE

Refer to EC-42, "Component Inspection".

OK or NG

OK >> GO TO 5.


NG >> Replace fuel filler cap with a genuine one.


5. INSTALL THE PRESSURE PUMP

To locate the EVAP leak, install EVAP service port adapter and pressure pump to EVAP service port securely.

NOTE:

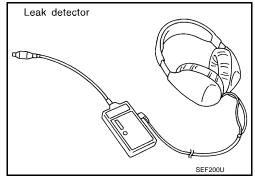
Improper installation of the EVAP service port adapter to the EVAP service port may cause leaking.

With CONSULT-III>>GO TO 6. Without CONSULT-III>>GO TO 7.

6. CHECK FOR EVAP LEAK

(II) With CONSULT-III

- 1. Turn ignition switch ON.
- 2. Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-III.
- Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph.


CAUTION:

- Do not use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to <u>EC-40</u>, "<u>Description"</u>.

OK or NG

OK >> GO TO 8.

NG >> Repair or replace.

7. CHECK FOR EVAP LEAK

(X) Without CONSULT-III

1. Turn ignition switch OFF.

Α

EC

D

Е

F

G

Н

K

M

Ν

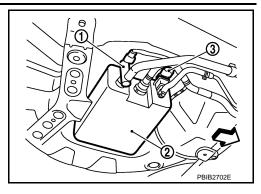
0

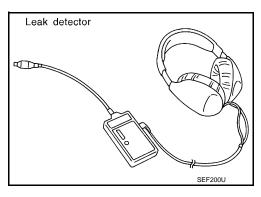
Р

< SERVICE INFORMATION >

[VQ35DE]

- 2. Apply 12 volts DC to EVAP canister vent control valve (1). The valve will close. (Continue to apply 12 volts until the end of test.)
- Illustration shows the view from under the vehicle
- <: Vehicle front
- EVAP canister (2)
- EVAP control system pressure sensor (3)
- 3. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.


CAUTION:


- Do not use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 4. Using EVÁP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to EC-40, "Description".

OK >> GO TO 8.

NG >> Repair or replace.

8. CHECK EVAP CANISTER VENT CONTROL VALVE

Check the following.

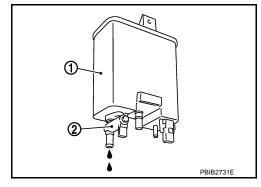
- EVAP canister vent control valve is installed properly. Refer to <u>EC-44</u>, "Removal and Installation".
- EVAP canister vent control valve.
 Refer to EC-376, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Repair or replace EVAP canister vent control valve and O-ring.

9. CHECK IF EVAP CANISTER SATURATED WITH WATER


- 1. Remove EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.
- 2. Does water drain from the EVAP canister (1)?
- EVAP canister vent control valve (2)

Yes or No

Yes >> GO TO 10.

No (With CONSULT-III)>>GO TO 12.

No (Without CONSULT-III)>>GO TO 13.

2008 M35/M45

10. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve and EVAP control system pressure sensor attached.

The weight should be less than 2.0 kg (4.4 lb).

OK or NG

OK (With CONSULT-III)>>GO TO 12.

OK (Without CONSULT-III)>>GO TO 13.

NG >> GO TO 11.

[VQ35DE] < SERVICE INFORMATION > 11. DETECT MALFUNCTIONING PART Check the following. EVAP canister for damage EVAP hose between EVAP canister and vehicle frame for clogging or poor connection EC >> Repair hose or replace EVAP canister. 12.check evap canister purge volume control solenoid valve operation (P) With CONSULT-III 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port. Start engine. 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode. Touch "Qu" on CONSULT-III screen to increase "PURG VOL CONT/V" opening to 100%. 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm. Е OK or NG OK >> GO TO 15. NG >> GO TO 14. 13.CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION Without CONSULT-III 1. Start engine and warm it up to normal operating temperature. Stop engine. 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port. 4. Start engine and let it idle for at least 80 seconds. 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm. Vacuum should exist. OK or NG OK >> GO TO 16. NG >> GO TO 14. 14. CHECK VACUUM HOSE Check vacuum hoses for clogging or disconnection. Refer to EC-105, "Vacuum Hose Drawing". OK or NG OK >> GO TO 15. NG >> Repair or reconnect the hose. 15. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE Refer to EC-365, "Component Inspection". OK or NG OK >> GO TO 16. NG >> Replace EVAP canister purge volume control solenoid valve. N 16. CHECK FUEL TANK TEMPERATURE SENSOR Refer to EC-307, "Component Inspection". OK or NG OK >> GO TO 17. NG >> Replace fuel level sensor unit. 17. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR Р Refer to EC-385, "Component Inspection". OK or NG OK >> GO TO 18. NG >> Replace EVAP control system pressure sensor. 18. CHECK EVAP PURGE LINE

< SERVICE INFORMATION >

[VQ35DE]

Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks or improper connection. Refer to EC-40, "Description".

OK or NG

OK >> GO TO 19.

NG >> Repair or reconnect the hose.

19. CLEAN EVAP PURGE LINE

Clean EVAP purge line (pipe and rubber tube) using air blower.

>> GO TO 20.

20. CHECK EVAP/ORVR LINE

Check EVAP/ORVR line between EVAP canister and fuel tank for clogging, kink, looseness and improper connection. For location, refer to <u>EC-46</u>.

OK or NG

OK >> GO TO 21.

NG >> Repair or replace hoses and tubes.

21. CHECK RECIRCULATION LINE

Check recirculation line between filler neck tube and fuel tank for clogging, kink, cracks, looseness and improper connection.

OK or NG

OK >> GO TO 22.

NG >> Repair or replace hose, tube or filler neck tube.

22. CHECK REFUELING EVAP VAPOR CUT VALVE

Refer to EC-48, "Component Inspection".

OK or NG

OK >> GO TO 23.

NG >> Replace refueling EVAP vapor cut valve with fuel tank.

23. CHECK FUEL LEVEL SENSOR

Refer to DI-24, "Electrical Component Inspection".

OK or NG

OK >> GO TO 24.

NG >> Replace fuel level sensor unit.

24. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

>> INSPECTION END

INFOID:0000000002954413

Α

EC

D

Н

M

N

DTC P0460 FUEL LEVEL SENSOR

Component Description

The fuel level sensor is mounted in the fuel level sensor unit.

The sensor detects a fuel level in the fuel tank and transmits a signal to the "unified meter and A/C amp.". The "unified meter and A/C amp." sends the fuel level sensor signal to the ECM through CAN communication line.

It consists of two parts, one is mechanical float and the other is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

- Fuel level sensor unit and fuel pump (1)
- Fuel pressure regulator (2)
- Fuel tank temperature sensor (3)

INFOID:0000000002954414

INFOID:0000000002954415

INFOID:0000000002954416

On Board Diagnosis Logic

NOTE:

- If DTC P0460 is displayed with DTC U1000 or U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-147.
- If DTC P0460 is displayed with DTC U1010, first perform the trouble diagnosis for DTC U1010. Refer to EC-149.

When the vehicle is parked, naturally the fuel level in the fuel tank is stable. It means that output signal of the fuel level sensor does not change. If ECM senses sloshing signal from the sensor, fuel level sensor malfunction is detected.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0460 0460	Fuel level sensor circuit noise	Even though the vehicle is parked, a signal being varied is sent from the fuel level sensor to ECM.	Harness or connectors (The CAN communication line is open or shorted) Harness or connectors (The sensor circuit is open or shorted) Unified meter and A/C amp. Fuel level sensor

DTC Confirmation Procedure

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

- 1. Start engine and wait maximum of 2 consecutive minutes.
- Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-413</u>, "<u>Diagnosis Procedure</u>".

Diagnosis Procedure

 ${f 1}$.CHECK DTC WITH "UNIFIED METER AND A/C AMP."

Refer to DI-27, "CONSULT-III Function (METER/M&A)".

OK or NG

OK >> GO TO 2.

Revision: 2009 February

NG >> Go to DI-22, "Fuel Level Sensor Signal Inspection".

2. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

>> INSPECTION END

EC-413 2008 M35/M45

DTC P0460 FUEL LEVEL SENSOR

< SERVICE INFORMATION >

[VQ35DE]

Removal and Installation

INFOID:0000000002954417

FUEL LEVEL SENSOR Refer to<u>FL-4</u>

INFOID:0000000002954418

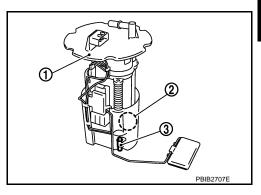
Α

EC

D

Е

DTC P0461 FUEL LEVEL SENSOR


Component Description

The fuel level sensor is mounted in the fuel level sensor unit.

The sensor detects a fuel level in the fuel tank and transmits a signal to the "unified meter and A/C amp.". The "unified meter and A/C amp." sends the fuel level sensor signal to the ECM through CAN communication line.

It consists of two parts, one is mechanical float and the other is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

- Fuel level sensor unit and fuel pump (1)
- Fuel pressure regulator (2)
- Fuel tank temperature sensor (3)

INFOID:0000000002954419

On Board Diagnosis Logic

NOTE:

- If DTC P0461 is displayed with DTC U1000 or U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-147.
- If DTC P0461 is displayed with DTC U1010, first perform the trouble diagnosis for DTC U1010. Refer to <u>EC-149</u>.

Driving long distances naturally affect fuel gauge level.

This diagnosis detects the fuel gauge malfunction of the gauge not moving even after a long distance has been driven.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0461 0461	Fuel level sensor circuit range/performance	The output signal of the fuel level sensor does not change within the specified range even though the vehicle has been driven a long distance.	Harness or connectors (The CAN communication line is open or shorted) Harness or connectors (The sensor circuit is open or shorted) Unified meter and A/C amp. Fuel level sensor

Overall Function Check

Use this procedure to check the overall function of the fuel level sensor function. During this check, a 1st trip DTC might not be confirmed.

WARNING:

When performing following procedure, be sure to observe the handling of the fuel. Refer to <u>FL-10</u>. TESTING CONDITION:

Before starting overall function check, preparation of draining fuel and refilling fuel is required.

(P) WITH CONSULT-III

NOTE:

Start from step 10, if it is possible to confirm that the fuel cannot be drained by 30 $\,\ell$ (7-7/8 US gal, 6-5/8 Imp gal) in advance.

- 1. Prepare a fuel container and a spare hose.
- 2. Release fuel pressure from fuel line, refer to EC-84, "Fuel Pressure Check".
- 3. Remove the fuel feed hose on the fuel level sensor unit.
- 4. Connect a spare fuel hose where the fuel feed hose was removed.
- 5. Turn ignition switch OFF and wait at least 10 seconds then turn ON.
- Select "FUEL LEVEL SE" in "DATA MONITOR" mode with CONSULT-III.
- 7. Check "FUEL LEVEL SE" output voltage and note it.
- 8. Select "FUEL PUMP RELAY" in "ACTIVE TEST" mode with CONSULT-III.
- 9. Touch "ON" and drain fuel approximately 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal) and stop it.
- 10. Check "FUEL LEVEL SE" output voltage and note it.
- 11. Fill fuel into the fuel tank for 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal).
- 12. Check "FUEL LEVEL SE" output voltage and note it.

Н

INFOID:0000000002954420

Ν

M

Р

Revision: 2009 February **EC-415** 2008 M35/M45

DTC P0461 FUEL LEVEL SENSOR

< SERVICE INFORMATION >

[VQ35DE]

13. Confirm whether the voltage changes more than 0.03V during step 7 to 10 and 10 to 12. If NG, go to <u>EC-416</u>, "<u>Diagnosis Procedure</u>".

® WITH GST

NOTE:

Start from step 8, if it is possible to confirm that the fuel cannot be drained by 30 $\,\ell$ (7-7/8 US gal, 6-5/8 Imp gal) in advance.

- 1. Prepare a fuel container and a spare hose.
- Release fuel pressure from fuel line. Refer to EC-84, "Fuel Pressure Check".
- 3. Remove the fuel feed hose on the fuel level sensor unit.
- 4. Connect a spare fuel hose where the fuel feed hose was removed.
- Turn ignition switch ON.
- 6. Drain fuel by 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal) from the fuel tank using proper equipment.
- 7. Confirm that the fuel gauge indication varies.
- 8. Fill fuel into the fuel tank for 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal).
- 9. Confirm that the fuel gauge indication varies.
- 10. If NG, go to EC-416, "Diagnosis Procedure".

Diagnosis Procedure

INFOID:0000000002954421

1. CHECK DTC WITH "UNIFIED METER AND A/C AMP."

Refer to DI-27, "CONSULT-III Function (METER/M&A)".

OK or NG

OK >> GO TO 2.

NG >> Go to DI-22, "Fuel Level Sensor Signal Inspection".

2.CHECK INTERMITTENT INCIDENT

Refer to EC-140.

>> INSPECTION END

Removal and Installation

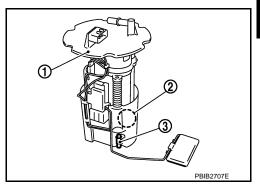
INFOID:0000000002954422

FUEL LEVEL SENSOR

Refer to <u>FL-4</u>.

INFOID:0000000002954423

DTC P0462, P0463 FUEL LEVEL SENSOR CIRCUIT


Component Description

The fuel level sensor is mounted in the fuel level sensor unit.

The sensor detects a fuel level in the fuel tank and transmits a signal to the "unified meter and A/C amp.". The "unified meter and A/C amp." sends the fuel level sensor signal to the ECM through CAN communication line.

It consists of two parts, one is mechanical float and the other is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

- Fuel level sensor unit and fuel pump (1)
- Fuel pressure regulator (2)
- Fuel tank temperature sensor (3)

INFOID:00000000002954424

On Board Diagnosis Logic

NOTE:

- If DTC P0462 or P0463 is displayed with DTC U1000 or U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-147.
- If DTC P0462 or P0463 is displayed with DTC U1010, first perform the trouble diagnosis for DTC U1010. Refer to EC-149.

This diagnosis indicates the former, to detect open or short circuit malfunction.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0462 0462	Fuel level sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The CAN communication line is open or
P0463 0463	Fuel level sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	shorted) Harness or connectors (The sensor circuit is open or shorted) Unified meter and A/C amp. Fuel level sensor

DTC Confirmation Procedure

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at ignition switch ON.

- (P) WITH CONSULT-III
- 1. Turn ignition switch ON.
- Wait at least 5 seconds.
- Check 1st trip DTC.
- If 1st trip DTC is detected, go to EC-417, "Diagnosis Procedure".

WITH GST

Follow the procedure "WITH CONSULT-III" above.

Diagnosis Procedure

 ${f 1}$.CHECK DTC WITH "UNIFIED METER AND A/C AMP."

Refer to DI-27, "CONSULT-III Function (METER/M&A)".

OK or NG

OK >> GO TO 2.

Revision: 2009 February

>> Go to DI-22, "Fuel Level Sensor Signal Inspection". NG

EC-417

EC

Α

D

INFOID:0000000002954425

M

N

INFOID:0000000002954426

DTC P0462, P0463 FUEL LEVEL SENSOR CIRCUIT

< SERVICE INFORMATION > [VQ35DE]

INFOID:0000000002954427

2.CHECK INTERMITTENT INCIDENT

Refer to EC-140.

>> INSPECTION END

Removal and Installation

FUEL LEVEL SENSOR Refer to FL-4.

Revision: 2009 February **EC-418** 2008 M35/M45

DTC P0500 VSS

Description INFOID:0000000002954428

NOTE:

- If DTC P0500 is displayed with DTC U1000 or U1001, first perform the trouble diagnosis for DTC **U1000, U1001.** Refer to EC-147.
- If DTC P0500 is displayed with DTC U1010, first perform the trouble diagnosis for DTC U1010. Refer to <u>EC-149</u>.

The vehicle speed signal is sent to the "unified meter and A/C amp." from the "ABS actuator and electric unit (control unit)" by CAN communication line. The "unified meter and A/C amp." then sends a signal to the ECM by CAN communication line.

On Board Diagnosis Logic

INFOID:0000000002954429

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0500 0500	Vehicle speed sensor	The almost 0 km/h (0 MPH) signal from vehicle speed sensor is sent to ECM even when vehicle is being driven.	Harness or connectors (The CAN communication line is open or shorted) Harness or connectors (The vehicle speed signal circuit is open or shorted) Wheel sensor Unified meter and A/C amp. ABS actuator and electric unit (control unit)

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode.

Detected items	Engine operating condition in fail-safe mode	
Vehicle speed sensor	When the fail-safe system for vehicle speed sensor is activated, the cooling fan operates (Highest) while engine is running.	

DTC Confirmation Procedure

INFOID:0000000002954430

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Steps 1 and 2 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

(P) WITH CONSULT-III

- Start engine (VDC switch OFF).
- Read "VHCL SPEED SE" in "DATA MONITOR" mode with CONSULT-III. The vehicle speed on CON-SULT-III should exceed 10 km/h (6 MPH) when rotating wheels with suitable gear position. If NG, go to EC-420, "Diagnosis Procedure".

If OK, go to following step.

- 3. Select "DATA MONITOR" mode with CONSULT-III.
- 4. Warm engine up to normal operating temperature.
- Maintain the following conditions for at least 50 consecutive seconds.

ENG SPEED	1,600 - 6,000 rpm
COOLAN TEMP/S	More than 70°C (158°F)
B/FUEL SCHDL	5.3 - 31.8 msec
Selector lever	Except P or N position
PW/ST SIGNAL	OFF

EC-419 Revision: 2009 February 2008 M35/M45

EC

Α

D

Е

M

Ν

Р

DTC P0500 VSS

< SERVICE INFORMATION > [VQ35DE]

- 6. Check 1st trip DTC.
- 7. If 1st trip DTC is detected, go to EC-420, "Diagnosis Procedure".

Overall Function Check

INFOID:0000000002954431

Use this procedure to check the overall function of the vehicle speed sensor circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Lift up drive wheels.
- Start engine.
- Read vehicle speed sensor signal in Service \$01 with GST.
 The vehicle speed sensor on GST should be able to exceed 10 km/h (6 MPH) when rotating wheels with suitable gear position.
- 4. If NG, go to EC-420, "Diagnosis Procedure".

Diagnosis Procedure

INFOID:0000000002954432

1. CHECK DTC WITH "ABS ACTUATOR AND ELECTRIC UNIT (CONTROL UNIT)"

Refer to BRC-12.

OK or NG

OK >> GO TO 2.

NG >> Repair or replace.

2.CHECK DTC WITH "UNIFIED METER AND A/C AMP."

Refer to DI-26.

>> INSPECTION END

INFOID:0000000002954434

INFOID:0000000002954435

INFOID:0000000002954436

DTC P0506 ISC SYSTEM

Description INFOID:0000000002954433

NOTE:

If DTC P0506 is displayed with other DTC, first perform the trouble diagnosis for the other DTC.

The ECM controls the engine idle speed to a specified level through the fine adjustment of the air, which is let into the intake manifold, by operating the electric throttle control actuator. The operating of the throttle valve is varied to allow for optimum control of the engine idling speed. The crankshaft position sensor (POS) detects the actual engine speed and sends a signal to the ECM.

The ECM controls the electric throttle control actuator so that the engine speed coincides with the target value memorized in the ECM. The target engine speed is the lowest speed at which the engine can operate steadily. The optimum value stored in the ECM is determined by taking into consideration various engine conditions, such as during warming up, deceleration, and engine load (air conditioner, power steering and cooling fan operation, etc.).

On Board Diagnosis Logic

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0506 0506	Idle speed control system RPM lower than expected	The idle speed is less than the target idle speed by 100 rpm or more.	Electric throttle control actuator Intake air leak

DTC Confirmation Procedure

NOTE:

- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
- If the target idle speed is out of the specified value, perform <u>EC-82, "Idle Air Volume Learning",</u> before conducting DTC Confirmation Procedure. For the target idle speed, refer to the EC-638. **TESTING CONDITION:**
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.
- Always perform the test at a temperature above -10°C(14°F).
- Open engine hood.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and run it for at least 1 minute at idle speed.
- Check 1st trip DTC.
- If 1st trip DTC is detected, go to EC-421, "Diagnosis Procedure".

Diagnosis Procedure

1.CHECK INTAKE AIR LEAK

- Start engine and let it idle.
- 2. Listen for an intake air leak after the mass air flow sensor.

OK or NG

OK >> GO TO 2.

NG >> Discover air leak location and repair.

2.REPLACE ECM

- 1. Stop engine.
- 2. Replace ECM.
- Perform initialization of IVIS (NATS) system and registration of all IVIS (NATS) ignition key IDs. Refer to BL-221, "ECM Re-Communicating Function".
- 4. Perform EC-81, "VIN Registration".
- 5. Perform EC-82, "Accelerator Pedal Released Position Learning".
- Perform EC-82, "Throttle Valve Closed Position Learning".
- Perform EC-82, "Idle Air Volume Learning".

D

Α

EC

Е

K

M

N

Р

>> INSPECTION END

Α

EC

D

Е

DTC P0507 ISC SYSTEM

Description INFOID:0000000002954437

NOTE:

If DTC P0507 is displayed with other DTC, first perform the trouble diagnosis for the other DTC.

The ECM controls the engine idle speed to a specified level through the fine adjustment of the air, which is let into the intake manifold, by operating the electric throttle control actuator. The operating of the throttle valve is varied to allow for optimum control of the engine idling speed. The crankshaft position sensor (POS) detects the actual engine speed and sends a signal to the ECM.

The ECM controls the electric throttle control actuator so that the engine speed coincides with the target value memorized in the ECM. The target engine speed is the lowest speed at which the engine can operate steadily. The optimum value stored in the ECM is determined by taking into consideration various engine conditions, such as during warming up, deceleration, and engine load (air conditioner, power steering and cooling fan operation, etc.).

On Board Diagnosis Logic

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0507 0507	Idle speed control system RPM higher than expected	The idle speed is more than the target idle speed by 200 rpm or more.	Electric throttle control actuator Intake air leak PCV system

DTC Confirmation Procedure

NOTE:

- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
- If the target idle speed is out of the specified value, perform <u>EC-82, "Idle Air Volume Learning",</u> before conducting DTC Confirmation Procedure. For the target idle speed, refer to the EC-638. **TESTING CONDITION:**
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.
- Always perform the test at a temperature above -10°C(14°F).
- Open engine hood.
- Start engine and warm it up to normal operating temperature. 2.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and run it for at least 1 minute at idle speed.
- Check 1st trip DTC.
- If 1st trip DTC is detected, go to EC-423, "Diagnosis Procedure".

Diagnosis Procedure

CHECK PCV HOSE CONNECTION

Confirm that PCV hose is connected correctly.

OK or NG

OK >> GO TO 2.

NG >> Repair or replace.

2.CHECK INTAKE AIR LEAK

- Start engine and let it idle.
- Listen for an intake air leak after the mass air flow sensor.

OK or NG

OK >> GO TO 3.

NG >> Discover air leak location and repair.

3.replace ecm

- 1. Stop engine.
- Replace ECM.

INFOID:0000000002954438

INFOID:0000000002954439

K

INFOID:0000000002954440

N

P

EC-423

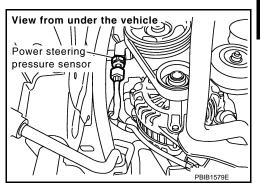
DTC P0507 ISC SYSTEM

< SERVICE INFORMATION >

[VQ35DE]

- Perform initialization of IVIS (NATS) system and registration of all IVIS (NATS) ignition key IDs. Refer to BL-221, "ECM Re-Communicating Function".
- Perform <u>EC-81</u>, "VIN Registration".
 Perform <u>EC-82</u>, "Accelerator Pedal Released Position Learning".
 Perform <u>EC-82</u>, "Throttle Valve Closed Position Learning".
 Perform <u>EC-82</u>, "Idle Air Volume Learning".

>> INSPECTION END


INFOID:0000000002954441

DTC P0550 PSP SENSOR

Component Description

Power steering pressure (PSP) sensor is installed to the power steering high-pressure tube and detects a power steering load.

This sensor is a potentiometer which transforms the power steering load into output voltage, and emits the voltage signal to the ECM. The ECM controls the electric throttle control actuator and adjusts the throttle valve opening angle to increase the engine speed and adjusts the idle speed for the increased load.

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002954442

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
PW/ST SIGNAL	Engine: After warming up, idle the engine	Steering wheel: Not being turned	OFF
		Steering wheel: Being turned	ON

On Board Diagnosis Logic

INFOID:0000000002954443

The MIL will not light up for this diagnosis.

If DTC P0550 is displayed with DTC P0643, first perform the trouble diagnosis for DTC P0643. Refer to EC-436.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0550 0550	Power steering pressure sensor circuit	An excessively low or high voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted) Power steering pressure sensor

DTC Confirmation Procedure

INFOID:0000000002954444

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

- Turn ignition switch ON.
- 2. Start engine and let it idle for at least 5 seconds.
- Check 1st trip DTC.
- If 1st trip DTC is detected, go to EC-427, "Diagnosis Procedure".

Ν

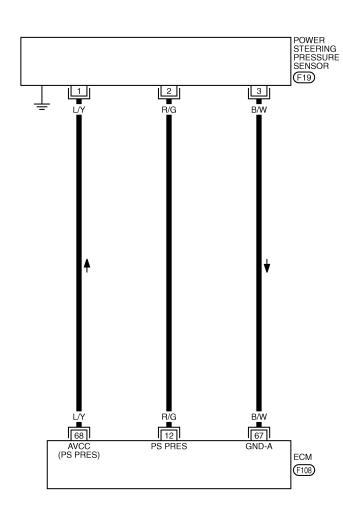
EC-425 Revision: 2009 February 2008 M35/M45

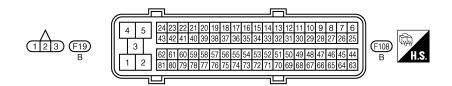
EC

Α

D

Е


F


Wiring Diagram

INFOID:0000000002954445

EC-PS/SEN-01

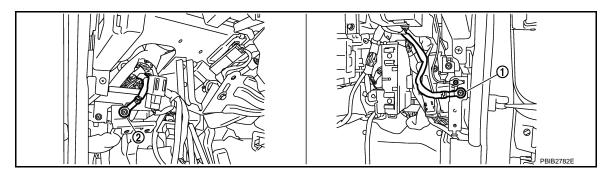
: DETECTABLE LINE FOR DTC : NON-DETECTABLE LINE FOR DTC

TBWT0967E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
12 R/G	Power steering pressure sensor	[Engine is running] • Steering wheel: Being turned	0.5 - 4.5V	
		[Engine is running] • Steering wheel: Not being turned	0.4 - 0.8V	
67	B/W	Sensor ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
68	L/Y	Sensor power supply (Power steering pressure sensor)	[Ignition switch: ON]	Approximately 5V

Diagnosis Procedure

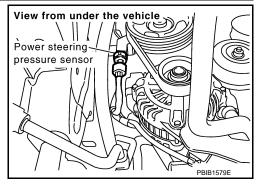
INFOID:0000000002954446

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws on the body. Refer to <u>EC-146</u>, "<u>Ground Inspection</u>".

1. Body ground M70

2. Body ground M16


OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK PSP SENSOR POWER SUPPLY CIRCUIT

- Disconnect power steering pressure (PSP) sensor harness connector.
- 2. Turn ignition switch ON.

Revision: 2009 February **EC-427** 2008 M35/M45

FC.

Α

С

D

Е

F

G

Н

J

Κ

L

M

Ν

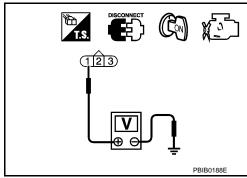
0

Р

< SERVICE INFORMATION >

[VQ35DE]

Check voltage between PSP sensor terminal 1 and ground with CONSULT-III or tester.


Voltage: Approximately 5V

OK or NG

OK >> GO TO 3.

NG >> Repair o

>> Repair open circuit or short to ground or short to power in harness or connectors.

${f 3.}$ CHECK PSP SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check harness continuity between PSP sensor terminal 3 and ECM terminal 67. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground short to power in harness or connectors.

4. CHECK PSP SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal 12 and PSP sensor terminal 2. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5.CHECK PSP SENSOR

Refer to EC-428, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace PSP sensor.

6. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

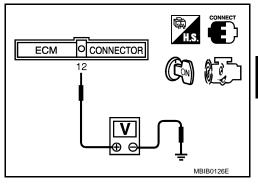
>> INSPECTION END

Component Inspection

INFOID:0000000002954447

POWER STEERING PRESSURE SENSOR

- 1. Reconnect all harness connectors disconnected.
- Start engine and let it idle.


DTC P0550 PSP SENSOR

< SERVICE INFORMATION >

[VQ35DE]

3. Check voltage between ECM terminal 12 and ground under the following conditions.

Condition	Voltage
Steering wheel: Being turned.	0.5 - 4.5V
Steering wheel: Not being turned.	0.4 - 0.8V

INFOID:0000000002954448

Removal and Installation

POWER STEERING PRESSURE SENSOR Refer to <u>PS-36</u>.

Revision: 2009 February **EC-429** 2008 M35/M45

Α

EC

D

C

Е

F

G

Н

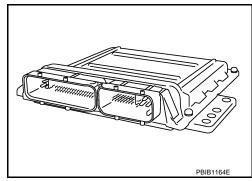
Κ

L

M

Ν

0


Р

INFOID:0000000002954449

DTC P0603 ECM POWER SUPPLY

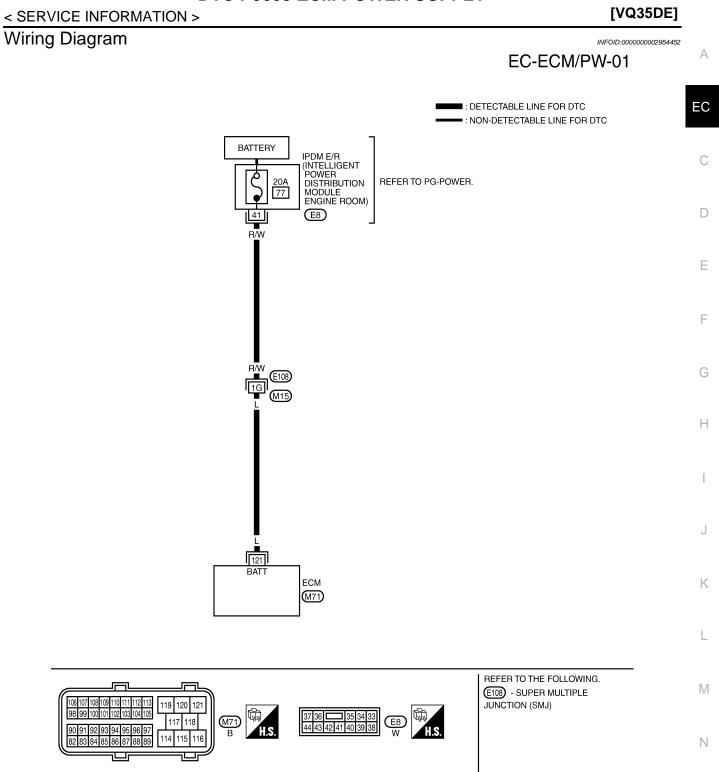
Component Description

Battery voltage is supplied to the ECM even when the ignition switch is turned OFF for the ECM memory function of the DTC memory, the air-fuel ratio feedback compensation value memory, the idle air volume learning value memory, etc.

On Board Diagnosis Logic

INFOID:0000000002954450

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0603 0603	ECM power supply circuit	ECM back-up RAM system does not function properly.	Harness or connectors [ECM power supply (back-up) circuit is open or shorted.] ECM


DTC Confirmation Procedure

INFOID:0000000002954451

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

- 1. Turn ignition switch ON and wait at least 1 second.
- 2. Start engine and let it idle for 1 second.
- 3. Turn ignition switch OFF, wait at least 10 seconds, and then turn ON.
- 4. Repeat steps 2 and 3 for four times.
- 5. Check 1st trip DTC.
- 6. If 1st trip DTC is detected, go to EC-432, "Diagnosis Procedure".

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

0

Р

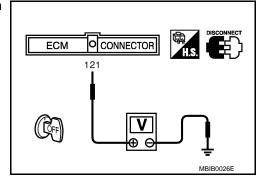
TBWT1959E

< SERVICE INFORMATION >

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
121	L	Power supply for ECM (Back-up)	[Ignition switch: OFF]	BATTERY VOLTAGE (11 - 14V)

Diagnosis Procedure

INFOID:0000000002954453


1. CHECK ECM POWER SUPPLY

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check voltage between ECM terminal 121 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- 20A fuse
- IPDM E/R harness connector E8
- Harness for open or short between ECM and battery
 - >> Repair or replace harness or connectors.

3. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

OK or NG

OK >> GO TO 4.

NG >> Repair or replace harness or connectors.

4. PERFORM DTC CONFIRMATION PROCEDURE

(P) With CONSULT-III

- 1. Turn ignition switch ON.
- 2. Select "SELF-DIAG RESULTS" mode with CONSULT-III.
- Touch "ERASE".
- 4. Perform DTC Confirmation Procedure.

See EC-430, "DTC Confirmation Procedure".

5. Is the 1st trip DTC P0603 displayed again?

With GST

- 1. Turn ignition switch ON.
- 2. Select Service \$04 with GST.
- 3. Perform DTC Confirmation Procedure.

See EC-430, "DTC Confirmation Procedure".

4. Is the 1st trip DTC P0603 displayed again?

Yes or No

Yes >> GO TO 5.

No >> INSPECTION END

DTC P0603 ECM POWER SUPPLY

[VQ35DE] < SERVICE INFORMATION >

5. REPLACE ECM

- 1. Replace ECM.
- Perform initialization of IVIS (NATS) system and registration of all IVIS (NATS) ignition key IDs. Refer to 2. BL-221, "ECM Re-Communicating Function".
- Perform <u>EC-81</u>, "VIN Registration".
 Perform <u>EC-82</u>, "Accelerator Pedal Released Position Learning".
- 5. Perform EC-82, "Throttle Valve Closed Position Learning".
- 6. Perform EC-82, "Idle Air Volume Learning".

>> INSPECTION END

EC

D

F

Е

Н

K

L

M

Ν

0

DTC P0605 ECM

Component Description

INFOID:0000000002954454

The ECM consists of a microcomputer and connectors for signal input and output and for power supply. The ECM controls the engine.

On Board Diagnosis Logic

INFOID:0000000002954455

This self-diagnosis has one or two trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition		Possible cause
D000#		A)	ECM calculation function is malfunctioning.	
P0605 0605	Engine control module	B)	ECM EEP-ROM system is malfunctioning.	• ECM
		C)	ECM self shut-off function is malfunctioning.	

FAIL-SAFE MODE

ECM enters fail-safe mode when the malfunction A is detected.

Detected items	Engine operation condition in fail-safe mode	
Malfunction A	 ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring. ECM deactivates ASCD operation. 	

DTC Confirmation Procedure

INFOID:0000000002954456

Perform PROCEDURE FOR MALFUNCTION A first. If the 1st trip DTC cannot be confirmed, perform PROCEDURE FOR MALFUNCTION B. If there is no malfunction on PROCEDURE FOR MALFUNCTION B, perform PROCEDURE FOR MALFUNCTION C.

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

PROCEDURE FOR MALFUNCTION A

- 1. Turn ignition switch ON.
- Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-435</u>, "<u>Diagnosis Procedure</u>".

PROCEDURE FOR MALFUNCTION B

- 1. Turn ignition switch ON and wait at least 1 second.
- 2. Turn ignition switch OFF, wait at least 10 seconds, and then turn ON.
- Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-435</u>, "<u>Diagnosis Procedure</u>".

PROCEDURE FOR MALFUNCTION C

- Turn ignition switch ON and wait at least 1 second.
- 2. Turn ignition switch OFF, wait at least 10 seconds, and then turn ON.
- 3. Repeat step 2 for 32 times.
- 4. Check 1st trip DTC.
- 5. If 1st trip DTC is detected, go to <u>EC-435</u>, "<u>Diagnosis Procedure</u>".

DTC P0605 ECM

[VQ35DE] < SERVICE INFORMATION >

Diagnosis Procedure

1. INSPECTION START

	With CONSULT-III	
1.	Turn ignition switch ON.	EC
2.	Select "SELF-DIAG RESULTS" mode with CONSULT-III.	
2	Touch "EDACE"	

- Touch "ERASE". **Perform DTC Confirmation Procedure.** See EC-434, "DTC Confirmation Procedure".
- Is the 1st trip DTC P0605 displayed again?

With GST

- Turn ignition switch ON.
- Select Service \$04 with GST.
- 3. Perform DTC Confirmation Procedure. See EC-434, "DTC Confirmation Procedure".
- 4. Is the 1st trip DTC P0605 displayed again?

Yes or No

Yes >> GO TO 2.

No >> INSPECTION END

2.REPLACE ECM

- 1. Replace ECM.
- 2. Perform initialization of IVIS (NATS) system and registration of all IVIS (NATS) ignition key IDs. Refer to BL-221, "ECM Re-Communicating Function".
- 3. Perform EC-81, "VIN Registration".
- Perform <u>EC-82</u>, "Accelerator Pedal Released Position Learning".
- 5. Perform EC-82, "Throttle Valve Closed Position Learning".
- 6. Perform EC-82, "Idle Air Volume Learning".

>> INSPECTION END

EC-435 Revision: 2009 February 2008 M35/M45

INFOID:0000000002954457

D

Е

F

Н

K

L

Ν

DTC P0643 SENSOR POWER SUPPLY

On Board Diagnosis Logic

INFOID:0000000002954458

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0643 0643	Sensor power supply circuit short	ECM detects a voltage of power source for sensor is excessively low or high.	Harness or connectors (APP sensor 1 circuit is shorted.) (EVAP control system pressure sensor is shorted.) (Refrigerant pressure sensor circuit is shorted.) (PSP sensor circuit is shorted.) (Battery current sensor circuit is shorted.) Accelerator pedal position sensor EVAP control system pressure sensor Refrigerant pressure sensor Power steering pressure sensor Battery current sensor

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operation condition in fail-safe mode

ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.

DTC Confirmation Procedure

INFOID:0000000002954459

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

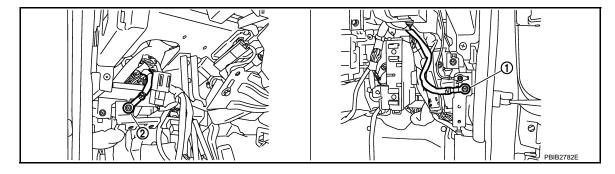
Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

- (P) WITH CONSULT-III
- 1. Start engine and let it idle for 1 second.
- 2. Check DTC.
- If DTC is detected, go to <u>EC-438</u>, "<u>Diagnosis Procedure</u>".
- **® WITH GST**

Follow the procedure "WITH CONSULT-III" above.

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
48	BR	Sensor power supply (EVAP control system pressure sensor)	[Ignition switch: ON]	Approximately 5V
49	В/Ү	Sensor power supply (Refrigerant pressure sensor, Battery current sensor)	[Ignition switch: ON]	Approximately 5V
68	L/Y	Sensor power supply (Power steering pressure sensor)	[Ignition switch: ON]	Approximately 5V
82	W	Sensor ground (APP sensor 1)	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
83	Р	Sensor ground (APP sensor 2)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
90	L	Sensor power supply (APP sensor 1)	[Ignition switch: ON]	Approximately 5V
91	BR	Sensor power supply (APP sensor 2)	[Ignition switch: ON]	Approximately 5V
98	В	Accelerator pedal position	[Ignition switch: ON] • Engine stopped • Accelerator pedal: Fully released	0.20 - 0.55V
98	R	sensor 2	[Ignition switch: ON] • Engine stopped • Accelerator pedal: Fully depressed	1.85 - 2.40V
400		Accelerator pedal position	[Ignition switch: ON] • Engine stopped • Accelerator pedal: Fully released	0.4 - 1.1V
106	LG	sensor 1	[Ignition switch: ON] • Engine stopped • Accelerator pedal: Fully depressed	3.7 - 4.8V

Diagnosis Procedure

INFOID:0000000002954461

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- Loosen and retighten two ground screws on the body. Refer to <u>EC-146</u>. "Ground Inspection".

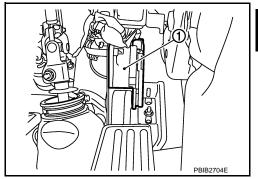
1. Body ground M70

2. Body ground M16

OK or NG

OK >> GO TO 2.

DTC P0643 SENSOR POWER SUPPLY

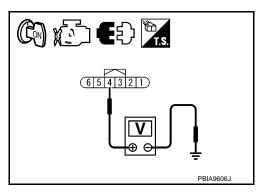

< SERVICE INFORMATION >

[VQ35DE]

NG >> Repair or replace ground connections.

2.CHECK ACCELERATOR PEDAL POSITION SENSOR 1 POWER SUPPLY CIRCUIT

- Disconnect accelerator pedal position (APP) sensor (1) harness connector.
- 2. Turn ignition switch ON.



3. Check voltage between APP sensor terminal 4 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 5. >> GO TO 3. NG

3.CHECK SENSOR POWER SUPPLY CIRCUITS

Check harness for short to power and short to ground, between the following terminals.

ECM terminal	Sensor terminal	Reference Wiring Diagram
90	APP sensor terminal 4	EC-437
48 EVAP control system pressure sensor terminal 3		EC-389
49	Refrigerant pressure sensor terminal 1	EC-627
49	Battery current sensor terminal 1	EC-473
68 PSP sensor terminal 1		EC-426

OK or NG

OK >> GO TO 4.

NG >> Repair short to ground or short to power in harness or connectors.

4. CHECK COMPONENTS

Check the following.

- EVAP control system pressure sensor (Refer to <u>EC-392. "Component Inspection"</u>.)
- Refrigerant pressure sensor (Refer to ATC-82, "Magnet Clutch Circuit".)
- Battery current sensor (Refer to EC-476, "Component Inspection".)
- Power steering pressure sensor (Refer to EC-428, "Component Inspection".)

OK or NG

OK >> GO TO 7.

NG >> Replace malfunctioning component.

5. CHECK APP SENSOR

Refer to EC-554, "Component Inspection".

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

EC-439 Revision: 2009 February 2008 M35/M45

EC

Α

D

Е

F

Н

M

Ν

DTC P0643 SENSOR POWER SUPPLY

< SERVICE INFORMATION >

[VQ35DE]

6. REPLACE ACCELERATOR PEDAL ASSEMBLY

- Replace accelerator pedal assembly.
- Perform <u>EC-82</u>, "<u>Accelerator Pedal Released Position Learning</u>".
 Perform <u>EC-82</u>, "<u>Throttle Valve Closed Position Learning</u>".
 Perform <u>EC-82</u>, "<u>Idle Air Volume Learning</u>".

>> INSPECTION END

7. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

>> INSPECTION END

DTC P0850 PNP SWITCH

< SERVICE INFORMATION >

[VQ35DE]

DTC P0850 PNP SWITCH

Component Description

INFOID:0000000002954462

When the selector lever position is P or N, transmission range switch is ON. ECM detects the position because the continuity of the line (the ON signal) exists.

EC

D

Е

Α

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002954463

Specification data are reference values.

MONITOR ITEM	CO	CONDITION	
P/N POSI SW	Ignition switch: ON	Selector lever: P or N ON	
F/N FOSI SW	1 Igrition Switch. ON	Selector lever: Except above	OFF

On Board Diagnosis Logic

INFOID:0000000002954464

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0850 0850	Park/neutral position switch	The signal of the transmission range switch is not changed in the process of engine starting and driving.	Harness or connectors [The transmission range switch circuit is open or shorted.] transmission range switch Unified meter and A/C amp. TCM

DTC Confirmation Procedure

INFOID:0000000002954465

CAUTION:

Always drive vehicle at a safe speed.

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-III

- 1. Turn ignition switch ON.
- Select "P/N POSI SW" in "DATA MONITOR" mode with CONSULT-III. Then check the "P/N POSI SW" signal under the following conditions.

Position (Selector lever)	Known-good signal	
N or P position	ON	
Except above position	OFF	

If NG, go to EC-444, "Diagnosis Procedure".

If OK, go to following step.

- Select "DATA MONITOR" mode with CONSULT-III.
- Start engine and warm it up to normal operating temperature.
- Maintain the following conditions for at least 50 consecutive seconds.

ENG SPEED	1,400 - 6,375 rpm
COOLAN TEMP/S	More than 70°C (158°F)
B/FUEL SCHDL	2.0 - 31.8 msec
VHCL SPEED SE	More than 64 km/h (40 MPH)
Selector lever	Suitable position

If 1st trip DTC is detected, go to EC-444, "Diagnosis Procedure".

L

K

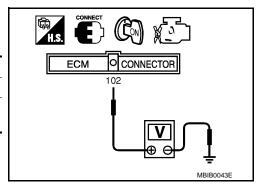
Ν

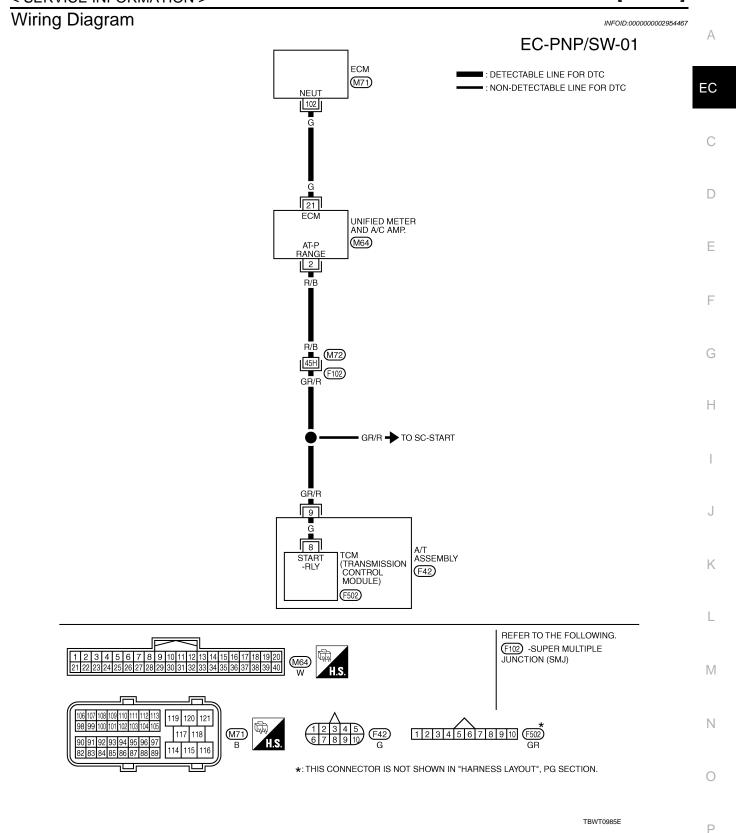
Р

EC-441 Revision: 2009 February 2008 M35/M45

Overall Function Check

INFOID:0000000002954466


Use this procedure to check the overall function of the transmission range switch circuit. During this check, a 1st trip DTC might not be confirmed.


WITH GST

- 1. Turn ignition switch ON.
- 2. Check voltage between ECM terminal 102 (PNP signal) and ground under the following conditions.

Position (Selector lever)	Voltage (Known good data)	
P or N position	Approx. 0V	
Except above position	BATTERY VOLTAGE (11 - 14V)	

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

< SERVICE INFORMATION >

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
102	G	Transmission range switch	[Ignition switch: ON] • Selector lever: P or N	Approximately 0V
	G	Transmission range switch	[Ignition switch: ON] • Selector lever: Except above	BATTERY VOLTAGE (11 - 14V)

Diagnosis Procedure

INFOID:0000000002954468

1. CHECK DTC WITH TCM

Refer to AT-40, "OBD-II Diagnostic Trouble Code (DTC)".

OK or NG

OK >> GO TO 2.

NG >> Repair or replace.

2.CHECK STARTING SYSTEM

Turn ignition switch OFF, then turn it to START.

Does starter motor operate?

Yes or No

Yes >> GO TO 3. No >> Refer to <u>SC-8</u>.

3.CHECK PNP INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT-I

- Turn ignition switch OFF.
- 2. Disconnect A/T assembly harness connector.
- 3. Disconnect "unified meter and A/C amp." harness connector.
- Check harness continuity between A/T assembly terminal 9 and "unified meter and A/C amp." terminal 2. Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M72, F102
- Harness for open or short between A/T assembly and "unified meter and A/C amp."
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK PNP INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT-II

- Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 102 and "unified meter and A/C amp." terminal 21. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

6.CHECK PNP INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT-III

DTC P0850 PNP SWITCH

[VQ35DE] < SERVICE INFORMATION > Check harness continuity between A/T assembly terminal 9 and TCM terminal 8. Refer to AT-98. Α Continuity should exist. EC 2. Also check harness for short to ground and short to power. OK or NG OK >> GO TO 7. NG >> Repair open circuit or short to ground or short to power in harness or connectors. 7. CHECK INTERMITTENT INCIDENT Refer to EC-140. D OK or NG OK >> GO TO 8. NG >> Repair or replace. Е $8.\mathsf{REPLACE}$ "UNIFIED METER AND A/C AMP." Refer to DI-26. F >> INSPECTION END Н K L

M

Ν

Р

Revision: 2009 February **EC-445** 2008 M35/M45

DTC P1148, P1168 CLOSED LOOP CONTROL

< SERVICE INFORMATION >

[VQ35DE]

DTC P1148, P1168 CLOSED LOOP CONTROL

On Board Diagnosis Logic

INFOID:0000000002954469

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1148 1148 (Bank 1)	Closed loop control	The closed loop control function for bank 1 does not operate even when vehicle is driving in the specified condition.	Harness or connectors (The A/F sensor 1 circuit is open or shorted.)
P1168 1168 (Bank 2)	function	The closed loop control function for bank 2 does not operate even when vehicle is driving in the specified condition.	

NOTE:

DTC P1148 or P1168 is displayed with another DTC for A/F sensor 1. Perform the trouble diagnosis for the corresponding DTC.

DTC P1211 TCS CONTROL UNIT

< SERVICE INFORMATION > [VQ35DE]

DTC P1211 TCS CONTROL UNIT

Description INFOID:0000000002954470

The malfunction information related to TCS is transferred through the CAN communication line from "ABS actuator and electric unit (control unit)" to ECM.

Be sure to erase the malfunction information such as DTC not only for "ABS actuator and electric unit (control unit)" but also for ECM after TCS related repair.

On Board Diagnosis Logic

Freeze frame data is not stored in the ECM for this self-diagnosis. The MIL will not light up for this self-diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1211 1211	TCS control unit	ECM receives a malfunction information from "ABS actuator electric unit (control unit)"	ABS actuator and electric unit (control unit) TCS related parts

DTC Confirmation Procedure

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V at idle.

- 1. Start engine and let it idle for at least 60 seconds.
- 2. Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-447, "Diagnosis Procedure"</u>.

Diagnosis Procedure

Go to BRC-12.

EC-447

EC

Α

INFOID:0000000002954471

INFOID:0000000002954472

D

Е

. . .

Н

INFOID:0000000002954473

J

1 \

Ν

O

DTC P1212 TCS COMMUNICATION LINE

Description INFOID:000000002954474

NOTE:

- If DTC P1212 is displayed with DTC U1000 or U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to <u>EC-147</u>.
- If DTC P1212 is displayed with DTC U1010, first perform the trouble diagnosis for DTC U1010. Refer to <u>EC-149</u>.

This CAN communication line is used to control the smooth engine operation during the TCS operation. Pulse signals are exchanged between ECM and "ABS actuator and electric unit (control unit)".

Be sure to erase the malfunction information such as DTC not only for "ABS actuator and electric unit (control unit)" but also for ECM after TCS related repair.

On Board Diagnosis Logic

INFOID:0000000002954475

Freeze frame data is not stored in the ECM for this self-diagnosis. The MIL will not light up for this self-diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1212 1212	TCS communication line	ECM can not receive the information from "ABS actuator and electric unit (control unit)" continuously.	Harness or connectors (The CAN communication line is open or shorted.) ABS actuator and electric unit (control unit) Dead (Weak) battery

DTC Confirmation Procedure

INFOID:0000000002954476

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V at idle.

- 1. Start engine and let it idle for at least 10 seconds.
- 2. Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-448</u>, "<u>Diagnosis Procedure</u>".

Diagnosis Procedure

INFOID:0000000002954477

Go to BRC-12.

DTC P1217 ENGINE OVER TEMPERATURE

Description INFOID:0000000002954478

SYSTEM DESCRIPTION

NOTE:

- If DTC P1217 is displayed with DTC U1000 or U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to <u>EC-147</u>.
- If DTC P1217 is displayed with DTC U1010, first perform the trouble diagnosis for DTC U1010. Refer to <u>EC-149</u>.

Cooling Fan Control

Sensor	Input signal to ECM	ECM function	Actuator	
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed*1			
Battery	Battery voltage*1			
Wheel sensor	Vehicle speed*2		• IPDM E/R	
Engine coolant temperature sensor	Engine coolant temperature	Cooling fan	Cooling fan relay Cooling fan control mad	
Air conditioner switch	Air conditioner ON signal*2	control	Cooling fan control mod- ule	
Refrigerant pressure sensor	Refrigerant pressure			
Unified meter and A/C amp.	Target A/C evaporator temperature*2			
Intake sensor	A/C evaporator temperature*2			

^{*1:} The ECM determines the start signal status by the signals of engine speed and battery voltage.

ECM controls cooling fan speed corresponding to vehicle speed, engine coolant temperature, air conditioner ON signal, refrigerant pressure, target A/C evaporator temperature and A/C evaporator temperature. Cooling fan control signal is sent to IPDM E/R from ECM by CAN communication line. Then, IPDM E/R sends ON/OFF pulse duty signal to cooling fan control module. Corresponding to this ON/OFF pulse duty signal, cooling fan control module gives cooling fan motor operating voltage to cooling fan motors. Cooling fan speed is controlled by duty cycle of cooling fan motor operating voltage sent from cooling fan control module.

COMPONENT DESCRIPTION

Cooling Fan Control Module

Cooling fan control module (1) receives ON/OFF pulse duty signal from IPDM E/R. Corresponding to this ON/OFF pulse duty signal, cooling fan control module sends cooling fan motor operating voltage to cooling fan motor. The revolution speed of cooling fan motor is controlled by duty cycle of the voltage.

- ← : Vehicle front
- Cooling fan motor-1 (2)
- Cooling fan motor-2 (3)

2 2 PBIB3352E

Cooling Fan Motor

EC

Α

Е

D

F

G

Н

J

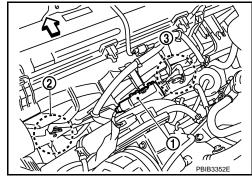
K

L

M

Ν

^{*2:} This signal is sent to ECM through CAN communication line.


DTC P1217 ENGINE OVER TEMPERATURE

< SERVICE INFORMATION >

[VQ35DE]

Cooling fan motor receives cooling fan motor operating voltage from cooling fan control module (1). The revolution speed of cooling fan motor is controlled by duty cycle of the voltage.

- <□: Vehicle front
- Cooling fan motor-1 (2)
- Cooling fan motor-2 (3)

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002954479

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
FAN DUTY	Engine: Running	0 - 100%

On Board Diagnosis Logic

INFOID:0000000002954480

If the cooling fan or another component in the cooling system malfunctions, engine coolant temperature will rise.

When the engine coolant temperature reaches an abnormally high temperature condition, a malfunction is indicated.

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1217 1217	Engine over tempera- ture (Overheat)	 Cooling fan does not operate properly (Overheat). Cooling fan system does not operate properly (Overheat). Engine coolant was not added to the system using the proper filling method. Engine coolant is not within the specified range. 	Harness or connectors (The cooling fan circuit is open or shorted.) IPDM E/R Cooling fan control module Cooling fan motor Radiator hose Radiator Radiator cap Water pump Thermostat For more information, refer to EC-457, "Main 12 Causes of Overheating".

CAUTION:

When a malfunction is indicated, be sure to replace the coolant. Refer to <u>CO-10, "Changing Engine Coolant"</u>. Also, replace the engine oil. Refer to <u>LU-7, "Changing Engine Oil"</u>.

- 1. Fill radiator with coolant up to specified level with a filling speed of 2 liters per minute. Be sure to use coolant with the proper mixture ratio. Refer to MA-10, "Anti-Freeze Coolant Mixture Ratio".
- 2. After refilling coolant, run engine to ensure that no water-flow noise is emitted.

Overall Function Check

INFOID:0000000002954481

Use this procedure to check the overall function of the cooling fan. During this check, a DTC might not be confirmed.

WARNING:

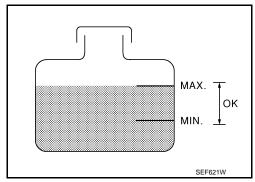
Never remove the radiator cap when the engine is hot. Serious burns could be caused by high pressure fluid escaping from the radiator.

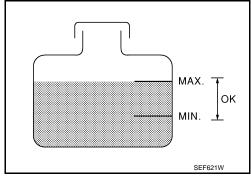
Wrap a thick cloth around cap. Carefully remove the cap by turning it a quarter turn to allow built-up pressure to escape. Then turn the cap all the way off.

(A) WITH CONSULT-III

DTC P1217 ENGINE OVER TEMPERATURE

< SERVICE INFORMATION >


[VQ35DE]


- Check the coolant level in the reservoir tank and radiator.
 Allow engine to cool before checking coolant level.
 If the coolant level in the reservoir tank and/or radiator is below the proper range, skip the following steps and go to <u>EC-453</u>.

 "Diagnosis Procedure".
- 2. Confirm whether customer filled the coolant or not. If customer filled the coolant, skip the following steps and go to EC-453. "Diagnosis Procedure".
- 3. Turn ignition switch ON.
- Perform "FAN DUTY CONTROL" in "ACTIVE TEST" mode with CONSULT-III.
- 5. Make sure that cooling fan speed varies according to the percent.
- If the results are NG, go to <u>EC-453, "Diagnosis Procedure"</u>.

WITH GST

- Check the coolant level in the reservoir tank and radiator.
 Allow engine to cool before checking coolant level.
 If the coolant level in the reservoir tank and/or radiator is below the proper range, skip the following steps and go to <u>EC-453</u>, <a href=""EDiagnosis Procedure".
- 2. Confirm whether customer filled the coolant or not. If customer filled the coolant, skip the following steps and go to EC-453. "Diagnosis Procedure".
- 3. Perform IPDM E/R auto active test and check cooling fan motors operation, refer to <u>PG-22</u>, "Auto Active Test".
- If NG, go to <u>EC-453, "Diagnosis Procedure"</u>.

Α

EC

С

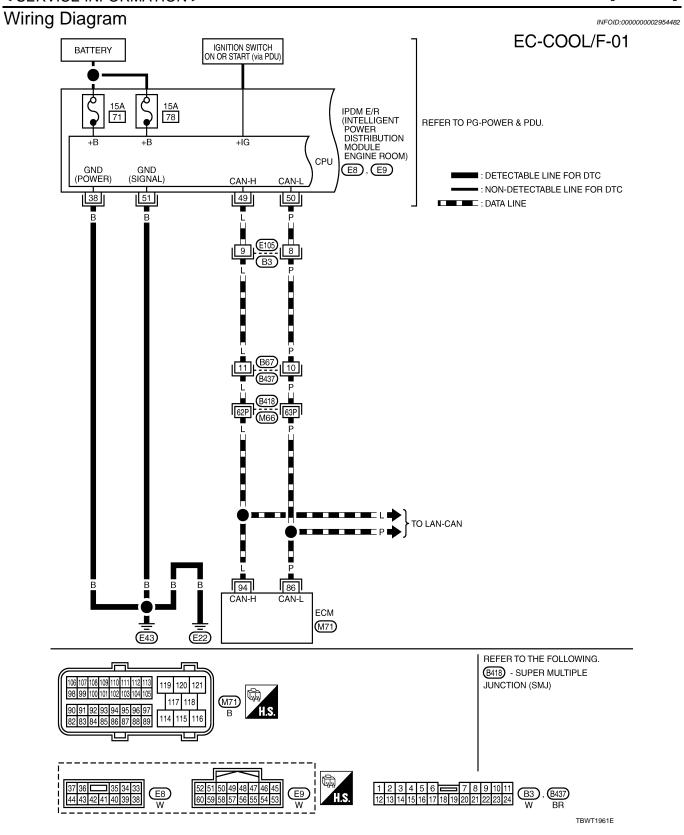
D

Е

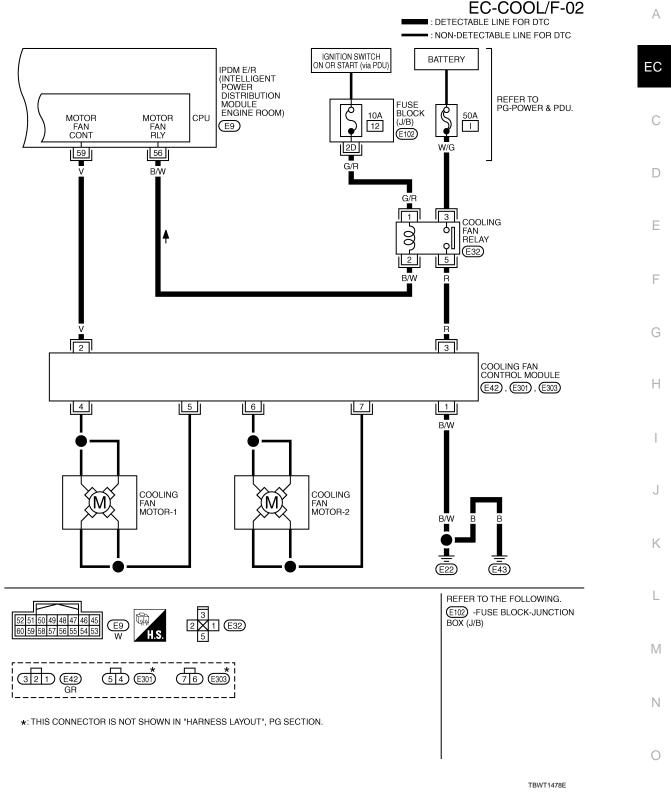
F

G

Н


L

K


M

Ν

0

INFOID:0000000002954483

Diagnosis Procedure

1. CHECK COOLING FAN OPERATION

(I) With CONSULT-III

- 1. Turn ignition switch ON.
- 2. Perform "FAN DUTY CONTROL" in "ACTIVE TEST" mode with CONSULT-III.
- Make sure that cooling fan speed varies according to the percent.

< SERVICE INFORMATION >

8 Without CONSULT-III

- 1. Perform IPDM E/R auto active test and check cooling fan motors operation, refer to <u>PG-22, "Auto Active Test"</u>.
- 2. Make sure that cooling fan operates.

OK or NG

OK >> GO TO 2. NG >> GO TO 5.

2. CHECK COOLING SYSTEM FOR LEAK

Refer to CO-10, "Inspection"

OK or NG

OK >> GO TO 3.

NG >> Check the following for leak.

- Hose
- Radiator
- Water pump

3. CHECK COMPONENT PARTS

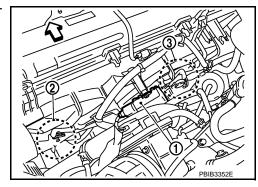
Check the following.

- Radiator cap. Refer to CO-15, "Checking Radiator Cap".
- Thermostat. Refer to CO-28.
- Engine coolant temperature sensor. Refer to <u>EC-203. "Component Inspection"</u>.

OK or NG

OK >> GO TO 4.

NG >> Replace malfunctioning component.

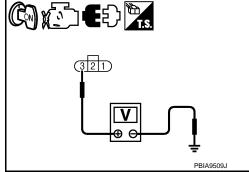

4. CHECK MAIN 12 CAUSES

If the cause cannot be isolated, go to EC-457, "Main 12 Causes of Overheating".

>> INSPECTION END

$5. \mathsf{CHECK}$ COOLING FAN CONTROL MODULE POWER SUPPLY CIRCUIT-I

- 1. Turn ignition switch OFF.
- Disconnect cooling fan control module (1) harness connector E42.
- <>: Vehicle front
- Cooling fan motor-1 (2)
- Cooling fan motor-2 (3)
- 3. Turn ignition switch ON.



4. Check voltage between cooling fan control module terminal 3 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 6. NG >> GO TO 11.

6. CHECK COOLING FAN CONTROL MODULE GROUND CIRCUIT

DTC P1217 ENGINE OVER TEMPERATURE

< SERVICE INFORMATION >

- Turn ignition switch OFF.
- Check harness continuity between cooling fan control module terminal 1 and ground. Refer to wiring diagram.

EC

Α

[VQ35DE]

Continuity should exist.

Also check harness for short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to power in harness or connectors.

7.CHECK IPDM E/R GROUND CIRCUIT

- Disconnect IPDM E/R harness connector E8, E9.
- Check harness continuity between IPDM E/R terminal 38, 51 and ground. Refer to wiring diagram.

Continuity should exist.

Also check harness for short to power.

OK or NG

OK >> GO TO 8.

NG >> Repair open circuit or short to power in harness or connectors.

8 .CHECK COOLING FAN CONTROL SIGNAL CIRCUIT

Check harness continuity between IPDM E/R terminal 59 and cooling fan control module terminal 2. Refer to wiring diagram.

Н

K

M

N

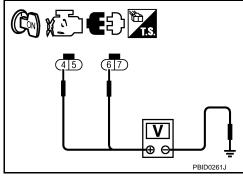
Р

Continuity should exist.

Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9.


>> Repair open circuit or short to ground or short to power in harness or connectors.

NG

- 1. Reconnect all harness connectors disconnected.
- Disconnect cooling fan control module harness connectors E301, E303.

9.check cooling fan control module output signal circuit

- Turn ignition switch ON.
- Check voltage between cooling fan control module terminals 4, 6 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 10.

NG >> Replace cooling fan control module.

10.CHECK COOLING FAN MOTORS -1 AND -2

Refer to EC-457, "Component Inspection".

OK or NG

OK >> GO TO 15.

NG >> Replace cooling fan motor.

11.CHECK COOLING FAN CONTROL MODULE POWER SUPPLY CIRCUIT-II

EC-455

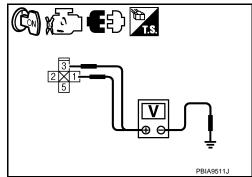
- 1. Turn ignition switch OFF.
- Disconnect cooling fan relay harness connector. 2.
- Turn ignition switch ON.

2008 M35/M45

Revision: 2009 February

DTC P1217 ENGINE OVER TEMPERATURE

< SERVICE INFORMATION >


[VQ35DE]

Check voltage between cooling fan relay terminals 1, 3 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 13. NG >> GO TO 12.

12. DETECT MALFUNCTIONING PART

Check the following.

- 10A fuse
- Fuse block (J/B) connector E102
- 50A fusible link
- Harness for open or short between cooling fan relay and fuse
- Harness for open or short between cooling fan relay and battery

>> Repair open circuit or short to ground or short to power in harness or connectors.

13. CHECK COOLING FAN CONTROL MODULE POWER SUPPLY CIRCUIT-III

- 1. Turn ignition switch OFF.
- 2. Disconnect IPDM E/R harness connector E9.
- Check harness continuity between the following;
 Cooling fan relay terminal 2 and IPDM E/R terminal 56,
 Cooling fan relay terminal 5 and cooling fan control module terminal 3.

Refer to wiring diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 14.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

14. CHECK COOLING FAN RELAY

Refer to EC-457, "Component Inspection".

OK or NG

OK >> GO TO 15.

NG >> Replace cooling fan relay.

15. CHECK INTERMITTENT INCIDENT

Perform EC-140.

OK or NG

OK >> Replace IPDM E/R. Refer to <u>PG-19</u>.

NG >> Repair or replace harness connectors.

Main 12 Causes of Overheating

INFOID:0000000002954484

Α

D

Е

K

M

Ν

Р

Engine	Step	Inspection item	Equipment	Standard	Reference page
OFF	1	Blocked radiator Blocked condenser Blocked radiator grille Blocked bumper	Visual	No blocking	_
	2	Coolant mixture	Coolant tester	50 - 50% coolant mixture	MA-10, "Anti-Freeze Coolant Mixture Ratio"
	3	Coolant level	Visual	Coolant up to MAX level in reservoir tank and radiator filler neck	MA-13, "Changing Engine Coolant"
	4	Radiator cap	Pressure tester	59 - 98 kPa (0.6 - 1.0 kg/cm ² , 9 - 14 psi) (Limit)	CO-15, "Checking Radiator Cap"
ON*2	5	Coolant leaks	Visual	No leaks	CO-10, "Inspection"
ON* ²	6	Thermostat	Touch the upper and lower radiator hoses	Both hoses should be hot	CO-28
ON* ¹	7	Cooling fan	CONSULT-III	Operating	See trouble diagnosis for DTC P1217 (EC-449).
OFF	8	Combustion gas leak	Color checker chemical tester 4 Gas analyzer	Negative	_
ON* ³	9	Coolant temperature gauge	Visual	Gauge less than 3/4 when driving	_
		Coolant overflow to reservoir tank	Visual	No overflow during driving and idling	MA-13, "Changing Engine Coolant"
OFF* ⁴	10	Coolant return from reservoir tank to radiator	Visual	Should be initial level in reservoir tank	MA-13, "Changing Engine Coolant"
OFF	11	Cylinder head	Straight gauge feeler gauge	0.1 mm (0.004 in) Maximum distortion (warping)	<u>EM-101</u>
	12	Cylinder block and pistons	Visual	No scuffing on cylinder walls or piston	EM-123

^{*1:} Turn the ignition switch ON.

For more information, refer to CO-7.

Component Inspection

INFOID:0000000002954485

COOLING FAN MOTORS -1 AND -2

- 1. Disconnect cooling fan control module harness connectors.
- 2. Supply cooling fan control module terminals with battery voltage and check operation.

Cooling fan motor	Term	ninals
Cooling lan motor	(+)	(-)
1	4	5
2	6	7

Make sure that cooling fan operates. If NG, replace cooling fan motor.

FUSE PBID0262J

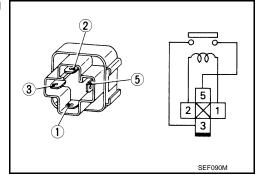
COOLING FAN RELAY

^{*2:} Engine running at 3,000 rpm for 10 minutes.

^{*3:} Drive at 90 km/h (55 MPH) for 30 minutes and then let idle for 10 minutes.

^{*4:} After 60 minutes of cool down time.

DTC P1217 ENGINE OVER TEMPERATURE


< SERVICE INFORMATION >

[VQ35DE]

- 1. Disconnect cooling fan relay harness connector.
- 2. Check continuity between terminals 3 and 5 under the following conditions.

Conditions	Continuity
12V direct current supply between terminals 1 and 2	Yes
No current supply	No

If NG, replace cooling fan relay.

Α

EC

D

Е

F

K

Ν

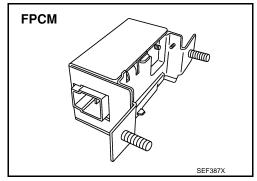
Р

DTC P1220 FUEL PUMP CONTROL MODULE (FPCM)

Description

SYSTEM DESCRIPTION

Sensor	Input Signal to ECM	ECM function	Actuator
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed*		
Mass air flow sensor	Amount of intake air	Fuel pump control	Fuel pump control module (FPCM)
Engine coolant temperature sensor	Engine coolant temperature		(I FOW)
Battery	Battery voltage*		


^{*:} ECM determines the start signal status by the signals of engine speed and battery voltage.

This system controls the fuel pump operation. The amount of fuel flow delivered from the fuel pump is altered between two flow rates by the FPCM operation. The FPCM determines the voltage supplied to the fuel pump (and therefore fuel flow) according to the following conditions.

Conditions	Amount of fuel flow	Supplied voltage
 Engine cranking Engine coolant temperature is below 10°C (50°F). Engine is running under heavy load and high speed conditions 	high	Battery voltage (11 - 14V)
Except the above	low	Approximately 8V

COMPONENT DESCRIPTION

The FPCM adjusts the voltage supplied to the fuel pump to control the amount of fuel flow. When the FPCM increases the voltage supplied to the fuel pump, the fuel flow is increased. When the FPCM decreases the voltage, the fuel flow is decreased.

CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
	Engine: Cranking	HI
FPCM	Engine: Idle Engine coolant temperature: More than 10°C (50°F)	LOW

On Board Diagnosis Logic

INFOID:0000000002954488

INFOID:0000000002954487

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1220 1220	Fuel pump control module (FPCM)	An improper voltage signal from the FPCM, which is supplied to a point between the fuel pump and the dropping resistor, is detected by ECM.	Harness or connectors (FPCM circuit is shorted.) Dropping resistor FPCM

DTC Confirmation Procedure

INFOID:0000000002954489

CAUTION:

Revision: 2009 February **EC-459** 2008 M35/M45

< SERVICE INFORMATION >

[VQ35DE]

Always drive vehicle at a safe speed.

NOTÉ:

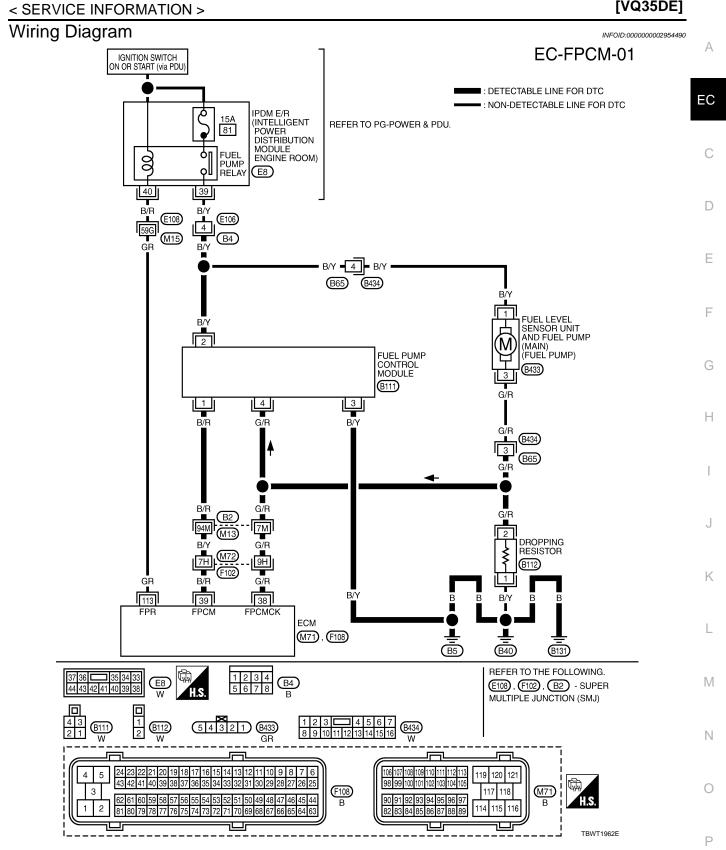
If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V with ignition switch ON.

(II) WITH CONSULT-III

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-III.
- 2. Make sure that "COOLAN TEMP/S" indicates less than 70°C (158°F). If not, cool down the engine.
- Start engine.
- 4. Hold vehicle at the following conditions for 12 seconds.


ENG SPEED	1,550 - 3,250 rpm (AWD models) 1,450 - 3,100 rpm (2WD models)
VHCL SPEED SE	70 - 120 km/h (43 - 75 MPH)
B/FUEL SCHDL	Less than 31.8 msec
Selector lever	Suitable position

- 5. Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-462</u>, "<u>Diagnosis Procedure</u>".

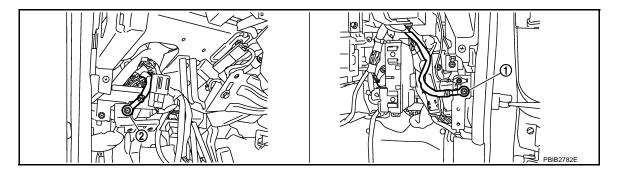
WITH GST

Follow the procedure WITH CONSULT-III above.

[VQ35DE]

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
38	G/R	Fuel pump control module (FPCM) check	[When cranking engine] [Engine is running] • Warm-up condition • Idle speed	Approximately 0V 4 - 6V
39	B/R	Fuel pump control module (FPCM)	[When cranking engine] [Engine is running] • Warm-up condition • Idle speed	0 - 0.5V 8 - 12V
113	GR	Fuel pump relay	[Ignition switch: ON] • For 1 second after turning ignition switch ON [Engine is running]	0 - 1.5V
			[Ignition switch: ON] • More than 1 second after turning ignition switch ON	BATTERY VOLTAGE (11 - 14V)

Diagnosis Procedure

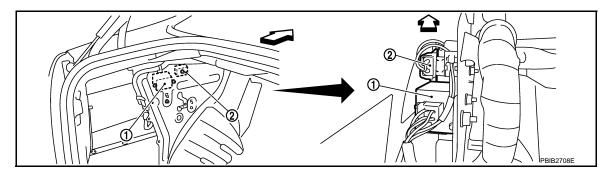
INFOID:0000000002954491

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws on the body. Refer to <u>EC-146</u>, "<u>Ground Inspection</u>".

1. Body ground M70

2. Body ground M16


OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

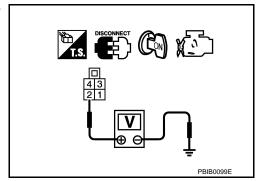
2. CHECK FPCM POWER SUPPLY CIRCUIT

1. Disconnect fuel pump control module (FPCM) harness connector.

⟨□ : Vehicle front

FPCM

2. Dropping resistor


[VQ35DE] < SERVICE INFORMATION >

- Turn ignition switch ON.
- Check voltage between FPCM terminal 2 and ground with CON-SULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E106, B4
- Harness for open or short between FPCM and harness connector B4

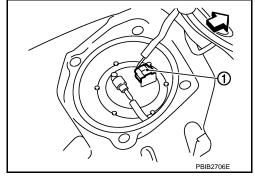
>> Repair open circuit or short to ground or short to power in harness or connectors.

f 4.CHECK FPCM GROUND CIRCUIT-I FOR OPEN AND SHORT

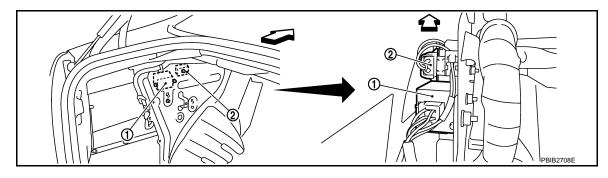
- Turn ignition switch OFF.
- Check harness continuity between FPCM terminal 3 and ground. Refer to Wiring Diagram.

Continuity should exist.

Also check harness for short to power.


OK or NG

OK >> GO TO 5.


NG >> Repair open circuit or short to power in harness or connectors.

$oldsymbol{5}.$ CHECK FPCM GROUND CIRCUIT-II FOR OPEN AND SHORT

- Disconnect "fuel level sensor unit and fuel pump" harness connector (1).
- Illustration shows the view with rear seat cushion and inspection hole cover (RH) removed.
- : Vehicle front

Disconnect dropping resistor harness connector.

<□ : Vehicle front

FPCM

Dropping resistor

EC

Α

D

Е

F

Н

M

Ν

Р

2008 M35/M45

< SERVICE INFORMATION >

3. Check harness continuity between the following;

"fuel level sensor unit and fuel pump" terminal 3 and dropping resistor terminal 2,

FPCM terminal 4 and dropping resister terminal 2.

Refer to Wiring Diagram.

Continuity should exist.

4. Check harness continuity between the following;

"fuel level sensor unit and fuel pump" terminal 3 and ground,

FPCM terminal 4 and ground.

Refer to Wiring Diagram.

Continuity should not exist.

5. Also check harness for short to power.

OK or NG

OK >> GO TO 7.

NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B434, B65
- · Harness for open or short between "fuel level sensor unit and fuel pump" and dropping resistor
- Harness for open or short between FPCM and dropping resistor
- Harness for open or short between harness connector B65 and ground
- · Harness for open or short between FPCM and ground
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK FPCM INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 38 and FPCM terminal 4. Refer to Wiring Diagram.

Continuity should exist.

Check harness continuity between ECM terminal 38 and ground. Refer to Wiring Diagram.

Continuity should not exist.

4. Also check harness for short to power.

OK or NG

OK >> GO TO 9.

NG >> GO TO 8.

8.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B2, M13
- Harness connectors M72, F102
- Harness for open or short between ECM and FPCM

>> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK FPCM OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal 39 and FPCM terminal 1. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

[VQ35DE]

< SERVICE INFORMATION >

OK or NG

OK >> GO TO 11.

NG >> GO TO 10.

10. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B2, M13
- Harness connectors M72, F102
- Harness for open or short between ECM and FPCM

>> Repair open circuit or short to ground or short to power in harness or connectors.

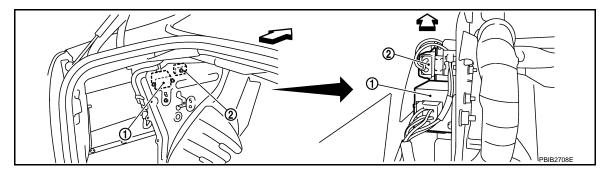
11.CHECK FPCM

Refer to EC-465, "Component Inspection".

OK or NG

OK >> GO TO 12.

NG >> Replace FPCM.

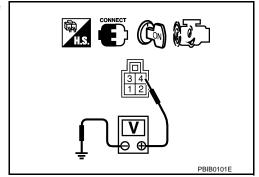

12. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

>> INSPECTION END

Component Inspection

FUEL PUMP CONTROL MODULE



1. FPCM

- 2. Dropping resistor
- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Check voltage between FPCM terminal 4 and ground under the following conditions.

Condition	Voltage
When engine cranking	Approx. 0V
After starting engine	Approx. 5V

If NG, replace fuel pump control module.

EC

Α

[VQ35DE]

D

Е

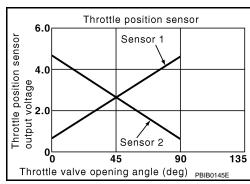
F

Н

INFOID:0000000002954492

M

Ν


INFOID:0000000002954493

DTC P1225 TP SENSOR

Component Description

Electric throttle control actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

On Board Diagnosis Logic

The MIL will not light up for this diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1225 1225	Closed throttle position learning performance	Closed throttle position learning value is excessively low.	Electric throttle control actuator (TP sensor 1 and 2)

DTC Confirmation Procedure

INFOID:0000000002954495

INFOID:0000000002954494

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

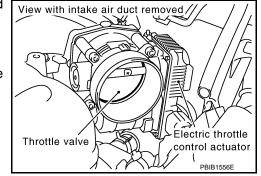
TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

- 1. Turn ignition switch ON.
- 2. Turn ignition switch OFF, wait at least 10 seconds.
- Turn ignition switch ON.
- 4. Check 1st trip DTC.
- 5. If 1st trip DTC is detected, go to EC-466, "Diagnosis Procedure".

Diagnosis Procedure

INFOID:0000000002954496


1. CHECK ELECTRIC THROTTLE CONTROL ACTUATOR VISUALLY

- Turn ignition switch OFF.
- 2. Remove the intake air duct.
- 3. Check if foreign matter is caught between the throttle valve and the housing.

OK or NG

OK >> GO TO 2.

NG >> Remove the foreign matter and clean the electric throttle control actuator inside.

2. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- Perform <u>EC-82</u>, "Throttle Valve Closed Position Learning".
- Perform <u>EC-82</u>, "Idle Air Volume Learning".

DTC P1225 TP SENSOR

< SERVICE INFORMATION > [VQ35DE]

>> INSPECTION END

Removal and Installation

ELECTRIC THROTTLE CONTROL ACTUATOR Refer to $\underline{\mathsf{EM-20}}$.

EC

Α

D

Е

F

G

Н

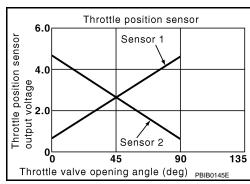
Κ

L

M

Ν

0


INFOID:0000000002954498

DTC P1226 TP SENSOR

Component Description

Electric throttle control actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

On Board Diagnosis Logic

The MIL will not light up for this diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1226 1226	Closed throttle position learning performance	Closed throttle position learning is not performed successfully, repeatedly.	Electric throttle control actuator (TP sensor 1 and 2)

DTC Confirmation Procedure

INFOID:0000000002954500

INFOID:0000000002954499

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

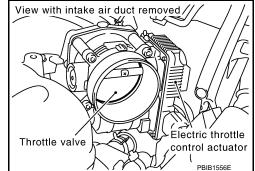
Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

- 1. Turn ignition switch ON.
- 2. Turn ignition switch OFF, wait at least 10 seconds.
- 3. Turn ignition switch ON.
- 4. Repeat steps 2 and 3 for 32 times.
- 5. Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-469</u>, "Removal and Installation".

Diagnosis Procedure

INFOID:0000000002954501

1. CHECK ELECTRIC THROTTLE CONTROL ACTUATOR VISUALLY


- 1. Turn ignition switch OFF.
- Remove the intake air duct.
- 3. Check if foreign matter is caught between the throttle valve and the housing.

OK or NG

NG

OK >> GO TO 2.

>> Remove the foreign matter and clean the electric throttle control actuator inside.

2. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

Replace the electric throttle control actuator.

DTC P1226 TP SENSOR

< SERVICE INFORMATION > [VQ35DE]

- 2. Perform EC-82, "Throttle Valve Closed Position Learning".
- 3. Perform EC-82, "Idle Air Volume Learning".

>> INSPECTION END

Removal and Installation

INFOID:0000000002954502

ELECTRIC THROTTLE CONTROL ACTUATOR Refer to EM-20.

D

Α

Е

F

G

Н

J

K

L

M

Ν

0

Ρ

DTC P1421 COLD START CONTROL

Description INFOID.000000002954503

ECM controls ignition timing and engine idle speed when engine is started with prewarming up condition. This control promotes the activation of three way catalyst by heating the catalyst and reduces emissions.

On Board Diagnosis Logic

INFOID:0000000002954504

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1421 1421	Cold start emission reduction strategy monitoring	ECM does not control ignition timing and engine idle speed properly when engine is started with prewarming up condition.	Lack of intake air volume Fuel injection system ECM

DTC Confirmation Procedure

INFOID:0000000002954505

NOTE:

- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
- If DTC P1421 is displayed with other DTC, first perform the trouble diagnosis for other DTC. TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

WITH CONSULT-III

- 1. Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- 3. Select "DATA MONITOR" mode with CONSULT-III.
- 4. Check that the "COOLAN TEMP/S" indication is between 4°C (39°F) and 36°C (97°F). If "COOLAN TEMP/S" indication is within the specified value, go to the following step. If "COOLANT TEMP/S" indication is out of the specified value, cool engine down or warm engine up and go to step 1.
- 5. Start engine and let it idle for 5 minutes.
- Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-470, "Diagnosis Procedure"</u>.

WITH GST

Follow the procedure "WITH CONSULT-III" above.

Diagnosis Procedure

INFOID:0000000002954506

2008 M35/M45

1. PERFORM IDLE AIR VOLUME LEARNING

Perform EC-82, "Idle Air Volume Learning".

Is Idle Air Volume Learning carried out successfully?

Yes or No

Yes >> GO TO 2.

No >> Follow the instruction of Idle Air Volume Learning.

2.check intake system

Check for the cause of intake air volume lacking. Refer to the following.

- Crushed intake air passage
- Intake air passage clogging

OK or NG

OK >> GO TO 3.

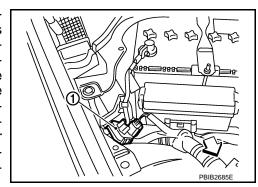
NG >> Repair or replace malfunctioning part

3. CHECK FUEL INJECTION SYSTEM FUNCTION

DTC P1421 COLD START CONTROL

DTC P1421 COLD START CONTROL	
< SERVICE INFORMATION > [VQ3	5DE]
Perform EC-280, "DTC Confirmation Procedure" in DTC P0171, P0174 FUEL INJECTION SYSTEM F	UNC-
TION.	А
<u>OK or NG</u> OK >> GO TO 4.	
NG >> Go to 4. NG >> Go to EC-287, "Diagnosis Procedure".	EC
4.PERFORM DTC CONFIRMATION PROCEDURE	
(F) With CONSULT-III	
1. Turn ignition switch ON.	С
2. Select "SELF DIAG RESULTS" mode with CONSULT-III.	
 Touch "ERASE". Perform DTC Confirmation Procedure. 	D
See EC-470, "DTC Confirmation Procedure".	
5. Is the 1st trip DTC P1421 displayed again?	
With GST1. Turn ignition switch ON.	Е
Turn ignition switch ON. Select Service \$04 with GST.	
3. Perform DTC Confirmation Procedure.	F
See <u>EC-470, "DTC Confirmation Procedure"</u> . 4. Is the 1st trip DTC P1421 displayed again?	'
Yes or No	
Yes >> GO TO 5.	G
No >> INSPECTION END	
5.REPLACE ECM	Н
1. Replace ECM.	
2. Perform initialization of IVIS (NATS) system and registration of all IVIS (NATS) ignition key IDs.	
Refer to <u>BL-221, "ECM Re-Communicating Function"</u> . 3. Perform <u>EC-81, "VIN Registration"</u> .	
4. Perform EC-82, "Accelerator Pedal Released Position Learning".	
 Perform <u>EC-82, "Throttle Valve Closed Position Learning"</u>. Perform <u>EC-82, "Idle Air Volume Learning"</u>. 	ı
6. Perform <u>EC-82, "Idle Air Volume Learning"</u> .	0
>> INSPECTION END	
	K
	I
	_
	M
	N
	1.4
	0
	_

Revision: 2009 February **EC-471** 2008 M35/M45


Р

INFOID:000000002954507

DTC P1550 BATTERY CURRENT SENSOR

Component Description

The power generation voltage variable control enables fuel consumption to be decreased by reducing the engine load which is caused by the power generation of the generator. The battery current sensor (1) is installed to the battery cable at the negative terminal. The sensor measures the charging/discharging current of the battery. Based on the sensor signal, ECM judges whether or not the power generation voltage variable control is performed. When performing the power generation voltage variable control, ECM calculates the target power generation voltage based on the sensor signal. And ECM sends the calculated value as the power generation command value to IPDM E/R. For the details of the power generation voltage variable control, refer to SC section.

CAUTION:

Do not connect the electrical component or the ground wire directly to the battery terminal. The connection causes the malfunction of the power generation voltage variable control, and then the battery discharge may occur.

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002954508

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
BAT CUR SEN	 Engine speed: Idle Battery: Fully charged* Selector lever: P or N Air conditioner switch: OFF No load 	Approx. 2,600 - 3,500mV

^{*:} Before measuring the terminal voltage, confirm that the battery is fully charged. Refer to SC-4, "How to Handle Battery".

On Board Diagnosis Logic

INFOID:0000000002954509

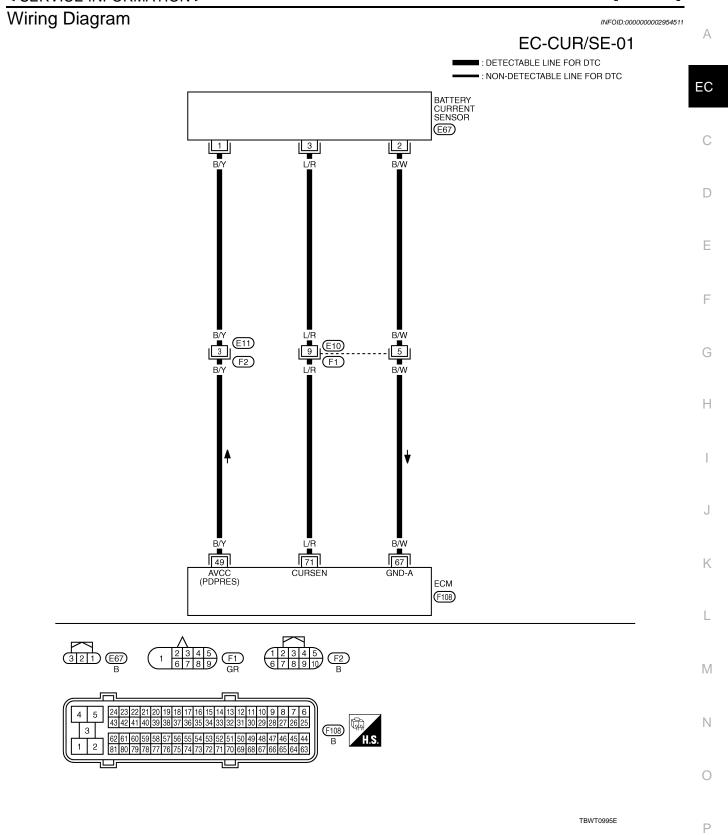
The MIL will not light up for this diagnosis.

NOTE:

If DTC P1550 is displayed with DTC P0643, first perform the trouble diagnosis for DTC P0643. Refer to <u>EC-436</u>.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1550 1550	Battery current sensor circuit range/performance	The output voltage of the battery current sensor remains within the specified range while engine is running.	Harness or connectors (The sensor circuit is open or shorted.) Battery current sensor

DTC Confirmation Procedure


INFOID:0000000002954510

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

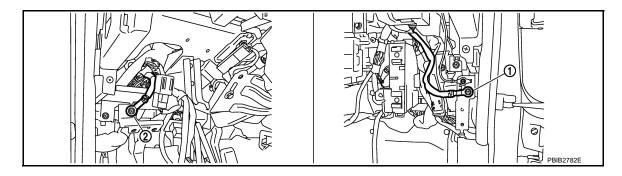
Before performing the following procedure, confirm that battery voltage is more than 8V at idle.

- 1. Start engine and wait at least 10 seconds.
- Check 1st trip DTC.
- 3. If 1st trip DTC is detected, go to EC-474, "Diagnosis Procedure".

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
49	B/Y	Sensor power supply (Refrigerant pressure sensor, Battery current sensor)	[Ignition switch: ON]	Approximately 5V
67	B/W	Sensor ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
71	L/R	Battery current sensor	[Engine is running] • Battery: Fully charged* • Idle speed	Approximately 2.6 - 3.5V


^{*:} Before measuring the terminal voltage, confirm that the battery is fully charged. Refer to SC-4, "How to Handle Battery".

Diagnosis Procedure

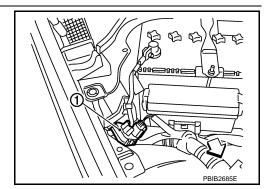
INFOID:0000000002954512

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws on the body. Refer to <u>EC-146</u>, "<u>Ground Inspection</u>".

1. Body ground M70

2. Body ground M16


OK or NG

OK >> GO TO 2.

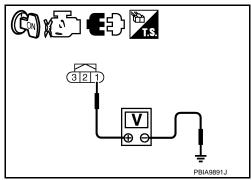
NG >> Repair or replace ground connections.

2. CHECK BATTERY CURRENT SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect battery current sensor harness connector.
- 2. Turn ignition switch ON.

DTC P1550 BATTERY CURRENT SENSOR

< SERVICE INFORMATION >


[VQ35DE]

Check voltage between battery current sensor terminal 1 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E11, F2
- Harness for open or short between battery current sensor and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

f 4.CHECK BATTERY CURRENT SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between battery current sensor terminal 2 and ECM terminal 67. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

${f 5.}$ DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E10, F1
- Harness for open or short between battery current sensor and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

$oldsymbol{6}$.CHECK BATTERY CURRENT SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Check harness continuity between battery current sensor terminal 3 and ECM terminal 71. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7.DETECT MALFUNCTIONING PART

Check the following.

Revision: 2009 February

- Harness connectors E10. F1
- Harness for open or short between battery current sensor and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

8.CHECK BATTERY CURRENT SENSOR

Refer to EC-476, "Component Inspection".

EC-475

Α

EC

D

Е

F

Н

N

2008 M35/M45

DTC P1550 BATTERY CURRENT SENSOR

< SERVICE INFORMATION >

OK or NG

OK >> GO TO 9.

NG >> Replace battery negative cable assembly.

9. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

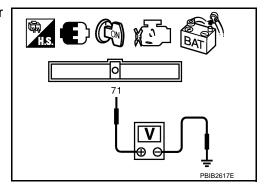
>> INSPECTION END

Component Inspection

INFOID:0000000002954513

[VQ35DE]

BATTERY CURRENT SENSOR


- 1. Reconnect harness connectors disconnected.
- 2. Disconnect battery negative cable (1).
 - **=**: To body ground
- 3. Install jumper cable (A) between battery negative terminal and body ground.
- 4. Turn ignition switch ON.

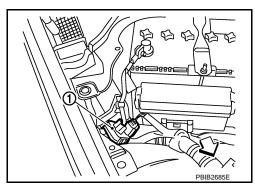
5. Check voltage between ECM terminal 71 (battery current sensor signal) and ground.

Voltage: Approximately 2.5V

6. If NG, replace battery negative cable assembly.

INFOID:0000000002954514

INFOID:0000000002954515


INFOID:0000000002954516

INFOID:0000000002954517

DTC P1551, P1552 BATTERY CURRENT SENSOR

Component Description

The power generation voltage variable control enables fuel consumption to be decreased by reducing the engine load which is caused by the power generation of the generator. The battery current sensor (1) is installed to the battery cable at the negative terminal. The sensor measures the charging/discharging current of the battery. Based on the sensor signal, ECM judges whether or not the power generation voltage variable control is performed. When performing the power generation voltage variable control, ECM calculates the target power generation voltage based on the sensor signal. And ECM sends the calculated value as the power generation command value to IPDM E/R. For the details of the power generation voltage variable control, refer to SC section.

CAUTION:

Do not connect the electrical component or the ground wire directly to the battery terminal. The connection causes the malfunction of the power generation voltage variable control, and then the battery discharge may occur.

CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
BAT CUR SEN	 Engine speed: Idle Battery: Fully charged* Selector lever: P or N Air conditioner switch: OFF No load 	Approx. 2,600 - 3,500mV

^{*:} Before measuring the terminal voltage, confirm that the battery is fully charged. Refer to SC-4, "How to Handle Battery".

On Board Diagnosis Logic

The MIL will not light up for this diagnosis.

NOTE:

If DTC P1551 or P1552 is displayed with DTC P0643, first perform the trouble diagnosis for DTC P0643. Refer to EC-436.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1551 1551	Battery current sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)
P1552 1552	Battery current sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	

DTC Confirmation Procedure

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

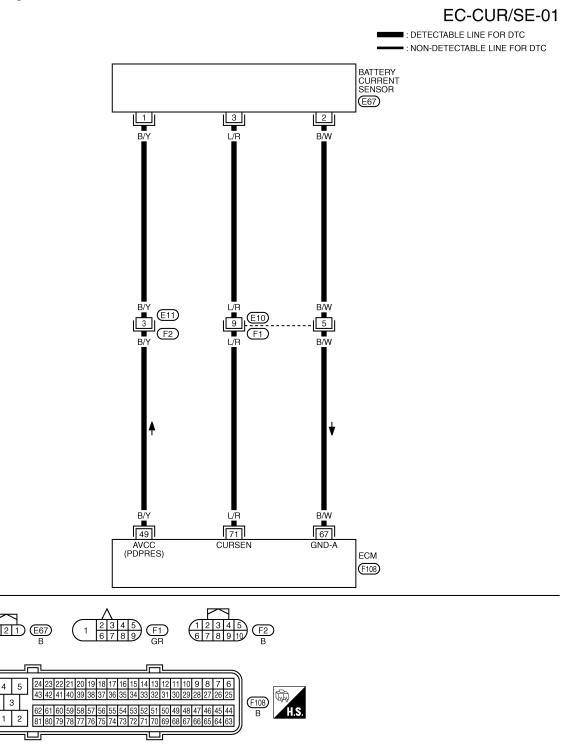
Before performing the following procedure, confirm that battery voltage is more than 8V with ignition switch ON

- Turn ignition switch ON.
- Wait at least 10 seconds. 2.
- Check 1st trip DTC. 3.
- If 1st trip DTC is detected, go to EC-479, "Diagnosis Procedure".

EC

Е

D


Α

Н

Ν

Р

Wiring Diagram INFOID:0000000002954518

TBWT0995E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

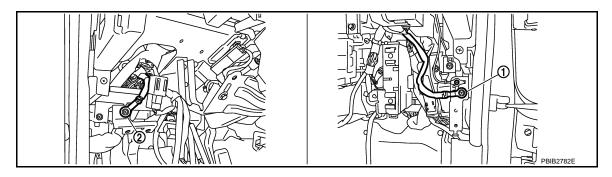
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

DTC P1551, P1552 BATTERY CURRENT SENSOR

< SERVICE INFORMATION >

[VQ35DE]

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
49	В/Ү	Sensor power supply (Refrigerant pressure sensor, Battery current sensor)	[Ignition switch: ON]	Approximately 5V
67	B/W	Sensor ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
71	L/R	Battery current sensor	[Engine is running]Battery: Fully charged*Idle speed	Approximately 2.6 - 3.5V


^{*:} Before measuring the terminal voltage, confirm that the battery is fully charged. Refer to SC-4, "How to Handle Battery".

Diagnosis Procedure

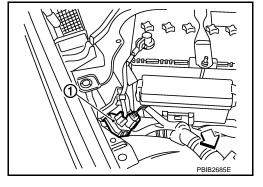
INFOID:0000000002954519

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- Loosen and retighten two ground screws on the body. Refer to <u>EC-146</u>, "Ground Inspection".

1. Body ground M70

2. Body ground M16


OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. CHECK BATTERY CURRENT SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect battery current sensor harness connector.
- 2. Turn ignition switch ON.

Α

EC

D

Е

F

Н

M

Ν

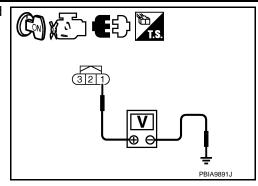
L

0

Р

DTC P1551, P1552 BATTERY CURRENT SENSOR

< SERVICE INFORMATION >


[VQ35DE]

Check voltage between battery current sensor terminal 1 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E11, F2
- Harness for open or short between battery current sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

f 4.CHECK BATTERY CURRENT SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check harness continuity between battery current sensor terminal 2 and ECM terminal 67. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E10, F1
- Harness for open or short between battery current sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

6.CHECK BATTERY CURRENT SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Check harness continuity between battery current sensor terminal 3 and ECM terminal 71. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E10. F1
- Harness for open or short between battery current sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

8.CHECK BATTERY CURRENT SENSOR

Refer to EC-481, "Component Inspection".

DTC P1551, P1552 BATTERY CURRENT SENSOR

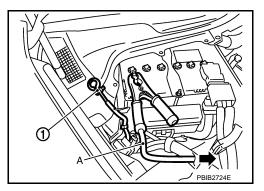
[VQ35DE] < SERVICE INFORMATION >

OK or NG

OK >> GO TO 9.

NG >> Replace battery negative cable assembly.

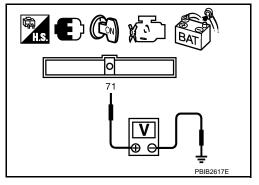
9. CHECK INTERMITTENT INCIDENT


Refer to EC-140.

>> INSPECTION END C

Component Inspection

BATTERY CURRENT SENSOR


- Reconnect harness connectors disconnected.
- 2. Disconnect battery negative cable (1).
 - 🖛: To body ground
- 3. Install jumper cable (A) between battery negative terminal and body ground.
- 4. Turn ignition switch ON.

Check voltage between ECM terminal 71 (battery current sensor signal) and ground.

Voltage: Approximately 2.5V

If NG, replace battery negative cable assembly.

EC-481 Revision: 2009 February 2008 M35/M45

EC

Α

INFOID:0000000002954520

Е

D

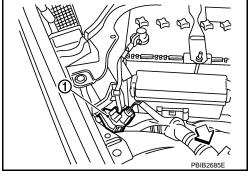
F

Н

K

M

Ν


Р

INFOID:0000000002954521

DTC P1553 BATTERY CURRENT SENSOR

Component Description

The power generation voltage variable control enables fuel consumption to be decreased by reducing the engine load which is caused by the power generation of the generator. The battery current sensor (1) is installed to the battery cable at the negative terminal. The sensor measures the charging/discharging current of the battery. Based on the sensor signal, ECM judges whether or not the power generation voltage variable control is performed. When performing the power generation voltage variable control, ECM calculates the target power generation voltage based on the sensor signal. And ECM sends the calculated value as the power generation command value to IPDM E/R. For the details of the power generation voltage variable control, refer to SC section.

CAUTION:

Do not connect the electrical component or the ground wire directly to the battery terminal. The connection causes the malfunction of the power generation voltage variable control, and then the battery discharge may occur.

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002954522

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
BAT CUR SEN	 Engine speed: Idle Battery: Fully charged* Selector lever: P or N Air conditioner switch: OFF No load 	Approx. 2,600 - 3,500mV

^{*:} Before measuring the terminal voltage, confirm that the battery is fully charged. Refer to SC-4, "How to Handle Battery".

On Board Diagnosis Logic

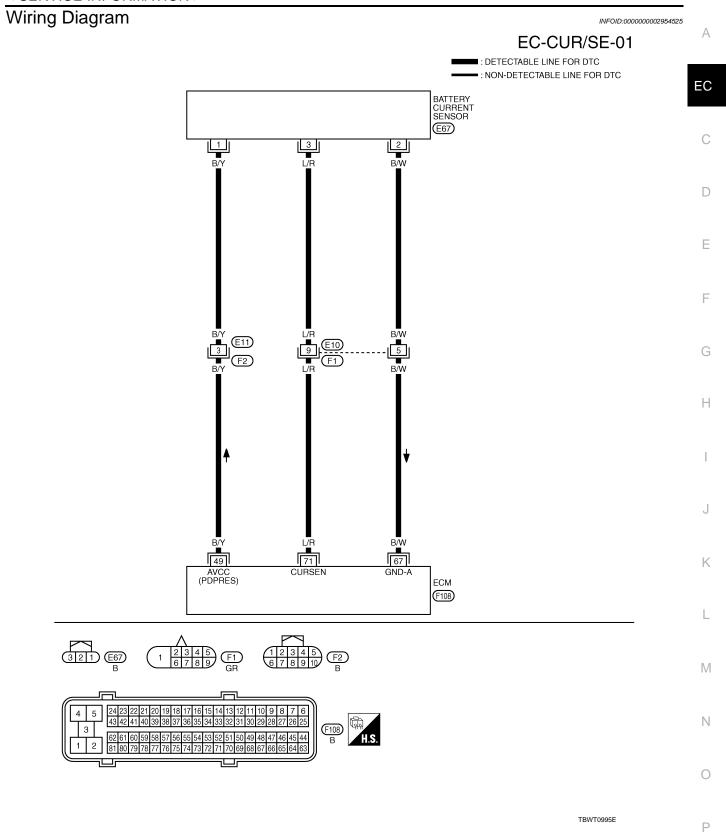
INFOID:00000000002954523

The MIL will not light up for this diagnosis.

If DTC P1553 is displayed with DTC P0643, first perform the trouble diagnosis for DTC P0643. Refer to EC-436.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1553 1553	Battery current sensor performance	The signal voltage transmitted from the sensor to ECM is higher than the amount of the maximum power generation.	Harness or connectors (The sensor circuit is open or shorted.) Battery current sensor

DTC Confirmation Procedure


INFOID:0000000002954524

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

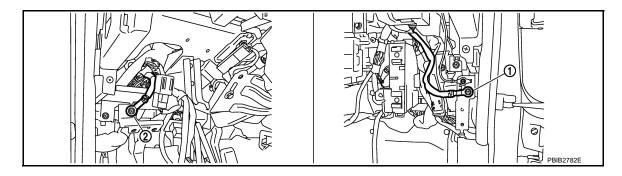
Before performing the following procedure, confirm that battery voltage is more than 8V at idle.

- 1. Start engine and wait at least 10 seconds.
- Check 1st trip DTC.
- If 1st trip DTC is detected, go to EC-484, "Diagnosis Procedure".

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
49	B/Y	Sensor power supply (Refrigerant pressure sensor, Battery current sensor)	[Ignition switch: ON]	Approximately 5V
67	B/W	Sensor ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
71	L/R	Battery current sensor	[Engine is running] • Battery: Fully charged* • Idle speed	Approximately 2.6 - 3.5V


^{*:} Before measuring the terminal voltage, confirm that the battery is fully charged. Refer to SC-4, "How to Handle Battery".

Diagnosis Procedure

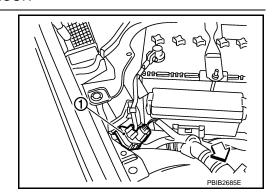
INFOID:0000000002954526

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- Loosen and retighten two ground screws on the body. Refer to <u>EC-146</u>, "Ground Inspection".

1. Body ground M70

2. Body ground M16


OK or NG

OK >> GO TO 2.

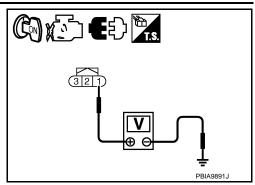
NG >> Repair or replace ground connections.

2. CHECK BATTERY CURRENT SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect battery current sensor harness connector.
- 2. Turn ignition switch ON.

DTC P1553 BATTERY CURRENT SENSOR

< SERVICE INFORMATION >


[VQ35DE]

Check voltage between battery current sensor terminal 1 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E11, F2
- Harness for open or short between battery current sensor and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

f 4.CHECK BATTERY CURRENT SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between battery current sensor terminal 2 and ECM terminal 67. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

${f 5.}$ DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E10, F1
- Harness for open or short between battery current sensor and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

$oldsymbol{6}$.CHECK BATTERY CURRENT SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Check harness continuity between battery current sensor terminal 3 and ECM terminal 71. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

Revision: 2009 February

7.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E10. F1
- Harness for open or short between battery current sensor and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

8.CHECK BATTERY CURRENT SENSOR

Refer to EC-486, "Component Inspection".

EC-485

Α

EC

D

Е

F

Н

N

2008 M35/M45

DTC P1553 BATTERY CURRENT SENSOR

< SERVICE INFORMATION >

[VQ35DE]

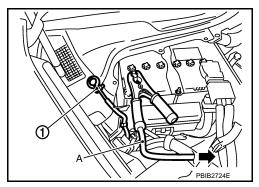
OK or NG

OK >> GO TO 9.

NG >> Replace battery negative cable assembly.

9. CHECK INTERMITTENT INCIDENT

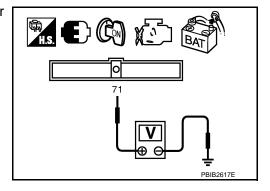
Refer to EC-140.


>> INSPECTION END

Component Inspection

INFOID:0000000002954527

BATTERY CURRENT SENSOR

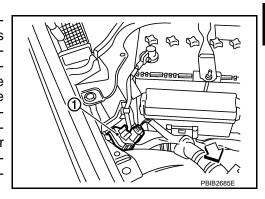

- 1. Reconnect harness connectors disconnected.
- 2. Disconnect battery negative cable (1).
 - **=**: To body ground
- 3. Install jumper cable (A) between battery negative terminal and body ground.
- 4. Turn ignition switch ON.

5. Check voltage between ECM terminal 71 (battery current sensor signal) and ground.

Voltage: Approximately 2.5V

6. If NG, replace battery negative cable assembly.

INFOID:0000000002954528


INFOID:0000000002954529

INFOID:0000000002954530

DTC P1554 BATTERY CURRENT SENSOR

Component Description

The power generation voltage variable control enables fuel consumption to be decreased by reducing the engine load which is caused by the power generation of the generator. The battery current sensor (1) is installed to the battery cable at the negative terminal. The sensor measures the charging/discharging current of the battery. Based on the sensor signal, ECM judges whether or not the power generation voltage variable control is performed. When performing the power generation voltage variable control, ECM calculates the target power generation voltage based on the sensor signal. And ECM sends the calculated value as the power generation command value to IPDM E/R. For the details of the power generation voltage variable control, refer to SC section.

CAUTION:

Do not connect the electrical component or the ground wire directly to the battery terminal. The connection causes the malfunction of the power generation voltage variable control, and then the battery discharge may occur.

CONSULT-III Reference Value in Data Monitor Mode

OOTTOOLI III TTOTOTOTOO TAIGO III DATA IVIOTIILOI IVIOGO

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
BAT CUR SEN	 Engine speed: Idle Battery: Fully charged* Selector lever: P or N Air conditioner switch: OFF No load 	Approx. 2,600 - 3,500mV

^{*:} Before measuring the terminal voltage, confirm that the battery is fully charged. Refer to SC-4, "How to Handle Battery".

On Board Diagnosis Logic

The MIL will not light up for this diagnosis.

NOTE:

If DTC P1554 is displayed with DTC P0643, first perform the trouble diagnosis for DTC P0643. Refer to EC-436.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1554 1554	Battery current sensor performance	The output voltage of the battery current sensor is lower than the specified value while the battery voltage is high enough.	Harness or connectors (The sensor circuit is open or shorted.) Battery current sensor

Overall Function Check

Use this procedure to check the overall function of the battery current sensor circuit. During this check, a 1st trip DTC might not be confirmed.

TESTING CONDITION:

- Before performing the following procedure, confirm that battery voltage is more than 12.8V at idle.
- Before performing the following procedure, confirm that all load switches and A/C switch are turned OFF.

(A) WITH CONSULT-III

- 1. Start engine and let it idle.
- Select "BAT CUR SEN" in "DATA MONITOR" mode with CONSULT-III.
- Check "BAT CUR SEN" indication for 10 seconds.
 "BAT CUR SEN" should be above 2,300mV at least once.
- 4. If NG, go to EC-490, "Diagnosis Procedure".

EC

Α

C

D

Е

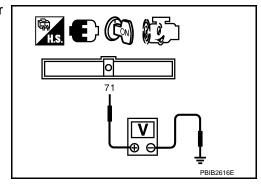
Н

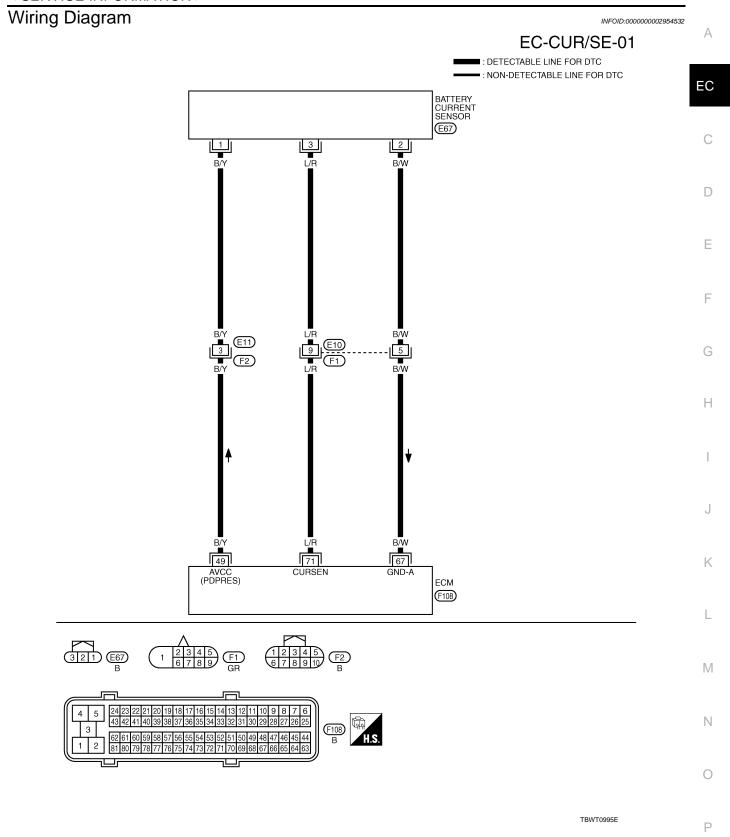
K

IN

0

Р


Revision: 2009 February **EC-487** 2008 M35/M45


DTC P1554 BATTERY CURRENT SENSOR

< SERVICE INFORMATION > [VQ35DE]

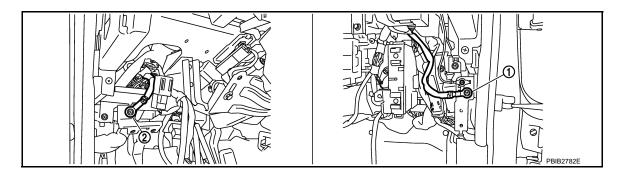
WITH GST

- 1. Start engine and let it idle.
- 2. Check voltage between ECM terminal 71 (battery current sensor signal) and ground for 10 seconds.
 - The voltage should be above 2.3V at least once.
- 3. If NG, go to EC-490, "Diagnosis Procedure".

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
49	B/Y	Sensor power supply (Refrigerant pressure sensor, Battery current sensor)	[Ignition switch: ON]	Approximately 5V
67	B/W	Sensor ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
71	L/R	Battery current sensor	[Engine is running] • Battery: Fully charged* • Idle speed	Approximately 2.6 - 3.5V


^{*:} Before measuring the terminal voltage, confirm that the battery is fully charged. Refer to SC-4, "How to Handle Battery".

Diagnosis Procedure

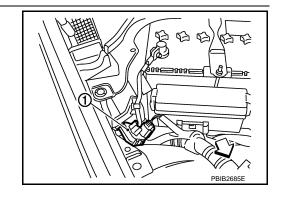
INFOID:0000000002954533

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws on the body. Refer to <u>EC-146</u>, "<u>Ground Inspection</u>".

1. Body ground M70

2. Body ground M16


OK or NG

OK >> GO TO 2.

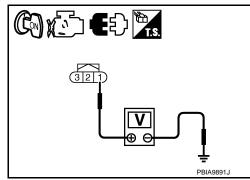
NG >> Repair or replace ground connections.

2. CHECK BATTERY CURRENT SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect battery current sensor harness connector.
- 2. Turn ignition switch ON.

DTC P1554 BATTERY CURRENT SENSOR

< SERVICE INFORMATION >


[VQ35DE]

Check voltage between battery current sensor terminal 1 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E11, F2
- Harness for open or short between battery current sensor and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

f 4.CHECK BATTERY CURRENT SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between battery current sensor terminal 2 and ECM terminal 67. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

${f 5.}$ DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E10, F1
- Harness for open or short between battery current sensor and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

$oldsymbol{6}$.CHECK BATTERY CURRENT SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Check harness continuity between battery current sensor terminal 3 and ECM terminal 71. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E10. F1
- Harness for open or short between battery current sensor and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

8.CHECK BATTERY CURRENT SENSOR

Refer to EC-492, "Component Inspection".

EC-491 Revision: 2009 February 2008 M35/M45

EC

Α

D

Е

F

Н

N

DTC P1554 BATTERY CURRENT SENSOR

OFFINISH INFORMATION

< SERVICE INFORMATION >

>> GO TO 9.

OK or NG

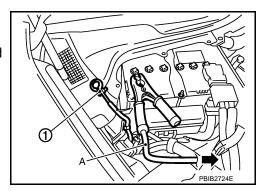
OK

NG >> Replace battery negative cable assembly.

9. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

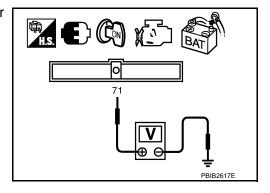
>> INSPECTION END


Component Inspection

INFOID:0000000002954534

[VQ35DE]

BATTERY CURRENT SENSOR


- 1. Reconnect harness connectors disconnected.
- 2. Disconnect battery negative cable (1).
 - **=**: To body ground
- Install jumper cable (A) between battery negative terminal and body ground.
- 4. Turn ignition switch ON.

5. Check voltage between ECM terminal 71 (battery current sensor signal) and ground.

Voltage: Approximately 2.5V

6. If NG, replace battery negative cable assembly.

DTC P1564 ICC STEERING SWITCH

Component Description

INFOID:0000000002954535

ICC steering switch has variant values of electrical resistance for each button. ECM reads voltage variation of switch, and determines which button is operated.

1 ② **1** ③ **1** ③ **1** ③ **1** ③ **1** ③ **1** ③ **1** ③ **1** ③ **1** ③ **1** ③ **1** ③ **1** ③ **1** ③ **1** ③ **1** ④ **1** ⑤ **1** ⑤ **1** ⑥

- 1. ICC steering switch
 - . CANCEL switch
- 7. LDP ON switch

- 2. RESUME/ACCELERATE switch
- 5. DISTANCE switch
- 3. SET/COAST switch
- 6. MAIN switch

Refer to ACS-9 for the ICC function.

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002954536

Specification data are reference values.

MONITOR ITEM		CONDITION	SPECIFICATION
MAINLOVA/	a Ignition quitable ON	MAIN switch: Pressed	ON
MAIN SW	Ignition switch: ON	MAIN switch: Released	OFF
CANCEL SW	a Ignition quitable ONI	CANCEL switch: Pressed	ON
CANCEL SW	Ignition switch: ON	CANCEL switch: Released	OFF
RESUME/ACC SW	Ignition switch: ON	RESUME/ACCELERATE switch: Pressed	ON
RESUME/ACC SW		RESUME/ACCELERATE switch: Released	OFF
SET SW	Ignition switch: ON	SET/COAST switch: Pressed	ON
SE1 244		SET/COAST switch: Released	OFF
DIST SW	Ignition switch: ON	DISTANCE switch: Pressed	ON
DIST SW		DISTANCE switch: Released	OFF
LDP ON SW	• Ignition quitable ON	LDP ON switch: pressed	ON
LDP ON SW	Ignition switch: ON	LDP ON switch: Released	OFF

On Board Diagnosis Logic

INFOID:0000000002954537

This self-diagnosis has the one trip detection logic.

The MIL will not light up for this diagnosis.

NOTE:

If DTC P1564 is displayed with DTC P0605, first perform the trouble diagnosis for DTC P0605. Refer to EC-434.

Revision: 2009 February **EC-493** 2008 M35/M45

EC

Α

D

Е

F

G

Н

J

K

L

M

N

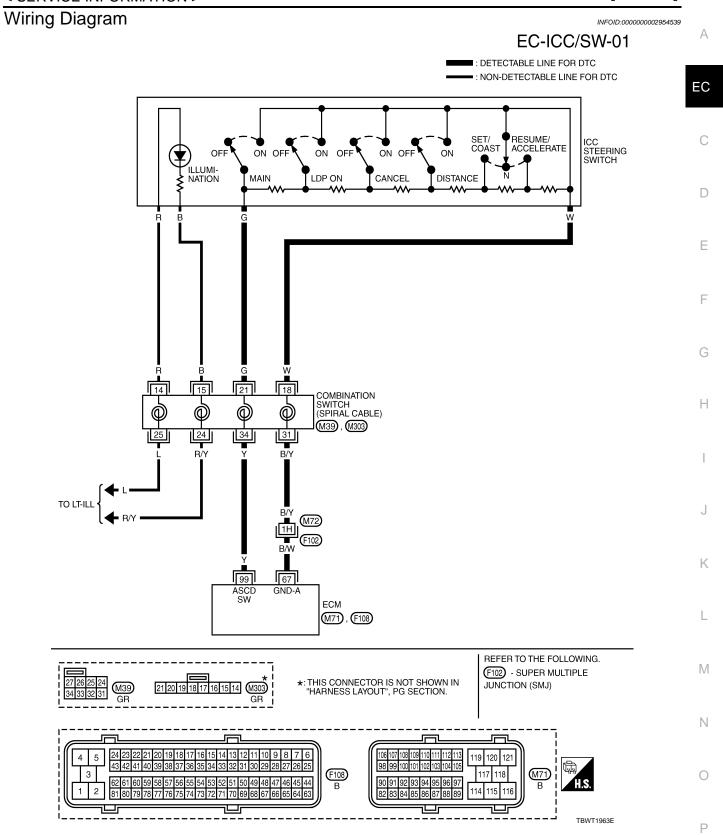
С

DTC P1564 ICC STEERING SWITCH

< SERVICE INFORMATION >

[VQ35DE]

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1564 1564	ICC steering switch	 An excessively high voltage signal from the ICC steering switch is sent to ECM. ECM detects that input signal from the ICC steering switch is out of the specified range. ECM detects that the ICC steering switch is stuck ON. 	Harness or connectors (The switch circuit is open or shorted.) ICC steering switch ECM


DTC Confirmation Procedure

INFOID:0000000002954538

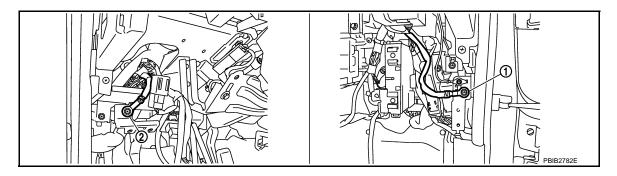
NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

- 1. Turn ignition switch ON.
- 2. Wait at least 10 seconds.
- 3. Press MAIN switch for at least 10 seconds, then release it and wait at least 10 seconds.
- 4. Press CANCEL switch for at least 10 seconds, then release it and wait at least 10 seconds.
- Press RESUME/ACCELERATE switch for at least 10 seconds, then release it and wait at least 10 seconds.
- 6. Press SET/COAST switch for at least 10 seconds, then release it and wait at least 10 seconds.
- 7. Press DISTANCE switch for at least 10 seconds, then release it and wait at least 10 seconds.
- 8. Press LDP ON switch for at least 10 seconds, then release it and wait at least 10 seconds.
- 9. Check DTC.
- 10. If DTC is detected, go to EC-496, "Diagnosis Procedure".

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
67	B/W	Sensor ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
			[Ignition switch: ON] • ICC steering switch: OFF	Approximately 4.3V
			[Ignition switch: ON] • MAIN switch: Pressed	Approximately 0V
		Y ICC steering switch (models with ICC system)	[Ignition switch: ON] • CANCEL switch: Pressed	Approximately 1.9V
99	Υ		[Ignition switch: ON] • RESUME/ACCELERATE switch: Pressed	Approximately 3.8V
			[Ignition switch: ON] • SET/COAST switch: Pressed	Approximately 3.3V
			[Ignition switch: ON] • DISTANCE switch: Pressed	Approximately 2.6V
			[Ignition switch: ON] • LDP ON switch: Pressed	Approximately 1.1V

Diagnosis Procedure

INFOID:0000000002954540

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws on the body. Refer to <u>EC-146</u>, "Ground Inspection".

1. Body ground M70

2. Body ground M16

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

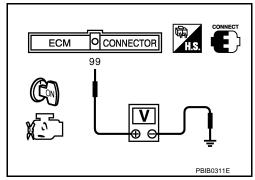
2.check icc steering switch circuit

(II) With CONSULT-III

- 1. Turn ignition switch ON.
- Select "MAIN SW", "CANCEL SW", "RESUME/ACC SW", "SET SW" and "DIST SW" in "DATA MONITOR" mode with CONSULT-III.
- 3. Check each item indication under the following conditions.

Switch	Monitor item	Condition	Indication
MAIN switch	MAIN SW	Pressed	ON
WAIN SWILCH	WAIN OW	Released	OFF

DTC P1564 ICC STEERING SWITCH


< SERVICE INFORMATION >

Switch	Monitor item	Condition	Indication
CANCEL switch	CANCEL SW	Pressed	ON
CANCEL SWILLI	CANCEL SW	Released	OFF
RESUME/ACCEL-	RESUME/ACC SW	Pressed	ON
ERATE switch	RESONE/ACC SW	Released	OFF
SET/COAST switch	SET SW	Pressed	ON
3L1/COAST SWILCT	SET SW	Released	OFF
DISTANCE switch	DIST SW	Pressed	ON
DISTANCE SWILLI	DIST SW	Released	OFF
I DP ON switch	LDP ON SW	Pressed	ON
LDF ON SWILLI	LDF ON 3W	Released	OFF

Without CONSULT-III

- Turn ignition switch ON.
- Check voltage between ECM terminal 99 and ground with pressing each button.

Switch	Condition	Voltage [V]
MAIN switch	Pressed	Approx. 0
MAIN SWILCH	Released	Approx. 4.3
CANCEL switch	Pressed	Approx. 1.9
CANCLE SWILLI	Released	Approx. 4.3
RESUME/ACCELER-	Pressed	Approx. 3.8
ATE switch	Released	Approx. 4.3
SET/COAST switch	Pressed	Approx. 3.3
OL 1/OUAGT SWILCH	Released	Approx. 4.3
DISTANCE switch	Pressed	Approx. 2.6
DIGITATIOE SWITCH	Released	Approx. 4.3
LDP ON switch	Pressed	Approx. 1.1
LDI ON SWITCH	Released	Approx. 4.3

OK or NG

OK >> GO TO 8. NG >> GO TO 3.

${f 3.}$ CHECK ICC STEERING SWITCH GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Disconnect combination switch harness connector M303.
- Check harness continuity between combination switch terminal 18 and ECM terminal 67. Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M72, F102
- Combination switch (spiral cable)

EC-497 Revision: 2009 February 2008 M35/M45

Α

[VQ35DE]

EC

D

Е

Н

K

M

Ν

Р

< SERVICE INFORMATION >

· Harness for open and short between ECM and combination switch

>> Repair open circuit or short to ground or short to power in harness or connectors.

$5. \mathsf{CHECK}$ ICC STEERING SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal 99 and combination switch terminal 21. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- · Combination switch (spiral cable)
- · Harness for open and short between ECM and combination switch

>> Repair open circuit or short to ground or short to power in harness or connectors.

7.check icc steering switch

Refer to EC-498, "Component Inspection".

OK or NG

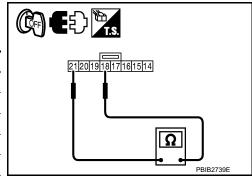
OK >> GO TO 8.

NG >> Replace ICC steering switch.

8. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

>> INSPECTION END


Component Inspection

INFOID:0000000002954541

ICC STEERING SWITCH

- 1. Disconnect combination switch (spiral cable) harness connector M303.
- Check continuity between combination switch terminals 18 and 21 with pushing each switch.

Switch	Condition	Resistance $[\Omega]$
MAIN switch	Pressed	Approx. 0
WAIN SWIICH	Released	Approx. 5,500
CANCEL switch	Pressed	Approx. 620
CANCEL SWILLI	Released	Approx. 5,500
RESUME/ACCELERATE	Pressed	Approx. 2,990
switch	Released	Approx. 5,500
SET/COAST switch	Pressed	Approx. 1,810
SET/COAST SWIICH	Released	Approx. 5,500
DISTANCE switch	Pressed	Approx. 1,100
DISTANCE SWILLI	Released	Approx. 5,500
LDP ON switch	Pressed	Approx. 270
LDF ON SWILCH	Released	Approx. 5,500

DTC P1564 ICC STEERING SWITCH

CEDVICE	INFORMATION >	
/ >FRVICE		

[VQ35DE]

If NG, replace ICC steering switch.

Α

EC

С

D

Е

F

G

Н

1

J

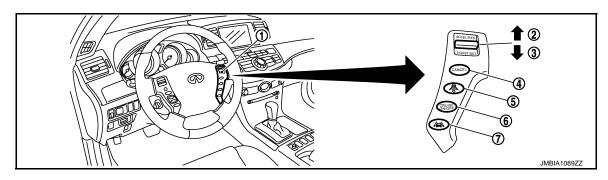
K

L

M

Ν

0


Ρ

DTC P1564 ASCD STEERING SWITCH

Component Description

INFOID:0000000002954542

ASCD steering switch has variant values of electrical resistance for each button. ECM reads voltage variation of switch, and determines which button is operated.

- 1. ASCD steering switch
- 4. CANCEL switch
- RESUME/ACCELERATE switch
- 3. SET/COAST switch
- DISTANCE switch (Models with ICC) 6. MAIN switch

7. LDP ON switch (Model with ICC)

Refer to EC-37 for the ASCD function.

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002954543

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
MAIN SW	Ignition switch: ON	MAIN switch: Pressed	ON
IVIAIIN SVV		MAIN switch: Released	OFF
CANCEL SW	• Ignition quitable ON	CANCEL switch: Pressed	ON
CANCEL SW	Ignition switch: ON	CANCEL switch: Released	OFF
RESUME/ACC SW	Ignition switch: ON	RESUME/ACCELERATE switch: Pressed	ON
RESUME/ACC SW		RESUME/ACCELERATE switch: Released	OFF
SET SW	Ignition switch: ON	SET/COAST switch: Pressed	ON
<u></u>		SET/COAST switch: Released	OFF

On Board Diagnosis Logic

INFOID:0000000002954544

This self-diagnosis has the one trip detection logic.

The MIL will not light up for this diagnosis.

NOTE:

If DTC P1564 is displayed with DTC P0605, first perform the trouble diagnosis for DTC P0605. Refer to EC-434.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1564 1564	ASCD steering switch	 An excessively high voltage signal from the ASCD steering switch is sent to ECM. ECM detects that input signal from the ASCD steering switch is out of the specified range. ECM detects that the ASCD steering switch is stuck ON. 	Harness or connectors (The switch circuit is open or shorted.) ASCD steering switch ECM

DTC P1564 ASCD STEERING SWITCH

< SERVICE INFORMATION >

[VQ35DE]

DTC Confirmation Procedure

INFOID:0000000002954545

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

- Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-III.
- 3. Wait at least 10 seconds.
- 4. Press MAIN switch for at least 10 seconds, then release it and wait at least 10 seconds.
- 5. Press CANCEL switch for at least 10 seconds, then release it and wait at least 10 seconds.
- Press RESUME/ACCELERATE switch for at least 10 seconds, then release it and wait at least 10 seconds.
- 7. Press SET/COAST switch for at least 10 seconds, then release it and wait at least 10 seconds.
- If DTC is detected, go to <u>EC-503</u>, "<u>Diagnosis Procedure</u>".

EC

Α

D

C

Е

F

Н

K

L

M

Ν

0

Р

2

< SERVICE INFORMATION > Wiring Diagram INFOID:0000000002954546 EC-ASC/SW-01 : DETECTABLE LINE FOR DTC : NON-DETECTABLE LINE FOR DTC SET/ COAST RESUME/ ACCELERATE ASCD STEERING SWITCH ON ON OF ILLUMI-CANCEL MAIN NATION COMBINATION SWITCH (SPIRAL CABLE) (M39), (M303) TO LT-ILL 99 67 ASCD SW GND-A ECM M71), (F108) REFER TO THE FOLLOWING. (F102) - SUPER MULTIPLE *: THIS CONNECTOR IS NOT SHOWN IN "HARNESS LAYOUT", PG SECTION. JUNCTION (SMJ) (M303) GR

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

(F108)

В

120 121

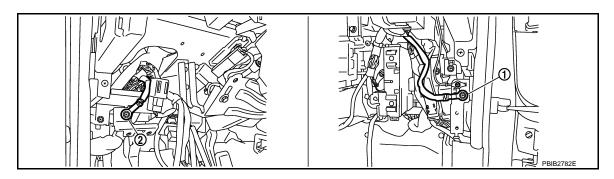
M71)

TBWT1964E

DTC P1564 ASCD STEERING SWITCH

< SERVICE INFORMATION >

[VQ35DE]


TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
67	B/W	Sensor ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
99	Y	ASCD steering switch (models with ASCD system)	[Ignition switch: ON] • ASCD steering switch: OFF	Approximately 4V
			[Ignition switch: ON] • MAIN switch: Pressed	Approximately 0V
			[Ignition switch: ON] • CANCEL switch: Pressed	Approximately 1V
			[Ignition switch: ON] • RESUME/ACCELERATE switch: Pressed	Approximately 3V
			[Ignition switch: ON] • SET/COAST switch: Pressed	Approximately 2V

Diagnosis Procedure

INFOID:0000000002954547

1. CHECK GROUND CONNECTIONS

- Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws on the body. Refer to EC-146, "Ground Inspection".

1. Body ground M70

2. Body ground M16

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK ASCD STEERING SWITCH CIRCUIT

(P) With CONSULT-III

- Turn ignition switch ON.
- Select "MAIN SW", "CANCEL SW", "RESUME/ACC SW" and "SET SW" in "DATA MONITOR" mode with CONSULT-III.
- Check each item indication under the following conditions.

Switch	Monitor item	Condition	Indication
MAIN switch	MAIN SW	Pressed	ON
MAIN SWILCH	WAIN SW	Released	OFF
CANCEL switch	CANCEL SW	Pressed	ON
CANCLE SWILCH	CANCLL SW	Released	OFF

EC-503 Revision: 2009 February 2008 M35/M45

Α

D

Е

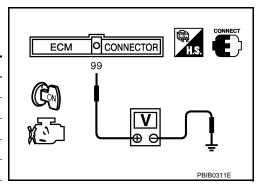
F

Н

M

Ν

Р


< SERVICE INFORMATION >

Switch	Monitor item	Condition	Indication
RESUME/ACCEL-	RESUME/ACC SW	Pressed	ON
ERATE switch	RESONE/ACC SW	Released	OFF
SET/COAST switch	SET SW	Pressed	ON
3L1/COAST SWICH	JET SVV	Released	OFF

(X) Without CONSULT-III

- 1. Turn ignition switch ON.
- 2. Check voltage between ECM terminal 99 and ground with pressing each button.

Switch	Condition	Voltage [V]
MAIN switch	Pressed	Approx. 0
WAIN SWILCH	Released	Approx. 4
CANCEL switch	Pressed	Approx. 1
CANCEL SWILCH	Released	Approx. 4
RESUME/ACCELERATE	Pressed	Approx. 3
switch	Released	Approx. 4
SET/COAST switch	Pressed	Approx. 2
3L1/COA31 SWILCH	Released	Approx. 4

OK or NG

OK >> GO TO 8. NG >> GO TO 3.

${f 3.}$ CHECK ASCD STEERING SWITCH GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Disconnect combination switch harness connector M303.
- Check harness continuity between combination switch terminal 18 and ECM terminal 67.
 Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M72, F102
- Combination switch (spiral cable)
- · Harness for open and short between ECM and combination switch

>> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK ASCD STEERING SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal 99 and combination switch terminal 21. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

DTC P1564 ASCD STEERING SWITCH

< SERVICE INFORMATION >

OK >> GO TO 7.

NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Combination switch (spiral cable)
- · Harness for open and short between ECM and combination switch

>> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK ASCD STEERING SWITCH

Refer to EC-505, "Component Inspection".

OK or NG

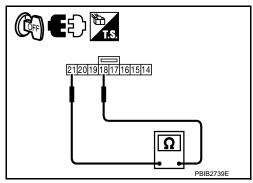
OK >> GO TO 8.

NG >> Replace ASCD steering switch.

8. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

>> INSPECTION END


Component Inspection

ASCD STEERING SWITCH

- 1. Disconnect combination switch (spiral cable) harness connector M303.
- 2. Check continuity between combination switch terminals 18 and 21 with pushing each switch.

Switch	Condition	Resistance [Ω]
MAIN switch	Pressed	Approx. 0
WAIN SWILCH	Released	Approx. 4,000
CANCEL switch	Pressed	Approx. 250
CANCEL SWILCH	Released	Approx. 4,000
RESUME/ACCELERATE	Pressed	Approx. 1,480
switch	Released	Approx. 4,000
SET/COAST switch	Pressed	Approx. 660
OL 1/OUAUT SWIICH	Released	Approx. 4,000

EC

Α

[VQ35DE]

Е

D

F

INFOID:0000000002954548

Н

Ν

Р

DTC P1568 ICC FUNCTION

On Board Diagnosis Logic

INFOID:0000000002954549

This self-diagnosis has the one trip detection logic.

The MIL will not light up for this diagnosis.

NOTE:

- If DTC P1568 is displayed with DTC U1000 or U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to <u>EC-147</u>.
- If DTC P1568 is displayed with DTC U1010, first perform the trouble diagnosis for DTC U1010. Refer to EC-149.
- If DTC P1568 is displayed with DTC P0605, first perform the trouble diagnosis for DTC P0605. Refer to EC-434.

DTC No.	Trouble Diagnosis Name	DTC Detecting Condition	Possible Cause
P1568 1568	ICC function	ECM detects a difference between signals from ICC sensor integrated unit is out of specified range.	Harness or connectors (The CAN communication line is open or shorted.) ICC sensor integrated unit ECM

DTC Confirmation Procedure

INFOID:0000000002954550

CAUTION:

Always drive vehicle at a safe speed.

NOTÉ:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Step 4 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

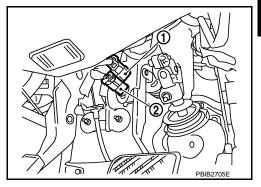
- 1. Turn ignition switch ON.
- Press MAIN switch on ICC steering switch.
- 3. Drive the vehicle at more than 40 km/h (25 MPH).
- 4. Press SET/COAST switch.
- 5. Check DTC.
- If DTC is detected, go to <u>EC-506</u>, "<u>Diagnosis Procedure</u>".

Diagnosis Procedure

INFOID:0000000002954551

1. REPLACE ICC SENSOR INTEGRATED UNIT

- Replace ICC sensor integrated unit.
- 2. Perform ACS-14.
- Check DTC of ICC sensor integrated unit. Refer to <u>ACS-40</u>.


>> INSPECTION END

INFOID:0000000002954552

DTC P1572 ICC BRAKE SWITCH

Component Description

When the brake pedal is depressed, ICC brake switch (2) is turned OFF and stop lamp switch (1) is turned ON. ECM detects the state of the brake pedal by this input of two kinds (ON/OFF signal). Refer to ACS-9 for the ICC function.

CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
BRAKE SW1	Ignition switch: ON	Brake pedal: Fully released	ON
(ICC brake switch)	9 Ignition switch. ON	Brake pedal: Slightly depressed	OFF
BRAKE SW2	Ignition switch: ON	Brake pedal: Fully released	OFF
(Stop lamp switch)	- Ignition switch. ON	Brake pedal: Slightly depressed	ON

On Board Diagnosis Logic

This diagnosis has the one trip detection logic.

The MIL will not light up for this diagnosis.

NOTE:

- If DTC P1572 is displayed with DTC P0605, first perform the trouble diagnosis for DTC P0605. Refer to EC-434.
- This self-diagnosis has the one trip detection logic. When malfunction A is detected, DTC is not stored in ECM memory. And in that case, 1st trip DTC and 1st trip freeze frame data are displayed. 1st trip DTC is erased when ignition switch OFF. And even when malfunction A is detected in two consecutive trips, DTC is not stored in ECM memory.

DTC No.	Trouble diagnosis name		DTC detecting condition	Possible cause
		A)	ON signals from the stop lamp switch and the ICC brake switch are sent to ECM at the same time.	Harness or connectors (The stop lamp switch circuit is shorted.) Harness or connectors
P1572 1572	ICC brake switch	B)	ICC brake switch signal is not sent to ECM for extremely long time while the vehicle is driving	 (The ICC brake switch circuit is shorted.) Stop lamp switch ICC brake switch ICC brake hold relay Incorrect stop lamp switch installation Incorrect ICC brake switch installation ECM

DTC Confirmation Procedure

CAUTION:

Revision: 2009 February

Always drive vehicle at a safe speed.

NOTE:

• If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

EC

Α

С

Е

F

Н

K

L

Ν

D

INFOID:0000000002954553

INFOID:0000000002954554

INFOID:0000000002954555

EC-507 2008 M35/M45

DTC P1572 ICC BRAKE SWITCH

< SERVICE INFORMATION >

[VQ35DE]

• Procedure for malfunction B is not described here. It takes extremely long time to complete procedure for malfunction B. By performing procedure for malfunction A, the incident that causes malfunction B can be detected.

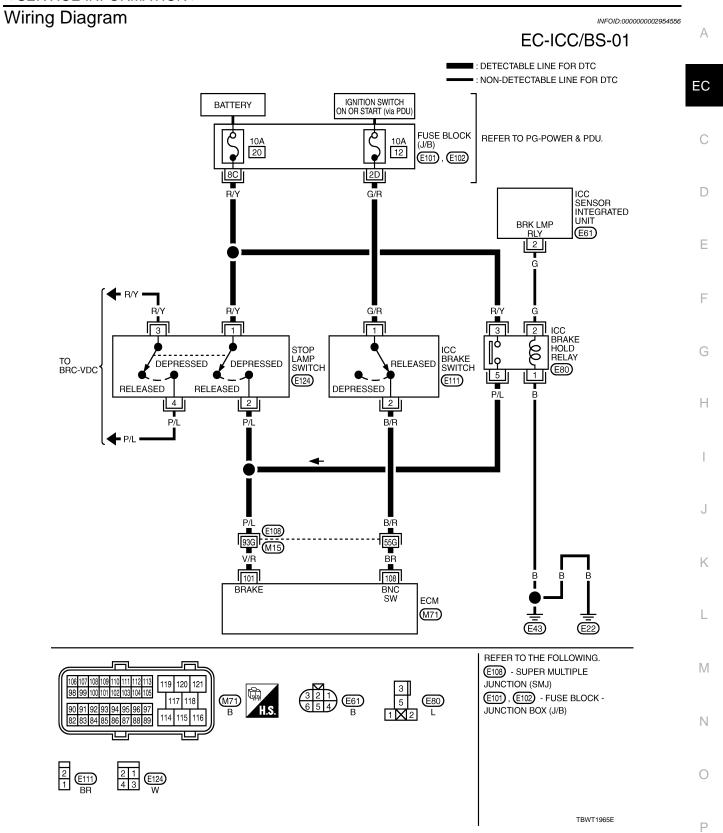
TESTING CONDITION:

Steps 4 and 5 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

(P) WITH CONSULT-III

- Start engine (VDC switch OFF).
- Select "DATA MONITOR" mode with CONSULT-III.
- 3. Press MAIN switch and make sure that CRUISE lamp lights up.
- 4. Drive the vehicle for at least 5 consecutive seconds under the following conditions.

VHCL SPEED SE	More than 30 km/h (19 MPH)
Selector lever	Suitable position


- 5. Check 1st trip DTC.
- 6. If 1st trip DTC is detected, go to EC-510, "Diagnosis Procedure". If 1st trip DTC is not detected, go to the following step.
- 7. Drive the vehicle for at least 5 consecutive seconds under the following conditions.

VHCL SPEED SE	More than 30 km/h (19 MPH)
Selector lever	Suitable position
Driving location	Depress the brake pedal for more than five seconds so as not to come off from the above-mentioned vehicle speed.

- 8. Check 1st trip DTC.
- 9. If 1st trip DTC is detected, go to EC-510, "Diagnosis Procedure".

® WITH GST

Follow the procedure "WITH CONSULT-III" above.

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

< SERVICE INFORMATION >

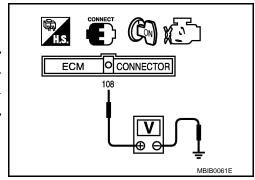
TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
101	V/R	Stop lamp switch	[Ignition switch: OFF] • Brake pedal: Fully released	Approximately 0V
101 V/R Stop	Stop lamp switch	[Ignition switch: OFF] • Brake pedal: Slightly depressed	BATTERY VOLTAGE (11 - 14V)	
400	108 BR ICC brake switch	ICC hyalia awitah	[Ignition switch: ON] • Brake pedal: Slightly depressed	Approximately 0V
108		ICC DIAKE SWITCH	[Ignition switch: ON] • Brake pedal: Fully released	BATTERY VOLTAGE (11 - 14V)

Diagnosis Procedure

INFOID:0000000002954557

1. CHECK OVERALL FUNCTION-I

(I) With CONSULT-III


- 1. Turn ignition switch ON.
- 2. Select "BRAKE SW1" in "DATA MONITOR" mode with CONSULT-III.
- 3. Check "BRAKE SW1" indication under the following conditions.

CONDITION	INDICATION
Brake pedal: Slightly depressed	OFF
Brake pedal: Fully released	ON

(R) Without CONSULT-III

- 1. Turn ignition switch ON.
- Check voltage between ECM terminal 108 and ground under the following conditions.

CONDITION	VOLTAGE
Brake pedal: Slightly depressed	Approximately 0V
Brake pedal: Fully released	Battery voltage

OK or NG

OK >> GO TO 2. NG >> GO TO 3.

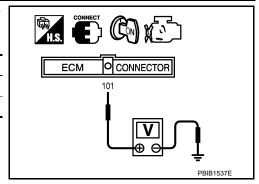
2. CHECK OVERALL FUNCTION-II

(P) With CONSULT-III

Check "BRAKE SW2" indication in "DATA MONITOR" mode.

CONDITION	INDICATION
Brake pedal: Fully released	OFF
Brake pedal: Slightly depressed	ON

⊗ Without CONSULT-III

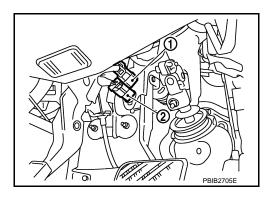

DTC P1572 ICC BRAKE SWITCH

< SERVICE INFORMATION >

[VQ35DE]

Check voltage between ECM terminal 101 and ground under the following conditions.

CONDITION	VOLTAGE
Brake pedal: Fully released	Approximately 0V
Brake pedal: Slightly depressed	Battery voltage

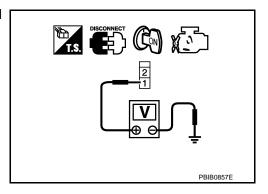


OK or NG

OK >> GO TO 15. NG >> GO TO 8.

3.check icc brake switch power supply circuit

- Turn ignition switch OFF.
- 2. Disconnect ICC brake switch (2) harness connector.
- Stop lamp switch (1)
- 3. Turn ignition switch ON.



Check voltage between ICC brake switch terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E102
- 10A fuse
- Harness for open or short between ICC brake switch and fuse

>> Repair open circuit or short to ground or short to power in harness or connectors.

5.check icc brake switch input signal circuit for open and short-ii

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ICC brake switch terminal 2 and ECM terminal 108. Refer Wiring Diagram.

Continuity should exist.

Also check harness for short to ground and short to power.

EC-511 Revision: 2009 February 2008 M35/M45

EC

Α

D

Е

F

Н

Ν

DTC P1572 ICC BRAKE SWITCH

< SERVICE INFORMATION >

[VQ35DE]

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- · Harness for open or short between ICC brake switch and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK ICC BRAKE SWITCH

Refer to EC-514, "Component Inspection".

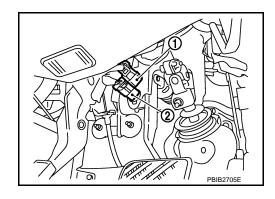
OK or NG

OK >> GO TO 15.

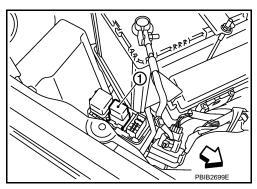
NG >> Replace ICC brake switch.

8.check dtc with icc sensor integrated unit

Refer to ACS-40.


OK or NG

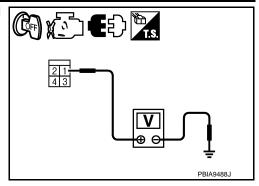
OK >> GO TO 9.


NG >> Repair or replace.

9. CHECK STOP LAMP SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect stop lamp switch (1) harness connector.
- ICC brake switch (2)

- 3. Disconnect ICC brake hold relay (1) harness connector.
- <□: Vehicle front

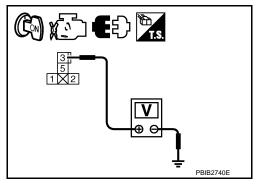


< SERVICE INFORMATION >

[VQ35DE]

Check voltage between stop lamp switch terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage



5. Check voltage between ICC brake hold relay terminal 3 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 11. NG >> GO TO 10.

10. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E101
- 10A fuse
- Harness for open or short between battery and stop lamp switch
- Harness for open or short between battery and ICC brake hold relay

>> Repair open circuit or short to ground or short to power in harness or connectors.

11. CHECK STOP LAMP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between the following; ECM terminal 101 and stop lamp switch terminal 2, ECM terminal 101 and ICC brake hold relay terminal 5. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 13. NG >> GO TO 12.

12. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- Harness for open or short between ECM and stop lamp switch
- Harness for open or short between ECM and ICC brake hold relay

>> Repair open circuit or short to ground or short to power in harness or connectors.

13. CHECK STOP LAMP SWITCH

Refer to EC-514, "Component Inspection".

OK or NG

OK >> GO TO 14.

EC-513 Revision: 2009 February 2008 M35/M45 D

Α

EC

Е

F

N

Р

< SERVICE INFORMATION >

NG >> Replace stop lamp switch.

14. CHECK ICC BRAKE HOLD RELAY

Refer to EC-514, "Component Inspection".

OK >> GO TO 15.

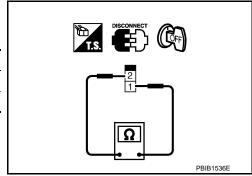
NG >> Replace ICC brake hold relay.

15. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

>> INSPECTION END

Component Inspection

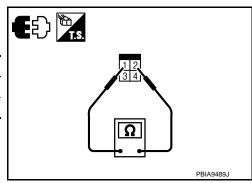

INFOID:0000000002954558

ICC BRAKE SWITCH

- 1. Turn ignition switch OFF.
- 2. Disconnect ICC brake switch harness connector.
- 3. Check continuity between ICC brake switch terminals 1 and 2 under the following conditions.

Condition	Continuity
Brake pedal: Fully released	Should exist
Brake pedal: Slightly depressed	Should not exist

4. If NG, adjust ICC brake switch installation, refer to <u>BR-6</u>, and perform step 3 again.

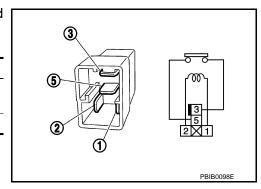


STOP LAMP SWITCH

- 1. Turn ignition switch OFF.
- 2. Disconnect stop lamp switch harness connector.
- 3. Check continuity between stop lamp switch terminals 1 and 2 under the following conditions.

Condition	Continuity
Brake pedal: Fully released	Should not exist
Brake pedal: Slightly depressed	Should exist

4. If NG, adjust stop lamp switch installation, refer to <u>BR-6</u>, and perform step 3 again.

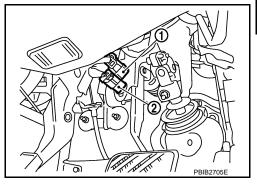


ICC BRAKE HOLD RELAY

1. Check continuity between ICC brake hold relay terminals 3 and 5 under the following conditions.

Condition	Continuity
12V direct current supply between terminals 1 and 2	Should not exist
No current supply	Should exist

If NG, replace ICC brake hold relay.



INFOID:0000000002954559

DTC P1572 ASCD BRAKE SWITCH

Component Description

When the brake pedal is depressed, ASCD brake switch (2) is turned OFF and stop lamp switch (1) is turned ON. ECM detects the state of the brake pedal by this input of two kinds (ON/OFF signal). Refer to <u>EC-37</u> for the ASCD function.

CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
BRAKE SW1	Ignition switch: ON	Brake pedal: Fully released	ON
(ASCD brake switch)		Brake pedal: Slightly depressed	OFF
BRAKE SW2	Ignition switch: ON	Brake pedal: Fully released	OFF
(Stop lamp switch)		Brake pedal: Slightly depressed	ON

On Board Diagnosis Logic

This self-diagnosis has the one trip detection logic.

The MIL will not light up for this diagnosis.

NOTE:

- If DTC P1572 is displayed with DTC P0605, first perform the trouble diagnosis for DTC P0605. Refer to EC-434.
- This self-diagnosis has the one trip detection logic. When malfunction A is detected, DTC is not stored in ECM memory. And in that case, 1st trip DTC and 1st trip freeze frame data are displayed. 1st trip DTC is erased when ignition switch OFF. And even when malfunction A is detected in two consecutive trips, DTC is not stored in ECM memory.

DTC No.	Trouble diagnosis name	DTC detecting condition		Possible cause
P1572		A)	When the vehicle speed is above 30 km/h (19 MPH), ON signals from the stop lamp switch and the ASCD brake switch are sent to the ECM at the same time.	Harness or connectors (The stop lamp switch circuit is shorted.) Harness or connectors (The ASCD brake switch circuit is shorted.)
1572	ASCD brake switch	B)	ASCD brake switch signal is not sent to ECM for extremely long time while the vehicle is driving.	 Stop lamp switch ASCD brake switch Incorrect stop lamp switch installation Incorrect ASCD brake switch installation ECM

DTC Confirmation Procedure

CAUTION:
Always drive vehicle at a safe speed.

NOTÉ:

- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
- Procedure for malfunction B is not described here. It takes extremely long time to complete procedure for malfunction B. By performing procedure for malfunction A, the incident that causes malfunction B can be detected.

EC

Α

С

Е

F

Н

D

INFOID:0000000002954560

INFOID:0000000002954561

K

М

L

Ν

Р

INEOID:0000000002954562

DTC P1572 ASCD BRAKE SWITCH

< SERVICE INFORMATION >

[VQ35DE]

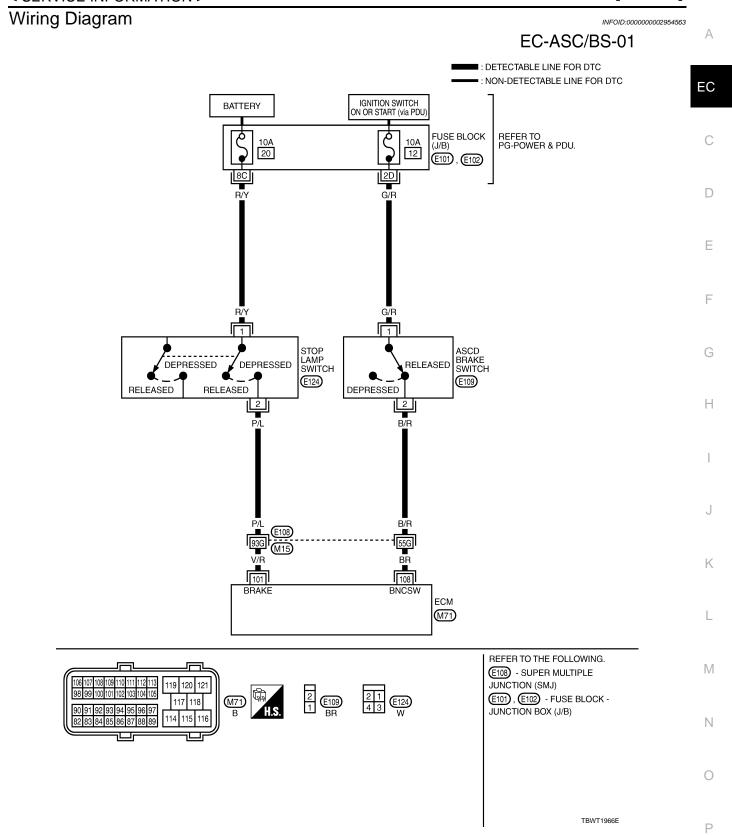
TESTING CONDITION:

Steps 4 and 5 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

(II) WITH CONSULT-III

- 1. Start engine (VDC switch OFF).
- 2. Select "DATA MONITOR" mode with CONSULT-III.
- 3. Press MAIN switch and make sure that CRUISE lamp lights up.
- 4. Drive the vehicle for at least 5 consecutive seconds under the following conditions.

VHCL SPEED SE	More than 30 km/h (19 MPH)
Selector lever	Suitable position


- 5. Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-518</u>, "<u>Diagnosis Procedure</u>".
 If 1st trip DTC is not detected, go to the following step.
- 7. Drive the vehicle for at least 5 consecutive seconds under the following conditions.

VHCL SPEED SE	More than 30 km/h (19 MPH)
Selector lever	Suitable position
Driving location	Depress the brake pedal for more than five seconds so as not to come off from the above-mentioned vehicle speed.

- 8. Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-518, "Diagnosis Procedure"</u>.

® WITH GST

Follow the procedure "WITH CONSULT-III" above.

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

< SERVICE INFORMATION >

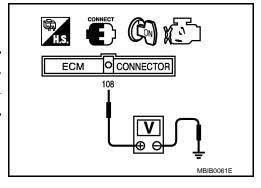
TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
101	V/R	Stan Jama quitab	[Ignition switch: OFF] • Brake pedal: Fully released	Approximately 0V
101	101 V/R Stop lamp switch	[Ignition switch: OFF] • Brake pedal: Slightly depressed	BATTERY VOLTAGE (11 - 14V)	
108 BR ASCD brake swit	ASCD brake quitab	[Ignition switch: ON] • Brake pedal: Slightly depressed	Approximately 0V	
	ASCD DIAKE SWITCH	[Ignition switch: ON] • Brake pedal: Fully released	BATTERY VOLTAGE (11 - 14V)	

Diagnosis Procedure

INFOID:0000000002954564

1. CHECK OVERALL FUNCTION-I

(I) With CONSULT-III


- Turn ignition switch ON.
- 2. Select "BRAKE SW1" in "DATA MONITOR" mode with CONSULT-III.
- 3. Check "BRAKE SW1" indication under the following conditions.

CONDITION	INDICATION
Brake pedal: Slightly depressed	OFF
Brake pedal: Fully released	ON

(R) Without CONSULT-III

- 1. Turn ignition switch ON.
- 2. Check voltage between ECM terminal 108 and ground under the following conditions.

CONDITION	VOLTAGE
Brake pedal: Slightly depressed	Approximately 0V
Brake pedal: Fully released	Battery voltage

OK or NG

OK >> GO TO 2. NG >> GO TO 3.

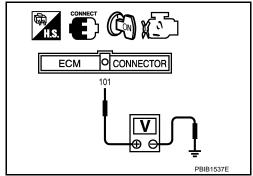
2. CHECK OVERALL FUNCTION-II

(II) With CONSULT-III

Check "BRAKE SW2" indication in "DATA MONITOR" mode.

CONDITION	INDICATION
Brake pedal: Fully released	OFF
Brake pedal: Slightly depressed	ON

⋈ Without CONSULT-III

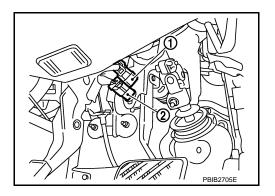

Check voltage between ECM terminal 101 and ground under the following conditions.

DTC P1572 ASCD BRAKE SWITCH

< SERVICE INFORMATION >

[V	Q35	DE]
----	-----	-----

CONDITION	VOLTAGE
Brake pedal: Fully released	Approximately 0V
Brake pedal: Slightly depressed	Battery voltage

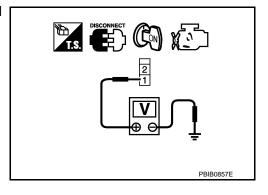


OK or NG

OK >> GO TO 13. NG >> GO TO 8.

3.check ascd brake switch power supply circuit

- Turn ignition switch OFF.
- Disconnect ASCD brake switch (2) harness connector.
- Stop lamp switch (1)
- 3. Turn ignition switch ON.



Check voltage between ASCD brake switch terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E102
- 10A fuse
- Harness for open or short between ASCD brake switch and fuse

>> Repair open circuit or short to ground or short to power in harness or connectors.

EC-519

${f 5.}$ CHECK ASCD BRAKE SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Turn ignition switch OFF.

Revision: 2009 February

- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 108 and ASCD brake switch terminal 2. Refer to Wiring Diagram.

Continuity should exist.

Also check harness for short to ground and short to power.

Α

EC

D

Е

F

Н

K

Ν

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

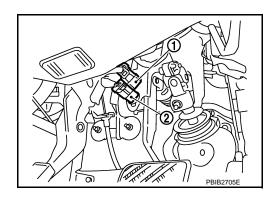
Harness connectors E108, M15

< SERVICE INFORMATION >

- · Harness for open or short between ECM and ASCD brake switch
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

CHECK ASCD BRAKE SWITCH

Refer to EC-521, "Component Inspection"

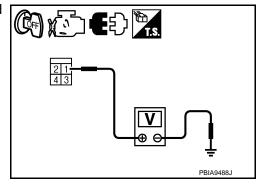

OK or NG

OK >> GO TO 13.

NG >> Replace ASCD brake switch.

8. CHECK STOP LAMP SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect stop lamp switch (1) harness connector.
- ASCD brake switch (2)



Check voltage between stop lamp switch terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 10. NG >> GO TO 9.

9. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E101
- 10A fuse
- · Harness for open or short between stop lamp switch and battery

>> Repair open circuit or short to ground or short to power in harness or connectors.

10. CHECK STOP LAMP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 101 and stop lamp switch terminal 2. Refer to Wiring Diagram.

Continuity should exist.

Also check harness for short to ground and short to power.

DTC P1572 ASCD BRAKE SWITCH

< SERVICE INFORMATION > [VQ35DE]

OK or NG

OK >> GO TO 12.

NG >> GO TO 11.

11. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- · Harness for open or short between ECM and stop lamp switch

>> Repair open circuit or short to ground or short to power in harness or connectors.

12. CHECK STOP LAMP SWITCH

Refer to EC-521, "Component Inspection"

OK or NG

OK >> GO TO 13.

NG >> Replace stop lamp switch.

13. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

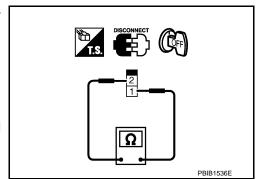
>> INSPECTION END

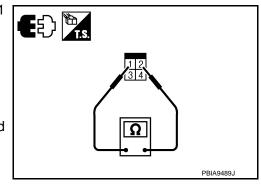
Component Inspection

ASCD BRAKE SWITCH

- 1. Turn ignition switch OFF.
- 2. Disconnect ASCD brake switch harness connector.
- Check harness continuity between ASCD brake switch terminals 1 and 2 under the following conditions.

Condition	Continuity
Brake pedal: Fully released.	Should exist.
Brake pedal: Slightly depressed.	Should not exist.


4. If NG, adjust ASCD brake switch installation, refer to <u>BR-6</u>, and perform step 3 again.


STOP LAMP SWITCH

- 1. Turn ignition switch OFF.
- Disconnect stop lamp switch harness connector.
- 3. Check harness continuity between stop lamp switch terminals 1 and 2 under the following conditions.

Condition	Continuity
Brake pedal: Fully released.	Should not exist.
Brake pedal: Slightly depressed.	Should exist.

 If NG, adjust stop lamp switch installation, refer to <u>BR-6</u>, and perform step 3 again.

EC

Α

...

D

Е

INFOID:0000000002954565

Н

ı

1/

M

N

0

Р

DTC P1574 ICC VEHICLE SPEED SENSOR

Component Description

INFOID:0000000002954566

The ECM receives two vehicle speed signals via CAN communication line. One is sent from "unified meter and A/C amp.", and the other is from TCM (Transmission control module). The ECM uses these signals for ICC control. Refer to ACS-9 for ICC functions.

On Board Diagnosis Logic

INFOID:0000000002954567

This self-diagnosis has the one trip detection logic.

The MIL will not light up for this diagnosis.

NOTE:

- If DTC P1574 is displayed with DTC U1000, U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to <u>EC-147</u>.
- If DTC P1574 is displayed with DTC U1010, first perform the trouble diagnosis for DTC U1010. Refer to EC-149.
- If DTC P1574 is displayed with DTC P0500, first perform the trouble diagnosis for DTC P0500. Refer to <u>EC-419</u>.
- If DTC P1574 is displayed with DTC P0605, first perform the trouble diagnosis for DTC P0605.
 Refer to <u>EC-434</u>.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1574 1574	ICC vehicle speed sensor	ECM detects a difference between two vehicle speed signals is out of the specified range.	Harness or connectors (The CAN communication line is open or shorted.) Unified meter and A/C amp. ABS actuator and electric unit (control unit) Wheel sensor TCM ECM

DTC Confirmation Procedure

INFOID:0000000002954568

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Step 3 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

- 1. Start engine (VDC switch OFF).
- Drive the vehicle at more than 40 km/h (25MPH).
- Check DTC.
- If DTC is detected, go to <u>EC-522</u>, "<u>Diagnosis Procedure</u>".

Diagnosis Procedure

INFOID:0000000002954569

1. CHECK DTC WITH TCM

Check DTC with TCM. Refer to AT-40.

OK or NG

OK >> GO TO 2.

NG >> Perform trouble shooting relevant to DTC indicated.

2.CHECK DTC WITH "ABS ACTUATOR AND ELECTRIC UNIT (CONTROL UNIT)"

Refer to BRC-12.

OK or NG

Revision: 2009 February **EC-522** 2008 M35/M45

DTC P1574 ICC VEHICLE SPEED SENSOR

[VQ35DE] < SERVICE INFORMATION > OK >> GO TO 3. NG >> Repair or replace. Α ${\bf 3.}$ CHECK DTC WITH "UNIFIED METER AND A/C AMP." Check combination meter function. EC Refer to DI-26. >> INSPECTION END С D Е F G Н J K L M Ν 0

EC-523 Revision: 2009 February 2008 M35/M45

Р

INFOID:0000000002954570

DTC P1574 ASCD VEHICLE SPEED SENSOR

Component Description

The ECM receives two vehicle speed sensor signals via CAN communication line. One is sent from "unified meter and A/C amp.", and the other is from TCM (Transmission control module). The ECM uses these signals

On Board Diagnosis Logic

INFOID:0000000002954571

This self-diagnosis has the one trip detection logic.

for ASCD control. Refer to EC-37 for ASCD functions.

The MIL will not light up for this diagnosis.

NOTE:

- If DTC P1574 is displayed with DTC U1000, U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to <u>EC-147</u>.
- If DTC P1574 is displayed with DTC U1010, first perform the trouble diagnosis for DTC U1010. Refer to EC-149.
- If DTC P1574 is displayed with DTC P0500, first perform the trouble diagnosis for DTC P0500. Refer to EC-419
- If DTC P1574 is displayed with DTC P0605, first perform the trouble diagnosis for DTC P0605. Refer to <u>EC-434</u>

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1574 1574	ASCD vehicle speed sensor	ECM detects a difference between two vehicle speed signals is out of the specified range.	Harness or connectors (The CAN communication line is open or shorted.) Unified meter and A/C amp. ABS actuator and electric unit (control unit) Wheel sensor TCM ECM

DTC Confirmation Procedure

INFOID:0000000002954572

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Step 3 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

- 1. Start engine (VDC switch OFF).
- 2. Drive the vehicle at more than 40 km/h (25 MPH).
- Check DTC.
- If DTC is detected, go to <u>EC-524</u>, "<u>Diagnosis Procedure</u>".

Diagnosis Procedure

INFOID:0000000002954573

1. CHECK DTC WITH TCM

Check DTC with TCM. Refer to AT-40.

OK or NG

OK >> GO TO 2.

NG >> Perform trouble shooting relevant to DTC indicated.

2.CHECK DTC WITH "ABS ACTUATOR AND ELECTRIC UNIT (CONTROL UNIT)"

Refer to BRC-12.

OK or NG

DTC P1574 ASCD VEHICLE SPEED SENSOR

[VQ35DE] < SERVICE INFORMATION > OK >> GO TO 3. NG >> Repair or replace. Α ${\bf 3.}$ CHECK DTC WITH "UNIFIED METER AND A/C AMP." Refer to DI-26. EC >> INSPECTION END С D Е F G Н J K L M Ν 0 Р

EC-525 Revision: 2009 February 2008 M35/M45

DTC P1715 INPUT SPEED SENSOR

Description INFOID:000000002954574

ECM receives input speed sensor signal from TCM through CAN communication line. ECM uses this signal for engine control.

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002954575

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
I/P PULLY SPD	Vehicle speed: More than 20 km/h (12MPH)	Almost the same speed as the tachometer indication

On Board Diagnosis Logic

INFOID:0000000002954576

NOTE:

- If DTC P1715 is displayed with DTC U1000, U1001 first perform the trouble diagnosis for DTC U1000, U1001. Refer to <u>EC-147</u>.
- If DTC P1715 is displayed with DTC U1010, first perform the trouble diagnosis for DTC U1010. Refer to EC-149.
- If DTC P1715 is displayed with DTC P0605, first perform the trouble diagnosis for DTC P0605. Refer to EC-434.
- If DTC P1715 is displayed with DTC P0335, first perform the trouble diagnosis for DTC P0335. Refer to EC-330.
- If DTC P1715 is displayed with DTC P0340, P0345 first perform the trouble diagnosis for DTC P0340, P0345. Refer to <u>EC-335</u>.

The MIL will not lights up for this diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1715 1715	Input speed sensor (TCM output)	Input speed sensor signal is different from the theoretical value calculated by ECM from revolution sensor signal and engine rpm signal.	Harness or connectors (The CAN communication line is open or shorted) Harness or connectors (Input speed sensor circuit is open or shorted) TCM

Diagnosis Procedure

INFOID:0000000002954577

1. CHECK DTC WITH TCM

Check DTC with TCM. Refer to AT-40.

OK or NG

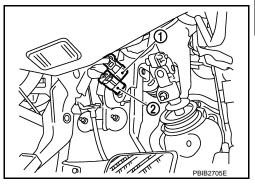
OK >> GO TO 2.

NG >> Perform trouble shooting relevant to DTC indicated.

2.REPLACE TCM

Replace TCM. Refer to AT-43.

>> INSPECTION END


INFOID:0000000002954578

DTC P1805 BRAKE SWITCH

Component Description

Brake switch signal is applied to the ECM through the stop lamp switch (1) when the brake pedal is depressed. This signal is used mainly to decrease the engine speed when the vehicle is driving.

- ICC brake switch (models with ICC) (2)
- ASCD brake switch (models with ASCD) (2)

CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
BRAKE SW	Ignition switch: ON	Brake pedal: Fully released	OFF
DIVARE OW	1 Ignition switch. Oil	Brake pedal: Slightly depressed	ON

On Board Diagnosis Logic

The MIL will not light up for this diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1805 1805	Brake switch	A brake switch signal is not sent to ECM for extremely long time while the vehicle is driving.	Harness or connectors (Stop lamp switch circuit is open or shorted.) Stop lamp switch

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode.

Engine operating condition in rail-sale mode		
ECM controls the electric throttle control actuator by regulating the throttle opening to a small range. Therefore, acceleration will be poor.		
Vehicle condition Driving condition		
When engine is idling Normal		
When accelerating Poor acceleration		

DTC Confirmation Procedure

1. Turn ignition switch ON.

- 2. Fully depress the brake pedal for at least 5 seconds.
- 3. Erase the DTC.
- 4. Check 1st trip DTC.
- If 1st trip DTC is detected, go to EC-529, "Diagnosis Procedure".

EC

Α

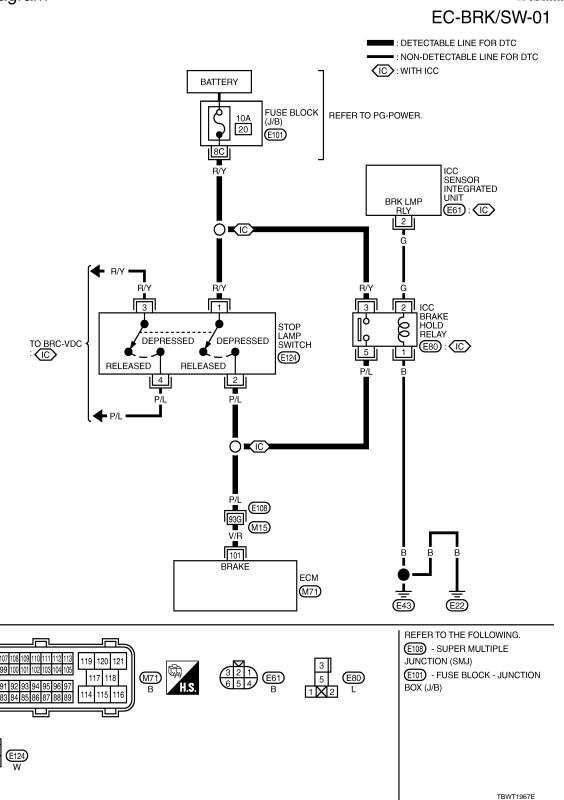
D

Е

F

INFOID:0000000002954579

INFOID:0000000002954580


K

INFOID:0000000002954581

Р

Ν

Wiring Diagram

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

DTC P1805 BRAKE SWITCH

< SERVICE INFORMATION >

[VQ35DE]

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
101 V/R	Stop lamp switch	[Ignition switch: OFF] • Brake pedal: Fully released	Approximately 0V	
101	V/K	Stop famp switch	[Ignition switch: OFF] • Brake pedal: Slightly depressed	BATTERY VOLTAGE (11 - 14V)

Diagnosis Procedure

INFOID:0000000002954583

ICC MODELS

1. CHECK DTC WITH ICC SENSOR INTEGRATED UNIT

Refer to ACS-40.

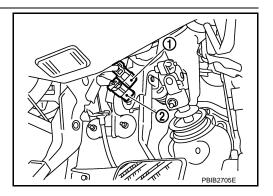
OK or NG

OK >> GO TO 2.

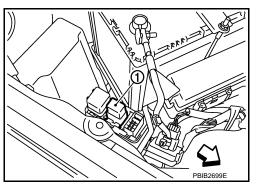
NG >> Repair or replace.

2.CHECK STOP LAMP SWITCH CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Check the stop lamp when depressing and releasing the brake pedal.


Brake pedal	Stop lamp
Fully released	Not illuminated
Slightly depressed	Illuminated

OK or NG


OK >> GO TO 5. NG >> GO TO 3.

3.CHECK STOP LAMP SWITCH POWER SUPPLY CIRCUIT

- 1. Disconnect stop lamp switch (1) harness connector.
- ICC brake switch (2)

- 2. Disconnect ICC brake hold relay (1) harness connector.
- ∹: Vehicle front

Α

EC

C

D

_

F

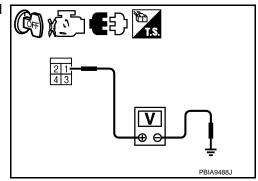
Н

r\

L

M

Ν

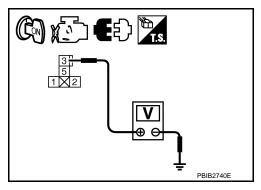

0

Ρ

< SERVICE INFORMATION >

3. Check voltage between stop lamp switch terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage



4. Check voltage between ICC brake hold relay terminal 3 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E101
- 10A fuse
- Harness for open or short between battery and stop lamp switch
- Harness for open or short between battery and ICC brake hold relay
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

${f 5.}$ CHECK STOP LAMP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between the following;

ECM terminal 101 and stop lamp switch terminal 2,

ECM terminal 101 and ICC brake hold relay terminal 5.

Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- Harness for open or short between ECM and stop lamp switch
- Harness for open or short between ECM and ICC brake hold relay
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK STOP LAMP SWITCH

Refer to EC-532, "Component Inspection".

OK or NG

OK >> GO TO 8.

Revision: 2009 February

DTC P1805 BRAKE SWITCH

< SERVICE INFORMATION >

[VQ35DE]

NG >> Replace stop lamp switch.

8.CHECK ICC BRAKE HOLD RELAY

Refer to EC-514, "Component Inspection".

OK >> GO TO 9.

NG >> Replace ICC brake hold relay.

9. CHECK INTERMITTENT INCIDENT

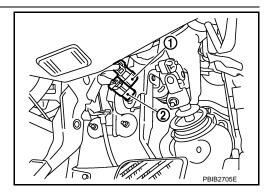
Refer to EC-140.

>> INSPECTION END

ASCD MODELS

1. CHECK STOP LAMP SWITCH CIRCUIT

- Turn ignition switch OFF.
- Check the stop lamp when depressing and releasing the brake pedal.

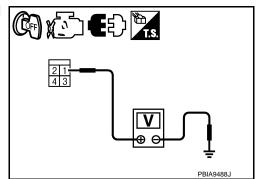

Brake pedal	Stop lamp
Fully released	Not illuminated
Slightly depressed	Illuminated

OK or NG

OK >> GO TO 4. NG >> GO TO 2.

2.CHECK STOP LAMP SWITCH POWER SUPPLY CIRCUIT

- Disconnect stop lamp switch (1) harness connector.
- ASCD brake switch (2)



2. Check voltage between stop lamp switch terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E101
- 10A fuse
- Harness for open or short between stop lamp switch and battery

EC-531 Revision: 2009 February 2008 M35/M45

EC

Α

D

Е

F

Н

L

M

Ν

>> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK STOP LAMP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 101 and stop lamp switch terminal 2. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- · Harness for open or short between ECM and stop lamp switch

>> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK STOP LAMP SWITCH

Refer to EC-532, "Component Inspection".

OK or NG

OK >> GO TO 7.

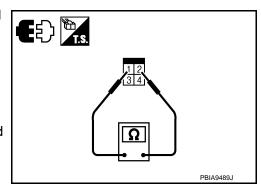
NG >> Replace stop lamp switch.

7. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

>> INSPECTION END

Component Inspection


INFOID:0000000002954584

STOP LAMP SWITCH

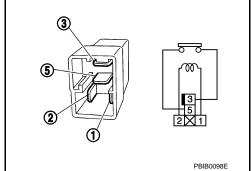
- 1. Turn ignition switch OFF.
- 2. Disconnect stop lamp switch harness connector.
- 3. Check harness continuity between stop lamp switch terminals 1 and 2 under the following conditions.

Condition	Continuity
When brake pedal: Fully released.	Should not exist.
When brake pedal: Slightly depressed.	Should exist.

4. If NG, adjust stop lamp switch installation, refer to <u>BR-6</u>, and perform step 3 again.

ICC BRAKE HOLD RELAY

DTC P1805 BRAKE SWITCH


< SERVICE INFORMATION >

[VQ35DE]

 Check continuity between ICC brake hold relay terminals 3 and 5 under the following conditions.

Condition	Continuity	
12V direct current supply between terminals 1 and 2	Should not exist	
No current supply	Should exist	

2. If NG, replace ICC brake hold relay.

Α

EC

С

D

Е

F

G

Н

|

J

Κ

L

M

Ν

0

Ρ

< SERVICE INFORMATION >

[VQ35DE]

DTC P2100, P2103 THROTTLE CONTROL MOTOR RELAY

Component Description

INFOID:0000000002954585

Power supply for the throttle control motor is provided to the ECM via throttle control motor relay. The throttle control motor relay is ON/OFF controlled by the ECM. When the ignition switch is turned ON, the ECM sends an ON signal to throttle control motor relay and battery voltage is provided to the ECM. When the ignition switch is turned OFF, the ECM sends an OFF signal to throttle control motor relay and battery voltage is not provided to the ECM.

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002954586

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
THRTL RELAY	Ignition switch: ON	ON

On Board Diagnosis Logic

INFOID:0000000002954587

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P2100 2100	Throttle control motor relay circuit open	ECM detects a voltage of power source for throttle control motor is excessively low.	Harness or connectors (Throttle control motor relay circuit is open) Throttle control motor relay
P2103 2103	Throttle control motor relay circuit short	ECM detect the throttle control motor relay is stuck ON.	Harness or connectors (Throttle control motor relay circuit is shorted) Throttle control motor relay

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.

DTC Confirmation Procedure

INFOID:0000000002954588

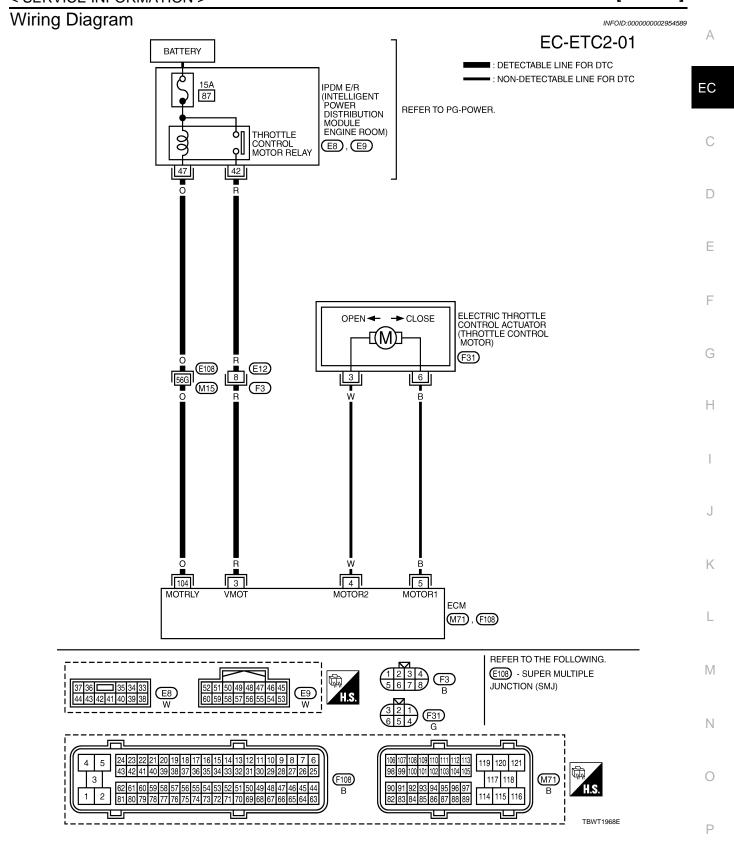
NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

PROCEDURE FOR DTC P2100

- 1. Turn ignition switch ON and wait at least 2 seconds.
- 2. Start engine and let it idle for 5 seconds.
- Check DTC.
- 4. If DTC is detected, go to EC-536, "Diagnosis Procedure".

PROCEDURE FOR DTC P2103


TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 8V.

- Turn ignition switch ON and wait at least 1 second.
- Check DTC.
- If DTC is detected, go to <u>EC-536, "Diagnosis Procedure"</u>.

< SERVICE INFORMATION >

[VQ35DE]

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

CAUTION:

< SERVICE INFORMATION >

[VQ35DE]

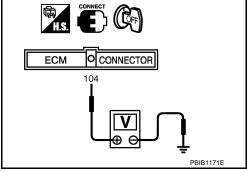
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
3	R	Throttle control motor relay power supply	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)
4	w	Throttle control motor (Close)	[Ignition switch: ON] • Engine stopped • Selector lever: D • Accelerator pedal: Fully released	0 - 14V★
5	В	Throttle control motor (Open)	[Ignition switch: ON] • Engine stopped • Selector lever: D • Accelerator pedal: Fully depressed	0 - 14V★ >>> 5 V/Div 1 ms/Div T PBIB1105E
104 O	0	Throttle control motor relay	[Ignition switch: OFF]	BATTERY VOLTAGE (11 - 14V)
			[Ignition switch: ON]	0 - 1.0V

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnosis Procedure

INFOID:0000000002954590


1. CHECK THROTTLE CONTROL MOTOR RELAY POWER SUPPLY CIRCUIT-I

- 1. Turn ignition switch OFF.
- 2. Check voltage between ECM terminal 104 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 2.

2.CHECK THROTTLE CONTROL MOTOR RELAY POWER SUPPLY CIRCUIT-II

- 1. Disconnect ECM harness connector.
- 2. Disconnect IPDM E/R harness connector E9.
- Check continuity between ECM terminal 104 and IPDM E/R terminal 47. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

< SERVICE INFORMATION >

[VQ35DE]

EC

D

Е

F

3.DETECT MALFUNCTIONING PART

Check the following.

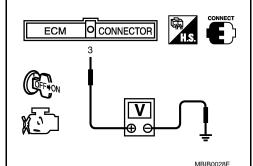
- Harness connectors E108, M15
- Harness for open or short between ECM and IPDM E/R

>> Repair open circuit or short to ground or short to power in harness or connectors.

4.CHECK FUSE

- 1. Disconnect 15A fuse.
- 2. Check 15A fuse for blown.

OK or NG


>> GO TO 8. OK

NG >> Replace 15A fuse.

5.CHECK THROTTLE CONTROL MOTOR RELAY INPUT SIGNAL CIRCUIT-I

Check voltage between ECM terminal 3 and ground under the following conditions with CONSULT-III or tester.

Ignition switch	Voltage
OFF	Approximately 0V
ON	Battery voltage (11 - 14V)

OK or NG

OK >> GO TO 8.

NG >> GO TO 6.

6.CHECK THROTTLE CONTROL MOTOR RELAY INPUT SIGNAL CIRCUIT-II

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Disconnect IPDM E/R harness connector E8.
- 4. Check continuity between ECM terminal 3 and IPDM E/R terminal 42. Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8.

NG >> GO TO 7.

.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E12, F3
- Harness for open or short between ECM and IPDM E/R

>> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

OK or NG

OK >> Replace IPDM E/R. Refer to PG-19.

NG >> Repair or replace harness or connectors.

M

N

Р

2008 M35/M45

DTC P2101 ELECTRIC THROTTLE CONTROL FUNCTION

< SERVICE INFORMATION >

[VQ35DE]

DTC P2101 ELECTRIC THROTTLE CONTROL FUNCTION

Description INFOID:000000002954591

NOTE:

If DTC P2101 is displayed with DTC P2100 or P2119, first perform the trouble diagnosis for DTC P2100 or P2119. Refer to EC-534 or EC-548.

Electric throttle control actuator consists of throttle control motor, throttle position sensor, etc.

The throttle control motor is operated by the ECM and it opens and closes the throttle valve.

The current opening angle of the throttle valve is detected by the throttle position sensor and it provides feedback to the ECM to control the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

On Board Diagnosis Logic

INFOID:0000000002954592

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P2101 2101	Electric throttle control performance	Electric throttle control function does not operate properly.	Harness or connectors (Throttle control motor circuit is open or shorted) Electric throttle control actuator

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

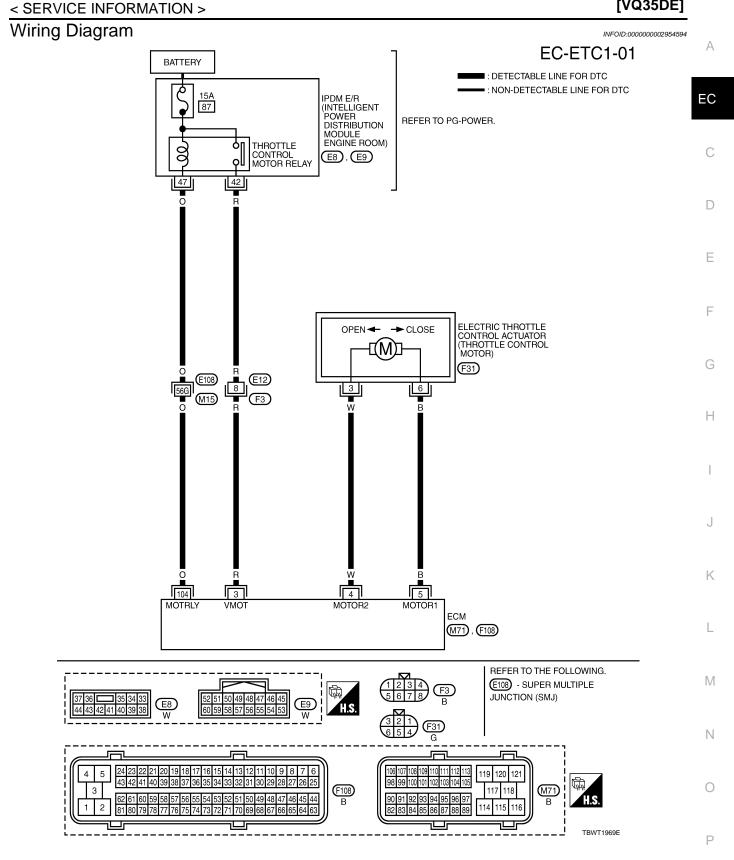
ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.

DTC Confirmation Procedure

INFOID:0000000002954593

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.


TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V when engine is running.

- 1. Turn ignition switch ON and wait at least 2 seconds.
- 2. Start engine and let it idle for 5 seconds.
- 3. Check DTC.
- 4. If DTC is detected, go to EC-540, "Diagnosis Procedure".

DTC P2101 ELECTRIC THROTTLE CONTROL FUNCTION

[VQ35DE]

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III. **CAUTION:**

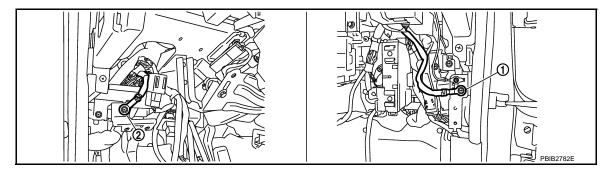
DTC P2101 ELECTRIC THROTTLE CONTROL FUNCTION

< SERVICE INFORMATION >

[VQ35DE]

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
3	R	Throttle control motor relay power supply	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)
4	w	Throttle control motor (Close)	[Ignition switch: ON] • Engine stopped • Selector lever: D • Accelerator pedal: Fully released	0 - 14V★ ≥ 5 V/Div 1 ms/Div 1 PBIB1104E
5	В	Throttle control motor (Open)	[Ignition switch: ON] • Engine stopped • Selector lever: D • Accelerator pedal: Fully depressed	0 - 14V★ >>> 5 V/Div 1 ms/Div 1 PBIB1105E
104 O	0	Throttle control motor relay	[Ignition switch: OFF]	BATTERY VOLTAGE (11 - 14V)
			[Ignition switch: ON]	0 - 1.0V


^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnosis Procedure

INFOID:0000000002954595

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws on the body. Refer to <u>EC-146</u>, "<u>Ground Inspection</u>".

1. Body ground M70

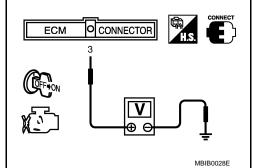
2. Body ground M16

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK THROTTLE CONTROL MOTOR RELAY INPUT SIGNAL CIRCUIT-I


DTC P2101 ELECTRIC THROTTLE CONTROL FUNCTION

< SERVICE INFORMATION >

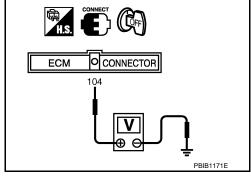
[VQ35DE]

Check voltage between ECM terminal 3 and ground under the following conditions with CONSULT-III or tester.

Ignition switch	Voltage
OFF	Approximately 0V
ON	Battery voltage (11 - 14V)

OK or NG

OK >> GO TO 10. NG >> GO TO 3.


${f 3.}$ CHECK THROTTLE CONTROL MOTOR RELAY POWER SUPPLY CIRCUIT-I

- 1. Turn ignition switch OFF.
- Check voltage between ECM terminal 104 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 7. NG >> GO TO 4.

4. CHECK THROTTLE CONTROL MOTOR RELAY POWER SUPPLY CIRCUIT-II

- 1. Disconnect ECM harness connector.
- Disconnect IPDM E/R harness connector E9.
- Check harness continuity between ECM terminal 104 and IPDM E/R terminal 47. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- Harness for open or short between ECM and IPDM E/R

>> Repair open circuit or short to ground or short to power in harness or connectors.

6.CHECK FUSE

- 1. Disconnect 15A fuse.
- 2. Check 15A fuse for blown.

OK or NG

OK >> GO TO 9.

Revision: 2009 February

NG >> Replace 15A fuse.

7. CHECK THROTTLE CONTROL MOTOR RELAY INPUT SIGNAL CIRCUIT-II

- Disconnect ECM harness connector.
- Disconnect IPDM E/R harness connector E8.
- Check harness continuity between ECM terminal 3 and IPDM E/R terminal 42. Refer to Wiring Diagram.

MBIB0028E

G

Α

EC

D

Е

F

. .

ı

M

Ν

0

Р

2008 M35/M45

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9.

NG >> GO TO 8.

8. DETECT MALFUNCTIONING PART

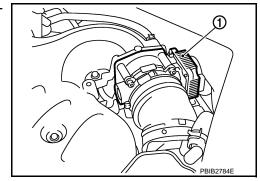
Check the following.

- Harness connectors E12, F3
- Harness for open or short between ECM and IPDM E/R
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

OK or NG


OK >> Replace IPDM E/R. Refer to PG-19.

NG >> Repair or replace harness or connectors.

10.check throttle control motor output signal circuit for open or short

- Disconnect electric throttle control actuator (1) harness connector.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between the following terminals. Refer to Wiring Diagram.

Electric throttle control actuator terminal	ECM terminal	Continuity
3	5	Should not exist
	4	Should exist
6	5	Should exist
	4	Should not exist

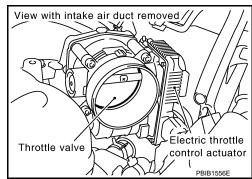
4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 11.

NG >> Repair or replace.

11. CHECK ELECTRIC THROTTLE CONTROL ACTUATOR VISUALLY


- 1. Remove the intake air duct.
- 2. Check if foreign matter is caught between the throttle valve and the housing.

OK or NG

OK >> GO TO 12.

NG >> Remove th

>> Remove the foreign matter and clean the electric throttle control actuator inside.

12. CHECK THROTTLE CONTROL MOTOR

Refer to EC-543, "Component Inspection".

OK or NG

OK >> GO TO 13.

Revision: 2009 February **EC-542** 2008 M35/M45

OK or NG

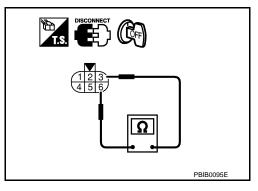
OK >> GO TO 14.

NG >> Repair or replace harness or connectors.

14. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-82, "Throttle Valve Closed Position Learning".
- Perform EC-82, "Idle Air Volume Learning".

>> INSPECTION END


Component Inspection

THROTTLE CONTROL MOTOR

- 1. Disconnect electric throttle control actuator harness connector.
- 2. Check resistance between terminals 3 and 6.

Resistance: Approximately 1 - 15 Ω [at 25 °C (77°F)]

- 3. If NG, replace electric throttle control actuator and go to next step.
- 4. Perform EC-82, "Throttle Valve Closed Position Learning".
- 5. Perform EC-82, "Idle Air Volume Learning".

INFOID:0000000002954597

INFOID:0000000002954596

Removal and Installation

ELECTRIC THROTTLE CONTROL ACTUATOR Refer to EM-20.

K

Ν

Α

EC

D

Е

F

Н

Revision: 2009 February

EC-543

2008 M35/M45

DTC P2118 THROTTLE CONTROL MOTOR

< SERVICE INFORMATION >

[VQ35DE]

DTC P2118 THROTTLE CONTROL MOTOR

Component Description

INFOID:0000000002954598

The throttle control motor is operated by the ECM and it opens and closes the throttle valve.

The current opening angle of the throttle valve is detected by the throttle position sensor and it provides feedback to the ECM to control the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

On Board Diagnosis Logic

INFOID:0000000002954599

This self-diagnosis has the one trip detection logic.

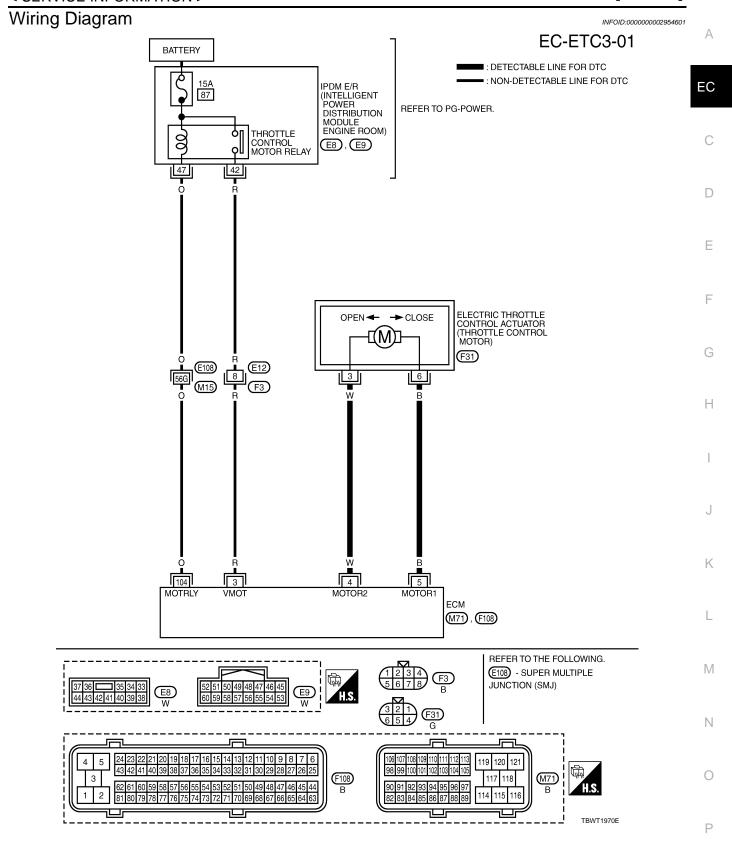
DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P2118 2118	Throttle control motor circuit short	ECM detects short in both circuits between ECM and throttle control motor.	Harness or connectors (Throttle control motor circuit is shorted.) Electric throttle control actuator (Throttle control motor)

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.


DTC Confirmation Procedure

INFOID:0000000002954600

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

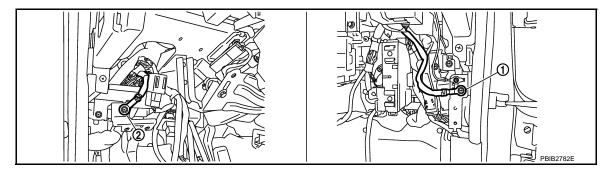
- 1. Turn ignition switch ON and wait at least 2 seconds.
- 2. Start engine and let it idle for 5 seconds.
- 3. Check DTC.
- 4. If DTC is detected, go to EC-546, "Diagnosis Procedure".

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
3	R	Throttle control motor relay power supply	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)
4	w	Throttle control motor (Close)	[Ignition switch: ON] • Engine stopped • Selector lever: D • Accelerator pedal: Fully released	0 - 14V★ ≥ 5 V/Div 1 ms/Div 1 PBIB1104E
5	В	Throttle control motor (Open)	[Ignition switch: ON] • Engine stopped • Selector lever: D • Accelerator pedal: Fully depressed	0 - 14V★ → 5 V/Div 1 ms/Div 1 PBIB1105E
104	0	Throttle control motor relay	[Ignition switch: OFF]	BATTERY VOLTAGE (11 - 14V)
			[Ignition switch: ON]	0 - 1.0V


^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnosis Procedure

INFOID:0000000002954602

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws on the body. Refer to <u>EC-146</u>, "<u>Ground Inspection</u>".

1. Body ground M70

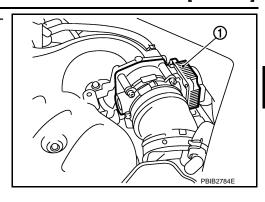
2. Body ground M16

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK THROTTLE CONTROL MOTOR OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT


DTC P2118 THROTTLE CONTROL MOTOR

< SERVICE INFORMATION >

[VQ35DE]

- Disconnect electric throttle control actuator (1) harness connec-
- Disconnect ECM harness connector.
- Check harness continuity between the following terminals. Refer to Wiring Diagram.

Electric throttle control actuator terminal	ECM terminal	Continuity
3	5	Should not exist
	4	Should exist
6	5	Should exist
	4	Should not exist

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 3.

NG >> Repair or replace.

3.CHECK THROTTLE CONTROL MOTOR

Refer to EC-547, "Component Inspection".

OK or NG

OK >> GO TO 4.

NG >> GO TO 5.

4. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

OK or NG

OK >> GO TO 5.

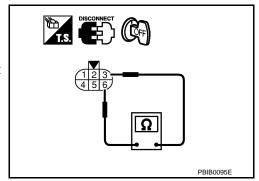
NG >> Repair or replace harness or connectors.

5. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- Replace the electric throttle control actuator.
- Perform EC-82, "Throttle Valve Closed Position Learning".
- Perform EC-82, "Idle Air Volume Learning".

>> INSPECTION END

Component Inspection


INFOID:0000000002954603

THROTTLE CONTROL MOTOR

- Disconnect electric throttle control actuator harness connector.
- Check resistance between terminals 3 and 6.

Resistance: Approximately 1 - 15 Ω [at 25 °C (77°F)]

- 3. If NG, replace electric throttle control actuator and go to next step.
- 4. Perform EC-82, "Throttle Valve Closed Position Learning".
- Perform EC-82, "Idle Air Volume Learning".

Removal and Installation

INFOID:0000000002954604

ELECTRIC THROTTLE CONTROL ACTUATOR Refer to EM-20.

EC-547 Revision: 2009 February 2008 M35/M45

Α

EC

D

Е

F

Н

K

Ν

M

DTC P2119 ELECTRIC THROTTLE CONTROL ACTUATOR

< SERVICE INFORMATION >

[VQ35DE]

DTC P2119 ELECTRIC THROTTLE CONTROL ACTUATOR

Component Description

INFOID:0000000002954605

Electric throttle control actuator consists of throttle control motor, throttle position sensor, etc.

The throttle control motor is operated by the ECM and it opens and closes the throttle valve.

The throttle position sensor detects the throttle valve position, and the opening and closing speed of the throttle valve and feeds the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

On Board Diagnosis Logic

INFOID:0000000002954606

This self-diagnosis has one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition		Possible cause
P2119	Electric throttle control	A)	Electric throttle control actuator does not function properly due to the return spring malfunction.	
2119	actuator	B)	Throttle valve opening angle in fail-safe mode is not in specified range.	Electric throttle control actuator
		C)	ECM detect the throttle valve is stuck open.	

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Detected items	Engine operating condition in fail-safe mode		
Malfunction A The ECM controls the electric throttle actuator by regulating the throttle opening around the idle po The engine speed will not rise more than 2,000 rpm.			
Malfunction B ECM controls the electric throttle control actuator by regulating the throttle opening to 20			
Malfunction C	While the vehicle is driving, it slows down gradually by fuel cut. After the vehicle stops, the engine stalls. The engine can restart in N or P position, and engine speed will not exceed 1,000 rpm or more.		

DTC Confirmation Procedure

INFOID:0000000002954603

NOTE:

- Perform PROCEDURE FOR MALFUNCTION A AND B first. If the DTC cannot be confirmed, perform PROCEDURE FOR MALFUNCTION C.
- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

PROCEDURE FOR MALFUNCTION A AND B

- Turn ignition switch ON and wait at least 1 second.
- Shift selector lever to D position and wait at least 3 seconds.
- 3. Shift selector lever to P position or Neutral position.
- Turn ignition switch OFF and wait at least 10 seconds.
- 5. Turn ignition switch ON and wait at least 1 second.
- 6. Shift selector lever to D position and wait at least 3 seconds.
- 7. Shift selector lever to P position or Neutral position.
- 8. Turn ignition switch OFF, wait at least 10 seconds, and then turn ON.
- 9. Check DTC.
- 10. If DTC is detected, go to EC-549, "Diagnosis Procedure".

PROCEDURE FOR MALFUNCTION C

- Turn ignition switch ON and wait at least 1 second.
- 2. Shift selector lever to D position and wait at least 3 seconds.

DTC P2119 ELECTRIC THROTTLE CONTROL ACTUATOR

< SERVICE INFORMATION >

- Shift selector lever to P position or Neutral position.
- 4. Start engine and let it idle for 3 seconds.
- 5. Check DTC.
- If DTC is detected, go to <u>EC-549</u>, "<u>Diagnosis Procedure</u>".

Diagnosis Procedure

INFOID:0000000002954608

[VQ35DE]

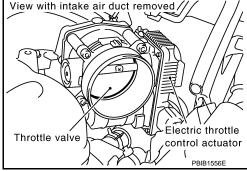
Α

EC

D

Е

F


1. Check electric throttle control actuator visually

- Remove the intake air duct.
- Check if foreign matter is caught between the throttle valve and the housing.

OK or NG

OK >> GO TO 2.

NG >> Remove the foreign matter and clean the electric throttle control actuator inside.

2.replace electric throttle control actuator

- Replace the electric throttle control actuator.
- Perform <u>EC-82</u>, "<u>Throttle Valve Closed Position Learning</u>". Perform <u>EC-82</u>, "<u>Idle Air Volume Learning</u>". 2.

>> INSPECTION END

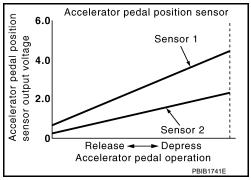
View with intake air duct removed /

Н

K

M

Ν


INFOID:0000000002954609

DTC P2122, P2123 APP SENSOR

Component Description

The accelerator pedal position sensor is installed on the upper end of the accelerator pedal assembly. The sensor detects the accelerator position and sends a signal to the ECM.

Accelerator pedal position sensor has two sensors. These sensors are a kind of potentiometers which transform the accelerator pedal position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the accelerator pedal and feed the voltage signals to the ECM. The ECM judges the current opening angle of the accelerator pedal from these signals and controls the throttle control motor based on these signals.

Idle position of the accelerator pedal is determined by the ECM receiving the signal from the accelerator pedal position sensor. The ECM uses this signal for the engine operation such as fuel cut.

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002954610

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
ACCEL SEN 1 • Ignition switch: ON		Accelerator pedal: Fully released	0.4 - 1.1V
ACCEL SEN 2* (Engine stopped)	(Engine stopped)	Accelerator pedal: Fully depressed	3.7 - 4.8V
CLSD THL POS	Ignition switch: ON	Accelerator pedal: Fully released	ON
CLSD THE POS	(Engine stopped)	Accelerator pedal: Slightly depressed	OFF

^{*:} Accelerator pedal position sensor 2 signal is converted by ECM internally. Thus, it differs from ECM terminal voltage.

On Board Diagnosis Logic

INFOID:0000000002954611

These self-diagnoses have the one trip detection logic.

If DTC P2122 or P2123 is displayed with DTC P0643, first perform the trouble diagnosis for DTC P0643. Refer to <u>EC-436</u>.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P2122 2122	Accelerator pedal position sensor 1 circuit low input	An excessively low voltage from the APP sensor 1 is sent to ECM.	Harness or connectors (APP sensor 1 circuit is open or shorted.)
P2123 2123	Accelerator pedal position sensor 1 circuit high input	An excessively high voltage from the APP sensor 1 is sent to ECM.	Accelerator pedal position sensor (APP sensor 1)

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

DTC Confirmation Procedure

INFOID:0000000002954612

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

Revision: 2009 February **EC-550** 2008 M35/M45

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

- 1. Start engine and let it idle for 1 second.
- 2. Check DTC.
- 3. If DTC is detected, go to EC-552, "Diagnosis Procedure".

Wiring Diagram

INFOID:0000000002954613

EC-APPS1-01

■ : DETECTABLE LINE FOR DTC

TOR E

F

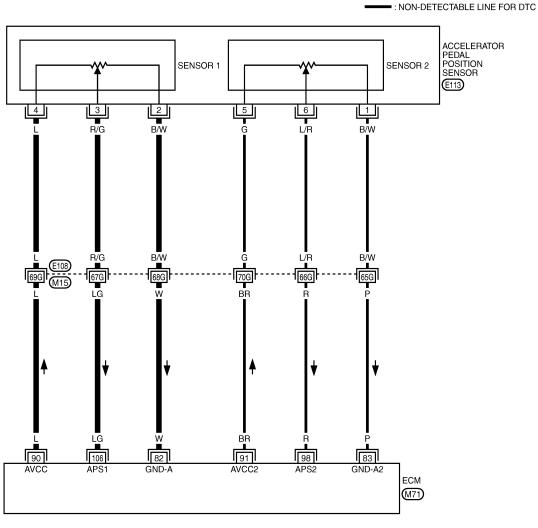
Α

EC

D

Н

ı


Κ

L

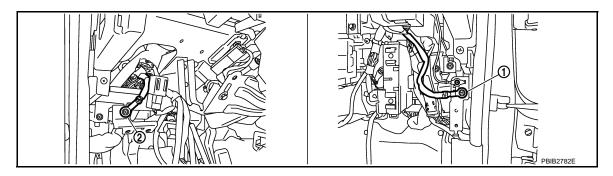
M

Ν

0

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
82	W	Sensor ground (APP sensor 1)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
83	Р	Sensor ground (APP sensor 2)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
90	L	Sensor power supply (APP sensor 1)	[Ignition switch: ON]	Approximately 5V
91	BR	Sensor power supply (APP sensor 2)	[Ignition switch: ON]	Approximately 5V
0.0		Accelerator pedal position	[Ignition switch: ON] • Engine stopped • Accelerator pedal: Fully released	0.20 - 0.55V
90	98 R Accelerator pedar position sensor 2		[Ignition switch: ON] • Engine stopped • Accelerator pedal: Fully depressed	1.85 - 2.40V
106 LG	Accelerator pedal position sensor 1	[Ignition switch: ON] • Engine stopped • Accelerator pedal: Fully released	0.4 - 1.1V	
		[Ignition switch: ON] • Engine stopped • Accelerator pedal: Fully depressed	3.7 - 4.8V	

Diagnosis Procedure

INFOID:0000000002954614

1. CHECK GROUND CONNECTIONS

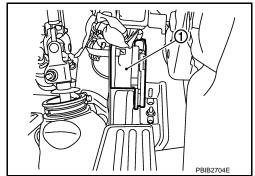
- 1. Turn ignition switch OFF.
- Loosen and retighten two ground screws on the body. Refer to <u>EC-146</u>, "Ground Inspection".

- 1. Body ground M70
- 2. Body ground M16

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

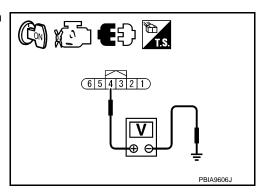

2. CHECK APP SENSOR 1 POWER SUPPLY CIRCUIT

DTC P2122, P2123 APP SENSOR

< SERVICE INFORMATION >

[VQ35DE]

- Disconnect accelerator pedal position (APP) sensor (1) harness connector.
- 2. Turn ignition switch ON.



Check voltage between APP sensor terminal 4 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- Harness for open or short between ECM and accelerator pedal position sensor

>> Repair open circuit or short to ground or short to power in harness or connectors.

f 4.CHECK APP SENSOR 1 GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- Disconnect ECM harness connector. 2.
- Check harness continuity between APP sensor terminal 2 and ECM terminal 82. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- Harness for open or short between ECM and accelerator pedal position sensor

>> Repair open circuit or short to ground or short to power in harness or connectors.

$oldsymbol{6}$.CHECK APP SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Check harness continuity between ECM terminal 106 and APP sensor terminal 3. Refer to Wiring Diagram.

Continuity should exist.

Also check harness for short to ground and short to power.

OK or NG

EC-553 Revision: 2009 February 2008 M35/M45

EC

Α

D

Е

F

< SERVICE INFORMATION >

OK >> GO TO 8. NG >> GO TO 7.

7.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- Harness for open or short between ECM and accelerator pedal position sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

8.CHECK APP SENSOR

Refer to EC-554, "Component Inspection".

OK or NG

OK >> GO TO 10. NG >> GO TO 9.

9. REPLACE ACCELERATOR PEDAL ASSEMBLY

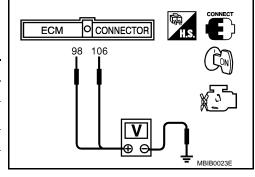
- Replace accelerator pedal assembly.
- Perform <u>EC-82</u>, "Accelerator Pedal Released Position Learning". Perform <u>EC-82</u>, "Throttle Valve Closed Position Learning".
- Perform EC-82, "Idle Air Volume Learning".

>> INSPECTION END

10. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

>> INSPECTION END


Component Inspection

INFOID:0000000002954615

ACCELERATOR PEDAL POSITION SENSOR

- 1. Reconnect all harness connectors disconnected.
- Turn ignition switch ON.
- 3. Check voltage between ECM terminals 106 (APP sensor 1 signal), 98 (APP sensor 2 signal) and ground under the following conditions.

Terminal	Accelerator pedal	Voltage
106	Fully released	0.4 - 1.1V
(Accelerator pedal position sensor 1)	Fully depressed	3.7 - 4.8V
98	Fully released	0.20 - 0.55V
(Accelerator pedal position sensor 2)	Fully depressed	1.85 - 2.40V

- 4. If NG, replace accelerator pedal assembly and go to next step.
- 5. Perform EC-82, "Accelerator Pedal Released Position Learning".
- 6. Perform EC-82, "Throttle Valve Closed Position Learning".
- 7. Perform EC-82, "Idle Air Volume Learning".

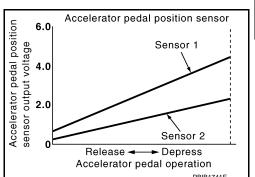
Removal and Installation

INFOID:0000000002954616

ACCELERATOR PEDAL

Refer to ACC-3.

INFOID:0000000002954617


DTC P2127, P2128 APP SENSOR

Component Description

The accelerator pedal position sensor is installed on the upper end of the accelerator pedal assembly. The sensor detects the accelerator position and sends a signal to the ECM.

Accelerator pedal position sensor has two sensors. These sensors are a kind of potentiometers which transform the accelerator pedal position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the accelerator pedal and feed the voltage signals to the ECM. The ECM judges the current opening angle of the accelerator pedal from these signals and controls the throttle control motor based on these

Idle position of the accelerator pedal is determined by the ECM receiving the signal from the accelerator pedal position sensor. The ECM uses this signal for the engine operation such as fuel cut.

CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
ACCEL SEN 1	Ignition switch: ON	Accelerator pedal: Fully released	0.4 - 1.1V
ACCEL SEN 2*	(Engine stopped)	Accelerator pedal: Fully depressed	3.7 - 4.8V
CLSD THL POS	Ignition switch: ON	Accelerator pedal: Fully released	ON
CLOD THE POS	(Engine stopped)	Accelerator pedal: Slightly depressed	OFF

^{*:} Accelerator pedal position sensor 2 signal is converted by ECM internally. Thus, it differs from ECM terminal voltage.

On Board Diagnosis Logic

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P2127 2127	Accelerator pedal position sensor 2 circuit low input	An excessively low voltage from the APP sensor 2 is sent to ECM.	Harness or connectors (APP sensor 2 circuit is open or shorted (TP sensor circuit is shorted.)
P2128 2128	Accelerator pedal position sensor 2 circuit high input	An excessively high voltage from the APP sensor 2 is sent to ECM.	Accelerator pedal position sensor (APP sensor 2) Electric throttle control actuator (TP sensor 1 and 2)

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

DTC Confirmation Procedure

INFOID:0000000002954620

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

EC-555 2008 M35/M45 Revision: 2009 February

EC

Α

D

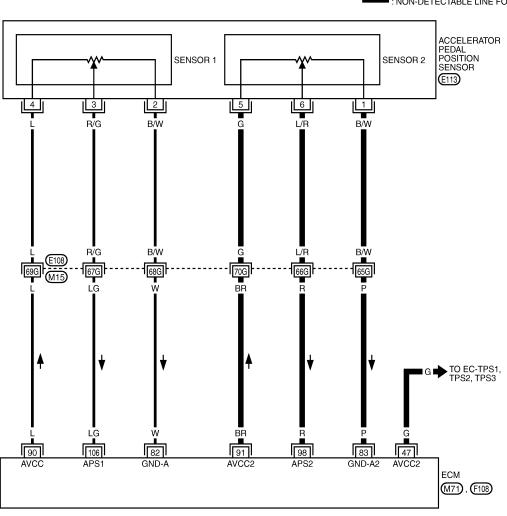
INFOID:0000000002954618

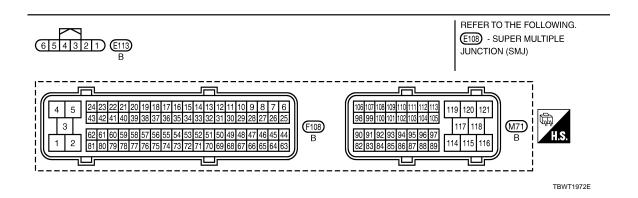
INFOID:0000000002954619

Н

M

N


- Start engine and let it idle for 1 second.
- 2. Check DTC.
- 3. If DTC is detected, go to EC-557, "Diagnosis Procedure".


Wiring Diagram

INFOID:0000000002954621

EC-APPS2-01

: DETECTABLE LINE FOR DTC
: NON-DETECTABLE LINE FOR DTC

Α

D

Е

F

Н

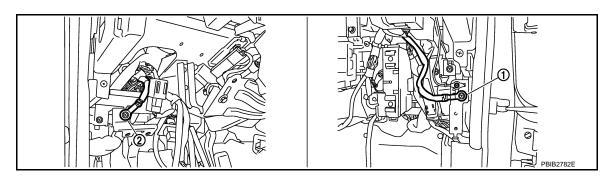
Ν

Р

INFOID:0000000002954622

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
47	G	Sensor power supply (Throt- tle position sensor)	[Ignition switch: ON]	Approximately 5V
82	W	Sensor ground (APP sensor 1)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
83	Р	Sensor ground (APP sensor 2)	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
90	L	Sensor power supply (APP sensor 1)	[Ignition switch: ON]	Approximately 5V
91	BR	Sensor power supply (APP sensor 2)	[Ignition switch: ON]	Approximately 5V
98 R	D	Accelerator pedal position	[Ignition switch: ON]Engine stoppedAccelerator pedal: Fully released	0.20 - 0.55V
	sensor 2	[Ignition switch: ON] • Engine stopped • Accelerator pedal: Fully depressed	1.85 - 2.40V	
106 LG	Accelerator pedal position	[Ignition switch: ON] • Engine stopped • Accelerator pedal: Fully released	0.4 - 1.1V	
106 LG		sensor 1	[Ignition switch: ON]Engine stoppedAccelerator pedal: Fully depressed	3.7 - 4.8V

Diagnosis Procedure

1. CHECK GROUND CONNECTIONS

1. Turn ignition switch OFF.

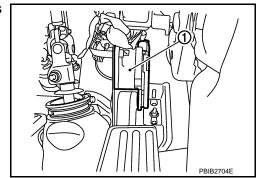
2. Loosen and retighten two ground screws on the body. Refer to EC-146, "Ground Inspection".

1. Body ground M70

2. Body ground M16

OK or NG

OK >> GO TO 2.

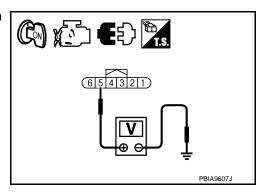

NG >> Repair or replace ground connections.

2.CHECK APP SENSOR 2 POWER SUPPLY CIRCUIT-I

Revision: 2009 February **EC-557** 2008 M35/M45

< SERVICE INFORMATION >

- Disconnect accelerator pedal position (APP) sensor (1) harness connector.
- 2. Turn ignition switch ON.



3. Check voltage between APP sensor terminal 5 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 8. NG >> GO TO 3.

3. CHECK APP SENSOR 2 POWER SUPPLY CIRCUIT-II

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between APP sensor terminal 5 and ECM terminal 91. Refer to Wiring Diagram.

Continuity should exist.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- Harness for open or short between ECM and accelerator pedal position sensor

>> Repair open circuit.

5. CHECK APP SENSOR 2 POWER SUPPLY CIRCUIT-III

Check harness for short to power and short to ground, between the following terminals.

ECM terminal	Sensor terminal	Reference Wiring Diagram
91	APP sensor terminal 5	<u>EC-556</u>
47	Electric throttle control actuator terminal 1	EC-562

OK or NG

OK >> GO TO 6

NG >> Repair short to ground or short to power in harness or connectors.

6. CHECK THROTTLE POSITION SENSOR

Refer to EC-565, "Component Inspection".

OK or NG

OK >> GO TO 14.

Revision: 2009 February **EC-558** 2008 M35/M45

DTC P2127, P2128 APP SENSOR

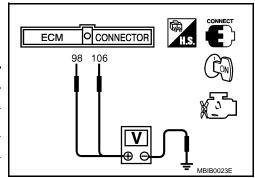
< SERVICE INFORMATION >	[VQ35DE]
NG >> GO TO 7.	
7. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR	
 Replace the electric throttle control actuator. Perform <u>EC-82</u>, "<u>Throttle Valve Closed Position Learning</u>". Perform <u>EC-82</u>, "<u>Idle Air Volume Learning</u>". 	F
>> INSPECTION END 8. CHECK APP SENSOR 2 GROUND CIRCUIT FOR OPEN AND SHORT	
 Turn ignition switch OFF. Disconnect ECM harness connector. Check harness continuity between APP sensor terminal 1 and ECM terminal 83. Refer to Wiring Diagram. 	
Continuity should exist.	
4. Also check harness for short to ground and short to power.	
OK or NG	
OK >> GO TO 10. NG >> GO TO 9.	
DETECT MALFUNCTIONING PART	
Check the following.	
Harness connectors E108, M15 Harness for open or short between ECM and accelerator pedal position sensor	
>> Repair open circuit or short to ground or short to power in harness or connectors	
10. CHECK APP SENSOR 2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT	
 Check harness continuity between ECM terminal 98 and APP sensor terminal 6. Refer to Wiring Diagram. 	
Continuity should exist.	
2. Also check harness for short to ground and short to power.	
DK or NG	
OK >> GO TO 12. NG >> GO TO 11.	
1.DETECT MALFUNCTIONING PART	
Check the following.	
Harness connectors E108, M15	
Harness for open or short between ECM and accelerator pedal position sensor	
>> Repair open circuit or short to ground or short to power in harness or connectors	
2.CHECK APP SENSOR	
Refer to EC-560, "Component Inspection".	
OK or NG	
OK >> GO TO 14. NG >> GO TO 13.	
13. REPLACE ACCELERATOR PEDAL ASSEMBLY	
Replace accelerator pedal assembly.	
 Replace accelerator pedal assembly. Perform <u>EC-82</u>. "Accelerator Pedal Released Position Learning". Perform <u>EC-82</u>. "Throttle Valve Closed Position Learning". Perform <u>EC-82</u>. "Idle Air Volume Learning". 	
T. I SHOTH LO 02, Idio / III Volume Learning .	

>> INSPECTION END

14. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

>> INSPECTION END


Component Inspection

INFOID:0000000002954623

ACCELERATOR PEDAL POSITION SENSOR

- Reconnect all harness connectors disconnected.
- 2. Turn ignition switch ON.
- 3. Check voltage between ECM terminals 106 (APP sensor 1 signal), 98 (APP sensor 2 signal) and ground under the following conditions.

Terminal	Accelerator pedal	Voltage
106	Fully released	0.4 - 1.1V
(Accelerator pedal position sensor 1)	Fully depressed	3.7 - 4.8V
98	Fully released	0.20 - 0.55V
(Accelerator pedal position sensor 2)	Fully depressed	1.85 - 2.40V

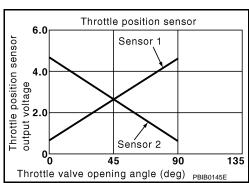
- 4. If NG, replace accelerator pedal assembly and go to next step.
- 5. Perform EC-82, "Accelerator Pedal Released Position Learning".
- 6. Perform EC-82, "Throttle Valve Closed Position Learning".
- 7. Perform EC-82, "Idle Air Volume Learning".

Removal and Installation

INFOID:0000000002954624

ACCELERATOR PEDAL

Refer to ACC-3.


INFOID:0000000002954625

DTC P2135 TP SENSOR

Component Description

Electric throttle control actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM

CONDITION

SPECIFICATION

THRTL SEN 1
THRTL SEN 2*

Ignition switch: ON (Engine stopped)
Selector lever: D

Accelerator pedal: Fully released
Accelerator pedal: Fully depressed
Less than 4.75V

On Board Diagnosis Logic

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P2135 2135	Throttle position sensor circuit range/performance	Rationally incorrect voltage is sent to ECM compared with the signals from TP sensor 1 and TP sensor 2.	Harness or connector (TP sensor 1 and 2 circuit is open or shorted.) (APP sensor 2 circuit is shorted.) Electric throttle control actuator (TP sensor 1 and 2) Accelerator pedal position sensor (APP sensor 2)

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operation condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

DTC Confirmation Procedure

INFOID:0000000002954628

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

- 1. Start engine and let it idle for 1 second.
- 2. Check DTC.
- 3. If DTC is detected, go to EC-563, "Diagnosis Procedure".

EC

Α

Е

INFOID:0000000002954626

Н

INFOID:00000000002954627

K

I\ /I

Ν

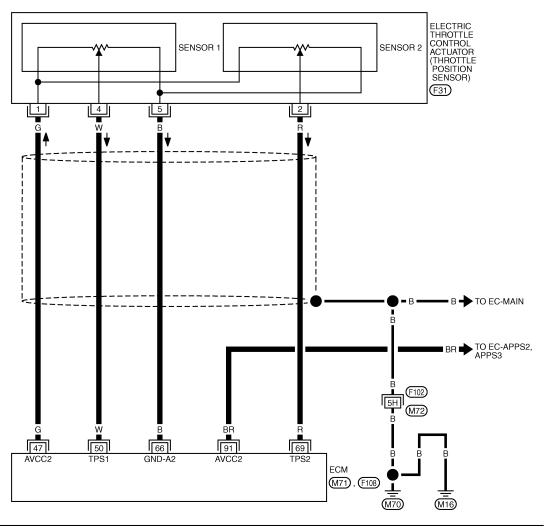
0

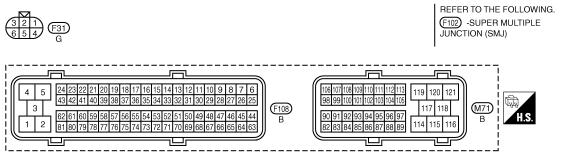
P

Р

2008 M35/M45

Revision: 2009 February


^{*:} Throttle position sensor 2 signal is converted by ECM internally. Thus, it differs from ECM terminal voltage signal.


Wiring Diagram

INFOID:0000000002954629

EC-TPS3-01

: DETECTABLE LINE FOR DTC
: NON-DETECTABLE LINE FOR DTC

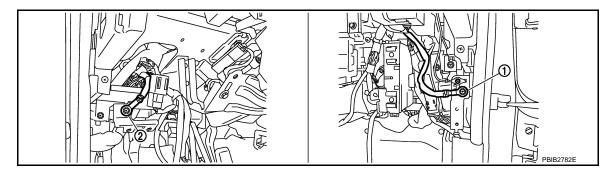
TBWT1483E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
47	G	Sensor power supply (Throt- tle position sensor)	[Ignition switch: ON]	Approximately 5V	
F0	50 W Throttle position sensor 1		[Ignition switch: ON]Engine stoppedSelector lever: DAccelerator pedal: Fully released	More than 0.36V	
50			[Ignition switch: ON]Engine stoppedSelector lever: DAccelerator pedal: Fully depressed	Less than 4.75V	
66	В	Sensor ground (Throttle position sensor)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V	
69	D	R Throttle position sensor 2	R Throttle position sensor 2 Continuous c	Engine stoppedSelector lever: D	Less than 4.75V
09	K			Engine stoppedSelector lever: D	More than 0.36V
91	BR	Sensor power supply (APP sensor 2)	[Ignition switch: ON]	Approximately 5V	


Diagnosis Procedure

INFOID:0000000002954630

1. CHECK GROUND CONNECTIONS

1. Turn ignition switch OFF.

Loosen and retighten two ground screws on the body. Refer to EC-146, "Ground Inspection".

1. Body ground M70

2. Body ground M16

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK THROTTLE POSITION SENSOR POWER SUPPLY CIRCUIT-I

EC-563 Revision: 2009 February 2008 M35/M45

EC

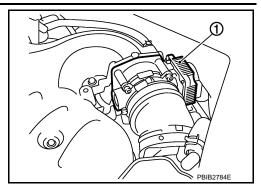
Α

D

Е

F

Н

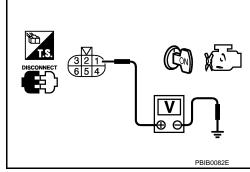

K

Ν

0

< SERVICE INFORMATION >

- Disconnect electric throttle control actuator (1) harness connector.
- 2. Turn ignition switch ON.



 Check voltage between electric throttle control actuator terminal 1 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 7. NG >> GO TO 3.

3. CHECK THROTTLE POSITION SENSOR POWER SUPPLY CIRCUIT-II

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between electric throttle control actuator terminal 1 and ECM terminal 47. Refer to Wiring Diagram.

Continuity should exist.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit.

4. CHECK THROTTLE POSITION SENSOR POWER SUPPLY CIRCUIT-III

Check harness for short to power and short to ground, between the following terminals.

ECM terminal	Sensor terminal	Reference Wiring Diagram
47	Electric throttle control actuator terminal 1	<u>EC-562</u>
91	APP sensor terminal 5	EC-556

OK or NG

OK >> GO TO 5

NG >> Repair short to ground or short to power in harness or connectors.

5. CHECK APP SENSOR

Refer to EC-560, "Component Inspection".

OK or NG

OK >> GO TO 11. NG >> GO TO 6.

6. REPLACE ACCELERATOR PEDAL ASSEMBLY

- Replace accelerator pedal assembly.
- 2. Perform EC-82, "Accelerator Pedal Released Position Learning".
- 3. Perform EC-82, "Throttle Valve Closed Position Learning".
- 4. Perform EC-82, "Idle Air Volume Learning".

>> INSPECTION END 7. CHECK THROTTLE POSITION SENSOR GROUND CIRCUIT FOR OPEN AND SHORT	А
 Turn ignition switch OFF. Disconnect ECM harness connector. Check harness continuity between electric throttle control actuator terminal 5 and ECM terminal 66. 	EC
Refer to Wiring Diagram. Continuity should exist.	С
 Also check harness for short to ground and short to power. OK or NG 	D
OK >> GO TO 8. NG >> Repair open circuit or short to ground or short to power in harness or connectors. 8.CHECK THROTTLE POSITION SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT	Е
 Check harness continuity between the following; ECM terminal 50 and electric throttle control actuator terminal 4, ECM terminal 69 and electric throttle control actuator terminal 2. Refer to Wiring Diagram. 	F
Continuity should exist.	G
 Also check harness for short to ground and short to power. OK or NG OK >> GO TO 9. 	Н
NG \Rightarrow Repair open circuit or short to ground or short to power in harness or connectors. 9.CHECK THROTTLE POSITION SENSOR	ı
Refer to EC-565, "Component Inspection". OK or NG OK >> GO TO 11.	J
NG \rightarrow GO TO 10. 10. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR	K
 Replace the electric throttle control actuator. Perform <u>EC-82</u>, "<u>Throttle Valve Closed Position Learning</u>". Perform <u>EC-82</u>, "<u>Idle Air Volume Learning</u>". 	L
>> INSPECTION END 11.CHECK INTERMITTENT INCIDENT Refer to EC-140.	M
>> INSPECTION END	Ν
Component Inspection	1 0
 THROTTLE POSITION SENSOR Reconnect all harness connectors disconnected. Perform <u>EC-82</u>, "<u>Throttle Valve Closed Position Learning</u>". Turn ignition switch ON. 	Р
4. Set selector lever to D position.	

DTC P2135 TP SENSOR

< SERVICE INFORMATION >

[VQ35DE]

Check voltage between ECM terminals 50 (TP sensor 1 signal),
 69 (TP sensor 2 signal) and ground under the following conditions.

Terminal	Accelerator pedal	Voltage
50	Fully released	More than 0.36V
(Throttle position sensor 1)	Fully depressed	Less than 4.75V
69	Fully released	Less than 4.75V
(Throttle position sensor 2)	Fully depressed	More than 0.36V

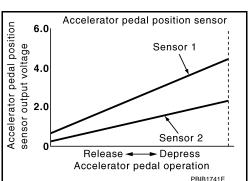
- If NG, replace electric throttle control actuator and go to the next step.
- 7. Perform EC-82, "Throttle Valve Closed Position Learning".
- 8. Perform EC-82, "Idle Air Volume Learning".

Removal and Installation

INFOID:0000000002954632

ELECTRIC THROTTLE CONTROL ACTUATOR Refer to $\underline{\mathsf{EM-}20}$.

INFOID:0000000002954633


DTC P2138 APP SENSOR

Component Description

The accelerator pedal position sensor is installed on the upper end of the accelerator pedal assembly. The sensor detects the accelerator position and sends a signal to the ECM.

Accelerator pedal position sensor has two sensors. These sensors are a kind of potentiometers which transform the accelerator pedal position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the accelerator pedal and feed the voltage signals to the ECM. The ECM judges the current opening angle of the accelerator pedal from these signals and controls the throttle control motor based on these signals.

Idle position of the accelerator pedal is determined by the ECM receiving the signal from the accelerator pedal position sensor. The ECM uses this signal for the engine operation such as fuel cut.

CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
ACCEL SEN 1	Ignition switch: ON	Accelerator pedal: Fully released	0.4 - 1.1V
ACCEL SEN 2*	(Engine stopped)	Accelerator pedal: Fully depressed	3.7 - 4.8V
CLSD THL POS	Ignition switch: ON	Accelerator pedal: Fully released	ON
CLSD THE FOS	(Engine stopped)	Accelerator pedal: Slightly depressed	OFF

^{*:} Accelerator pedal position sensor 2 signal is converted by ECM internally. Thus, it differs from ECM terminal voltage.

On Board Diagnosis Logic

This self-diagnosis has the one trip detection logic.

If DTC P2138 is displayed with DTC P0643, first perform the trouble diagnosis for DTC P0643. Refer to EC-436.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P2138 2138	Accelerator pedal position sensor circuit range/performance	Rationally incorrect voltage is sent to ECM compared with the signals from APP sensor 1 and APP sensor 2.	Harness or connector (APP sensor 1 and 2 circuit is open or shorted.) (TP sensor circuit is shorted.) Accelerator pedal position sensor (APP sensor 1 and 2) Electric throttle control actuator (TP sensor 1 and 2)

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10

The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

DTC Confirmation Procedure

INFOID:0000000002954636

NOTE:

EC-567 Revision: 2009 February 2008 M35/M45

EC

Α

Е

INFOID:0000000002954634

INFOID:0000000002954635

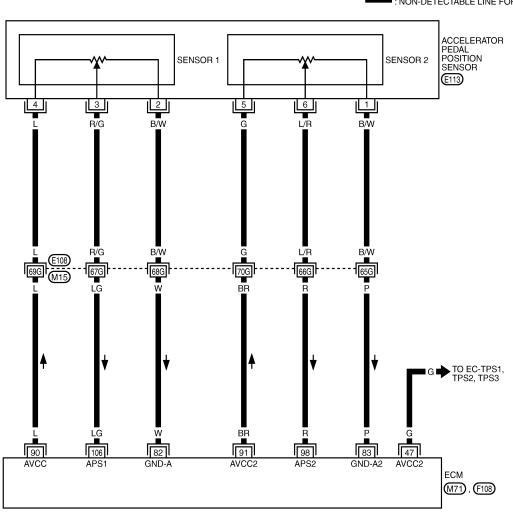
N

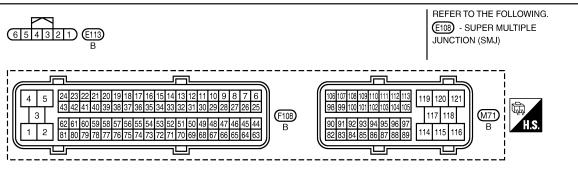
< SERVICE INFORMATION >

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.


- Start engine and let it idle for 1 second.
- 2. Check DTC.
- 3. If DTC is detected, go to EC-569, "Diagnosis Procedure".

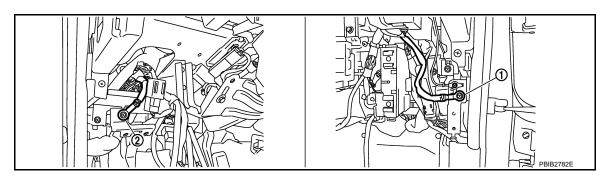

Wiring Diagram

INFOID:0000000002954637

: DETECTABLE LINE FOR DTC
: NON-DETECTABLE LINE FOR DTC

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
47	G	Sensor power supply (Throt- tle position sensor)	[Ignition switch: ON]	Approximately 5V
82	W	Sensor ground (APP sensor 1)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
83	Р	Sensor ground (APP sensor 2)	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
90	L	Sensor power supply (APP sensor 1)	[Ignition switch: ON]	Approximately 5V
91	BR	Sensor power supply (APP sensor 2)	[Ignition switch: ON]	Approximately 5V
98	R	Accelerator pedal position sensor 2	[Ignition switch: ON]Engine stoppedAccelerator pedal: Fully released	0.20 - 0.55V
			[Ignition switch: ON] • Engine stopped • Accelerator pedal: Fully depressed	1.85 - 2.40V
106	LG	Accelerator pedal position sensor 1	[Ignition switch: ON] • Engine stopped • Accelerator pedal: Fully released	0.4 - 1.1V
			[Ignition switch: ON] • Engine stopped • Accelerator pedal: Fully depressed	3.7 - 4.8V

Diagnosis Procedure

1. CHECK GROUND CONNECTIONS

Turn ignition switch OFF.

Loosen and retighten two ground screws on the body. Refer to EC-146, "Ground Inspection".

1. Body ground M70

2. Body ground M16

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

EC-569 Revision: 2009 February 2008 M35/M45

EC

Α

C

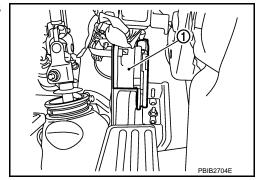
D

Е

F

Н

K

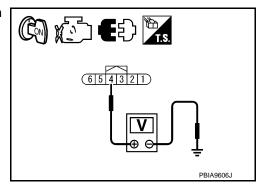

INFOID:0000000002954638

M

Ν

2.CHECK APP SENSOR 1 POWER SUPPLY CIRCUIT

- 1. Disconnect accelerator pedal position (APP) sensor (1) harness connector.
- 2. Turn ignition switch ON.



3. Check voltage between APP sensor terminal 4 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

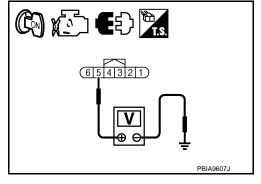
OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- Harness for open or short between ECM and accelerator pedal position sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.


4. CHECK APP SENSOR 2 POWER SUPPLY CIRCUIT-I

- 1. Turn ignition switch ON.
- Check voltage between APP sensor terminal 5 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 10. NG >> GO TO 5.

5. CHECK APP SENSOR 2 POWER SUPPLY CIRCUIT-II

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between APP sensor terminal 5 and ECM terminal 91. Refer to Wiring Diagram.

Continuity should exist.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

DTC P2138 APP SENSOR

[VQ35DE] < SERVICE INFORMATION > 6. DETECT MALFUNCTIONING PART Check the following. Harness connectors E108, M15 Harness for open or short between ECM and accelerator pedal position sensor EC >> Repair open circuit. 7 .CHECK APP SENSOR 2 POWER SUPPLY CIRCUIT-III Check harness for short to power and short to ground, between the following terminals. D ECM terminal Sensor terminal Reference Wiring Diagram 91 APP sensor terminal 5 EC-568 47 Electric throttle control actuator terminal 1 EC-562 Е OK or NG OK >> GO TO 8. NG >> Repair short to ground or short to power in harness or connectors. 8.CHECK THROTTLE POSITION SENSOR Refer to EC-565, "Component Inspection". OK or NG >> GO TO 16. OK NG >> GO TO 9. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR Replace the electric throttle control actuator. Perform EC-82, "Throttle Valve Closed Position Learning". 2. Perform EC-82, "Idle Air Volume Learning". >> INSPECTION END 10.check app sensor ground circuit for open and short Turn ignition switch OFF. 2. Disconnect ECM harness connector. 3. Check harness continuity between the following; APP sensor terminal 2 and ECM terminal 82, APP sensor terminal 1 and ECM terminal 83. Refer to Wiring Diagram. Continuity should exist. 4. Also check harness for short to ground and short to power. OK or NG N OK >> GO TO 12. NG >> GO TO 11. 11. DETECT MALFUNCTIONING PART Check the following. Harness connectors E108, M15 Harness for open or short between ECM and accelerator pedal position sensor Р >> Repair open circuit or short to ground or short to power in harness or connectors. 12.check app sensor input signal circuit for open and short Check harness continuity between the following; ECM terminal 106 and APP sensor terminal 3,

ECM terminal 98 and APP sensor terminal 6.

Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 14. NG >> GO TO 13.

13.detect malfunctioning part

Check the following.

- Harness connectors E108, M15
- Harness for open or short between ECM and accelerator pedal position sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

14.CHECK APP SENSOR

Refer to EC-572, "Component Inspection".

OK or NG

OK >> GO TO 16. NG >> GO TO 15.

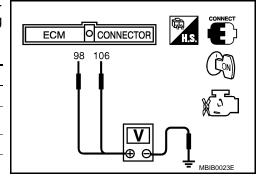
15. REPLACE ACCELERATOR PEDAL ASSEMBLY

- 1. Replace accelerator pedal assembly.
- Perform <u>EC-82</u>, "<u>Accelerator Pedal Released Position Learning</u>".
 Perform <u>EC-82</u>, "<u>Throttle Valve Closed Position Learning</u>".
- Perform <u>EC-82</u>, "Idle Air Volume Learning".

>> INSPECTION END

16. CHECK INTERMITTENT INCIDENT

Refer to EC-140.


>> INSPECTION END

Component Inspection

ACCELERATOR PEDAL POSITION SENSOR

- 1. Reconnect all harness connectors disconnected.
- Turn ignition switch ON.
- 3. Check voltage between ECM terminals 106 (APP sensor 1 signal), 98 (APP sensor 2 signal) and ground under the following conditions.

Terminal	Accelerator pedal	Voltage
106	Fully released	0.4 - 1.1V
(Accelerator pedal position sensor 1)	Fully depressed	3.7 - 4.8V
98	Fully released	0.20 - 0.55V
(Accelerator pedal position sensor 2)	Fully depressed	1.85 - 2.40V

INFOID:0000000002954639

- If NG, replace accelerator pedal assembly and go to next step.
- 5. Perform EC-82, "Accelerator Pedal Released Position Learning".
- Perform EC-82, "Throttle Valve Closed Position Learning".
- Perform EC-82, "Idle Air Volume Learning". 7.

DTC P2138 APP SENSOR

< SERVICE INFORMATION >

[VQ35DE]

INFOID:0000000002954640

ACCELERATOR PEDAL Refer to <u>ACC-3</u>.

Removal and Installation

EC

Α

С

D

Е

F

G

Н

1

J

Κ

L

M

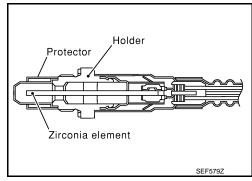
Ν

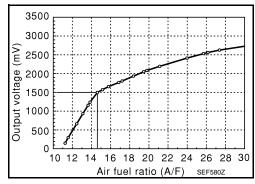
0

Ρ

DTC P2A00, P2A03 A/F SENSOR 1

Component Description


INFOID:0000000002954641


The air fuel ratio (A/F) sensor 1 is a planar dual-cell limit current sensor. The sensor element of the A/F sensor 1 is the combination of a Nernst concentration cell (sensor cell) with an oxygen-pump cell, which transports ions. It has a heater in the element.

The sensor is capable of precise measurement λ = 1, but also in the lean and rich range. Together with its control electronics, the sensor outputs a clear, continuous signal throughout a wide λ range (0.7 < λ < air).

The exhaust gas components diffuse through the diffusion gap at the electrode of the oxygen pump and Nernst concentration cell, where they are brought to thermodynamic balance.

An electronic circuit controls the pump current through the oxygen-pump cell so that the composition of the exhaust gas in the diffusion gap remains constant at λ = 1. Therefore, the A/F sensor 1 is able to indicate air/fuel ratio by this pumping of current. In addition, a heater is integrated in the sensor to ensure the required operating temperature of 700 - 800°C (1,292 - 1,472°F).

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002954642

Specification data are reference values.

MONITOR ITEM	CC	SPECIFICATION	
A/F SEN1 (B1) A/F SEN1 (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	Fluctuates around 1.5 V

On Board Diagnosis Logic

INFOID:0000000002954643

To judge the malfunction, the A/F signal computed by ECM from the A/F sensor 1 signal is monitored not to be shifted to LEAN side or RICH side.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible Cause
P2A00 2A00 (Bank 1) P2A03 2A03 (Bank 2)	Air fuel ratio (A/F) sensor 1 circuit range/performance	 The output voltage computed by ECM from the A/F sensor 1 signal is shifted to the lean side for a specified period. The A/F signal computed by ECM from the A/F sensor 1 signal is shifted to the rich side for a specified period. 	A/F sensor 1 A/F sensor 1 heater Fuel pressure Fuel injector Intake air leaks

DTC Confirmation Procedure

INFOID:0000000002954644

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

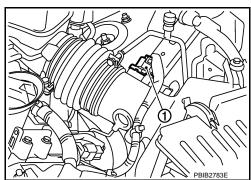
Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(II) WITH CONSULT-III

1. Start engine and warm it up to normal operating temperature.

DTC P2A00, P2A03 A/F SENSOR 1

< SERVICE INFORMATION >


[VQ35DE]

- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON and select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CON-SULT-III.
- 4. Clear the self-learning coefficient by touching "CLEAR".
- 5. Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and keep the engine speed between 3,500 and 4,000 rpm for 1 minute under no load.
- 7. Let engine idle for 1 minute.
- 8. Keep engine speed between 2,500 and 3,000 rpm for 20 minutes.
- Check 1st trip DTC.
- 10. If 1st trip DTC is detected, go to EC-579, "Diagnosis Procedure".

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 3. Disconnect mass air flow sensor (1) harness connector.
- 4. Start engine and let it idle for at least 5 seconds.
- Stop engine and reconnect mass air flow sensor harness connector.
- Select Service \$03 with GST and make sure that DTC P0102 is detected.
- 7. Select Service \$04 with GST and erase the DTC P0102.
- 8. Start engine and keep the engine speed between 3,500 and 4,000 rpm for 1 minute under no load.
- 9. Let engine idle for 1 minute.
- 10. Keep engine speed between 2,500 and 3,000 rpm for 20 minutes.
- 11. Select Service \$07 with GST.

 If 1st trip DTC is detected, go to <u>EC-579</u>, "<u>Diagnosis Procedure</u>".

EC

D

Е

F

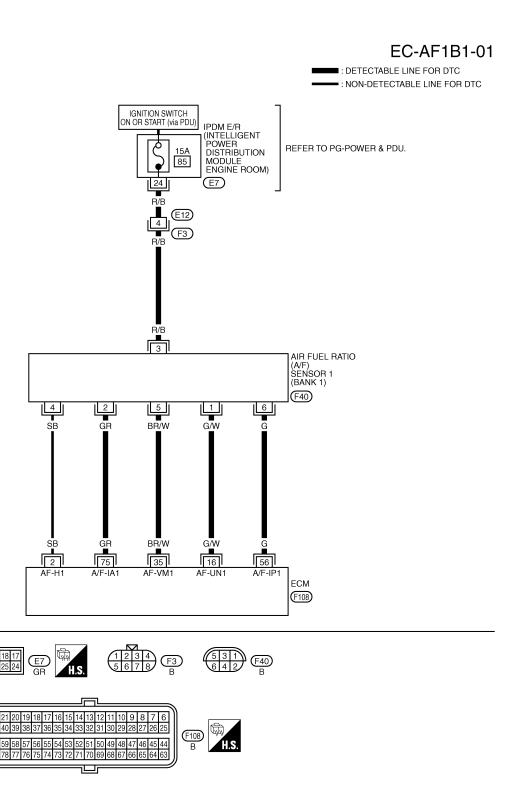
G

Н

K

L

M


Ν

0

< SERVICE INFORMATION >
Wiring Diagram

INFOID:0000000002954645

BANK 1

TBWT0979E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III. CAUTION:

3

DTC P2A00, P2A03 A/F SENSOR 1

< SERVICE INFORMATION >

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
2	SB	A/F sensor 1 heater (bank 1)	[Engine is running]Warm-up conditionIdle speed	Approximately 5V★ → 10.0V/Div 10 ms/Div T PBIB1584E
16	G/W			Approximately 3.1V
35	BR/W	A/F sensor 1 (bank 1)	[Engine is running]Warm-up conditionIdle speed	Approximately 2.6V
56	G			Approximately 2.3V
75	GR			Approximately 2.3V

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

[VQ35DE]

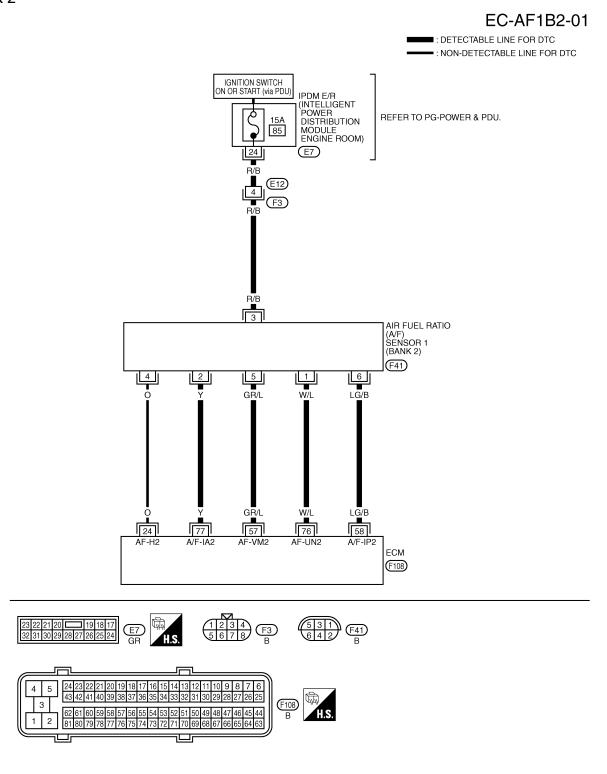
Α

EC

D

Е

F


G

Н

Ν

0

BANK 2

TBWT0980E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

INFOID:00000000002954646

Α

EC

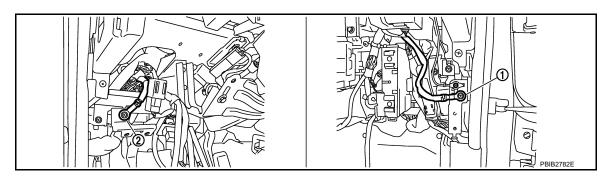
D

Е

Н

M

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
24	0	A/F sensor 1 heater (bank 2)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V★ 3 10.0V/Div 10 ms/Div T PBIB1584E
57	GR/L		[Engine is running] • Warm-up condition • Idle speed	Approximately 2.6V
58	LG/B	1/E concer 1 (bank 2)		Approximately 2.3V
76	W/L	A/F sensor 1 (bank 2)		Approximately 3.1V
77	Υ			Approximately 2.3V


^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnosis Procedure

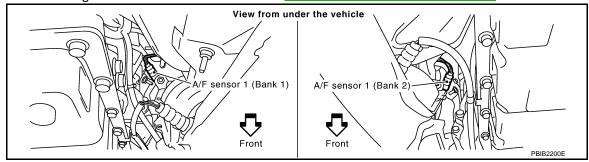
1. CHECK GROUND CONNECTIONS

Turn ignition switch OFF.

Loosen and retighten two ground screws on the body. Refer to EC-146, "Ground Inspection".

1. Body ground M70

2. Body ground M16


OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. RETIGHTEN A/F SENSOR 1

1. Loosen and retighten the A/F sensor 1. Refer to EM-27, "Removal and Installation".

>> GO TO 3.

3.CHECK FOR INTAKE AIR LEAK

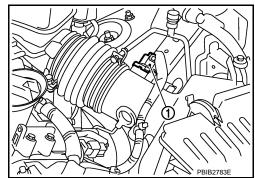
- 1. Start engine and run it at idle.
- 2. Listen for an intake air leak after the mass air flow sensor.

OK or NG

OK >> GO TO 4.

NG >> Repair or replace.

4. CLEAR THE SELF-LEARNING DATA

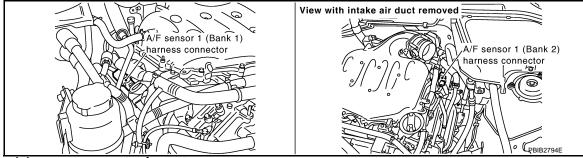

(II) With CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-III.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0171, P0172, P0174 or P0175 detected? Is it difficult to start engine?

Without CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor (1) harness connector.
- 4. Restart engine and let it idle for at least 5 seconds.
- 5. Stop engine and reconnect mass air flow sensor harness connector.
- 6. Make sure DTC P0102 is displayed.
- 7. Erase the DTC memory. Refer to <u>EC-55</u>, "Emission-Related <u>Diagnostic Information"</u>.
- 8. Make sure DTC P0000 is displayed.
- Run engine for at least 10 minutes at idle speed.
 Is the 1st trip DTC P0171, P0172, P0174 or P0175 detected?
 Is it difficult to start engine?



Yes or No

Yes >> Perform trouble diagnosis for DTC P0171, P0174 or P0172, P0175. Refer to <u>EC-280</u> or <u>EC-292</u>. No >> GO TO 5.

5. CHECK HARNESS CONNECTOR

- 1. Turn ignition switch OFF.
- Disconnect A/F sensor 1 harness connector.

Check harness connector for water.

Water should not exit.

OK or NG

OK >> GO TO 6.

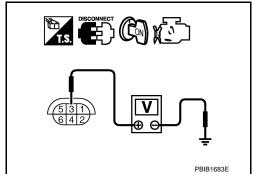
NG >> Repair or replace harness connector.

O.CHECK A/F SENSOR 1 POWER SUPPLY CIRCUIT

Turn ignition switch ON.

DTC P2A00, P2A03 A/F SENSOR 1

< SERVICE INFORMATION >


[VQ35DE]

Check voltage between A/F sensor 1 terminal 3 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E12, F3
- IPDM E/R harness connector E7
- 15A fuse
- Harness for open or short between A/F sensor 1 and fuse

>> Repair or replace harness or connectors.

$8.\mathsf{CHECK}$ A/F SENSOR 1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- Disconnect ECM harness connector.
- 3. Check harness continuity between A/F sensor 1 terminal and ECM terminal as follows. Refer to Wiring Diagram.

	A/F sensor 1 terminal	ECM terminal
	1	16
Bank1	2	75
Daliki	5	35
	6	56
	1	76
Bank 2	2	77
Dalik 2	5	57
	6	58

Continuity should exist.

Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

Bai	nk 1	Bank 2	
A/F sensor 1 terminal	ECM terminal	A/F sensor 1 terminal	ECM terminal
1	16	1	76
2	75	2	77
5	35	5	57
6	56	6	58

Continuity should not exist.

5. Also check harness for short to power.

OK or NG

>> GO TO 9. OK

EC

Α

C

D

Е

F

Н

K

Ν

DTC P2A00, P2A03 A/F SENSOR 1

< SERVICE INFORMATION >

[VQ35DE]

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK A/F SENSOR 1 HEATER

Refer to EC-159, "Component Inspection".

OK or NG

OK >> GO TO 10. NG >> GO TO 11.

10. CHECK INTERMITTENT INCIDENT

Perform EC-140.

OK or NG

OK >> GO TO 11.

NG >> Repair or replace.

11. REPLACE AIR FUEL RATIO (A/F) SENSOR 1

Replace malfunctioning air fuel ratio (A/F) sensor 1.

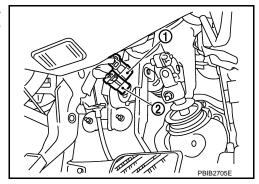
CAUTION:

- Discard any A/F sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new A/F sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

>> INSPECTION END

Removal and Installation

INFOID:0000000002954647


AIR FUEL RATIO (A/F) SENSOR 1 Refer to EM-27.

INFOID:0000000002954648

ASCD BRAKE SWITCH

Component Description

When the brake pedal is depressed, ASCD brake switch (2) is turned OFF and stop lamp switch (1) is turned ON. ECM detects the state of the brake pedal by this input of two kinds (ON/OFF signal). Refer to EC-37 for the ASCD function.

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002954649

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
BRAKE SW1	Ignition switch: ON	Brake pedal: Fully released	ON
(ASCD brake switch)		Brake pedal: Slightly depressed	OFF
BRAKE SW2	Ignition switch: ON	Brake pedal: Fully released	OFF
(Stop lamp switch)		Brake pedal: Slightly depressed	ON

EC

Α

C

Е

F

D

Н

K

L

M

Ν

0

TBWT1974E

< SERVICE INFORMATION > Wiring Diagram INFOID:0000000002954650 EC-ASCBOF-01 : DETECTABLE LINE FOR DTC : NON-DETECTABLE LINE FOR DTC IGNITION SWITCH ON OR START (via PDU) **BATTERY** FUSE BLOCK (J/B) REFER TO PG-POWER & PDU. 10A 20 12 E101), (E102) G/R G/R STOP ASCD LAMP SWITCH BRAKE SWITCH DEPRESSED DEPRESSED RELEASED (E124) **(E109)** RELEASED DEPRESSED RELEASED B/R B/R 55G ВR 108 101 **BRAKE BNCSW** ECM M71REFER TO THE FOLLOWING. (E108) - SUPER MULTIPLE 119 120 JUNCTION (SMJ) 2 1 BR (E101), (E102) - FUSE BLOCK -(M71) JUNCTION BOX (J/B) 114 115 116

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

Α

EC

D

Е

F

Н

M

Ν

Р

< SERVICE INFORMATION >

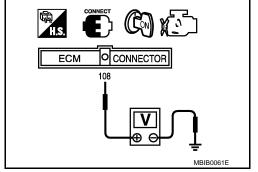
TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
101 V/R	\//D	Stop lamp switch	[Ignition switch: OFF] • Brake pedal: Fully released	Approximately 0V
	V/K		[Ignition switch: OFF] • Brake pedal: Slightly depressed	BATTERY VOLTAGE (11 - 14V)
108 E	BR	A00D Lada a 71 L	[Ignition switch: ON] • Brake pedal: Slightly depressed	Approximately 0V
	DK	ASCD brake switch	[Ignition switch: ON] • Brake pedal: Fully released	BATTERY VOLTAGE (11 - 14V)

Diagnosis Procedure

INFOID:0000000002954651

1. CHECK OVERALL FUNCTION-I

(P) With CONSULT-III


- 1. Turn ignition switch ON.
- 2. Select "BRAKE SW1" in "DATA MONITOR" mode with CONSULT-III.
- 3. Check "BRAKE SW1" indication under the following conditions.

CONDITION	INDICATION
Brake pedal: Slightly depressed	OFF
Brake pedal: Fully released	ON

(X) Without CONSULT-III

- Turn ignition switch ON.
- 2. Check voltage between ECM terminal 108 and ground under the following conditions.

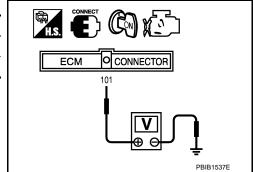
CONDITION	VOLTAGE
Brake pedal: Slightly depressed	Approximately 0V
Brake pedal: Fully released	Battery voltage

OK or NG

OK >> GO TO 2. NG >> GO TO 3.

2.CHECK OVERALL FUNCTION-II

(P) With CONSULT-III

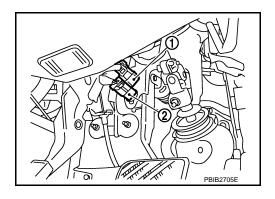

Check "BRAKE SW2" indication in "DATA MONITOR" mode.

CONDITION	INDICATION	
Brake pedal: Fully released	OFF	
Brake pedal: Slightly depressed	ON	

₩ Without CONSULT-III

Check voltage between ECM terminal 101 and ground under the following conditions.

CONDITION	VOLTAGE
Brake pedal: Fully released	Approximately 0V
Brake pedal: Slightly depressed	Battery voltage

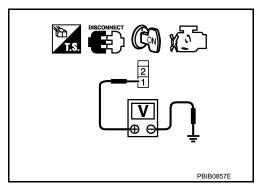

OK or NG

OK >> INSPECTION END

NG >> GO TO 8.

3.check ascd brake switch power supply circuit

- 1. Turn ignition switch OFF.
- 2. Disconnect ASCD brake switch (2) harness connector.
- Stop lamp switch (1)
- 3. Turn ignition switch ON.



4. Check voltage between ASCD brake switch terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E102
- 10A fuse
- · Harness for open or short between ASCD brake switch and fuse
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK ASCD BRAKE SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 108 and ASCD brake switch terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

ASCD BRAKE SWITCH

[VQ35DE] < SERVICE INFORMATION >

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

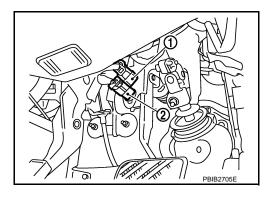
Check the following.

- Harness connectors E108, M15
- · Harness for open or short between ECM and ASCD brake switch

>> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK ASCD BRAKE SWITCH

Refer to EC-588, "Component Inspection"

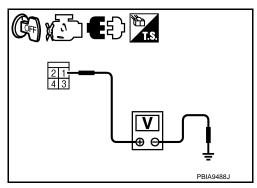

OK or NG

OK >> GO TO 13.

NG >> Replace ASCD brake switch.

8.CHECK STOP LAMP SWITCH POWER SUPPLY CIRCUIT

- Turn ignition switch OFF.
- Disconnect stop lamp switch (1) harness connector.
- ASCD brake switch (2)



3. Check voltage between stop lamp switch terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 10. NG >> GO TO 9.

9. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E101
- 10A fuse
- Harness for open or short between stop lamp switch and battery

>> Repair open circuit or short to ground or short to power in harness or connectors.

10.check stop lamp switch input signal circuit for open and short

- Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 101 and stop lamp switch terminal 2. Refer to Wiring Diagram.

Continuity should exist.

Also check harness for short to ground and short to power.

EC-587 Revision: 2009 February 2008 M35/M45

EC

Α

D

Е

Н

M

OK or NG

OK >> GO TO 12.

NG >> GO TO 11.

11. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- Harness for open or short between ECM and stop lamp switch

>> Repair open circuit or short to ground or short to power in harness or connectors.

12. CHECK STOP LAMP SWITCH

Refer to EC-588, "Component Inspection".

OK or NG

OK >> GO TO 13.

NG >> Replace stop lamp switch.

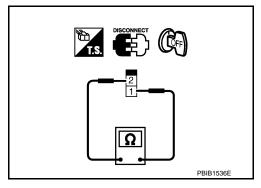
13. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

>> INSPECTION END

Component Inspection

INFOID:0000000002954652

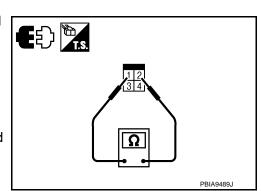

2008 M35/M45

ASCD BRAKE SWITCH

- 1. Turn ignition switch OFF.
- Disconnect ASCD brake switch harness connector.
- 3. Check harness continuity between ASCD brake switch terminals 1 and 2 under the following conditions.

Condition	Continuity
Brake pedal: Fully released.	Should exist.
Brake pedal: Slightly depressed.	Should not exist.

4. If NG, adjust ASCD brake switch installation, refer to <u>BR-6</u>, and perform step 3 again.



STOP LAMP SWITCH

- 1. Turn ignition switch OFF.
- 2. Disconnect stop lamp switch harness connector.
- 3. Check harness continuity between stop lamp switch terminals 1 and 2 under the following conditions.

Condition	Continuity
Brake pedal: Fully released.	Should not exist.
Brake pedal: Slightly depressed.	Should exist.

4. If NG, adjust stop lamp switch installation, refer to <u>BR-6</u>, and perform step 3 again.

INFOID:0000000002954653

INFOID:0000000002954654

ASCD INDICATOR

Component Description

ASCD indicator lamp illuminates to indicate ASCD operation status. Lamp has two indicators, CRUISE and SET, and is integrated in combination meter.

CRUISE lamp illuminates when MAIN switch on ASCD steering switch is turned ON to indicated that ASCD system is ready for operation.

SET lamp illuminates when following conditions are met.

- CRUISE lamp is illuminated.
- SET/COAST switch on ASCD steering switch is turned ON while vehicle speed is within the range of ASCD setting.

SET lamp remains lit during ASCD control.

Refer to EC-37 for the ASCD function.

CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
CRUISE LAMP	Ignition switch: ON	MAIN switch: Pressed at the 1st time \rightarrow at the 2nd time	$ON \rightarrow OFF$
	MAIN switch: ON	ASCD: Operating	ON
• When vehicle speed is between 40 km/h (25 MPH) and 144 km/h (89 MPH)		ASCD: Not operating	OFF

EC

Α

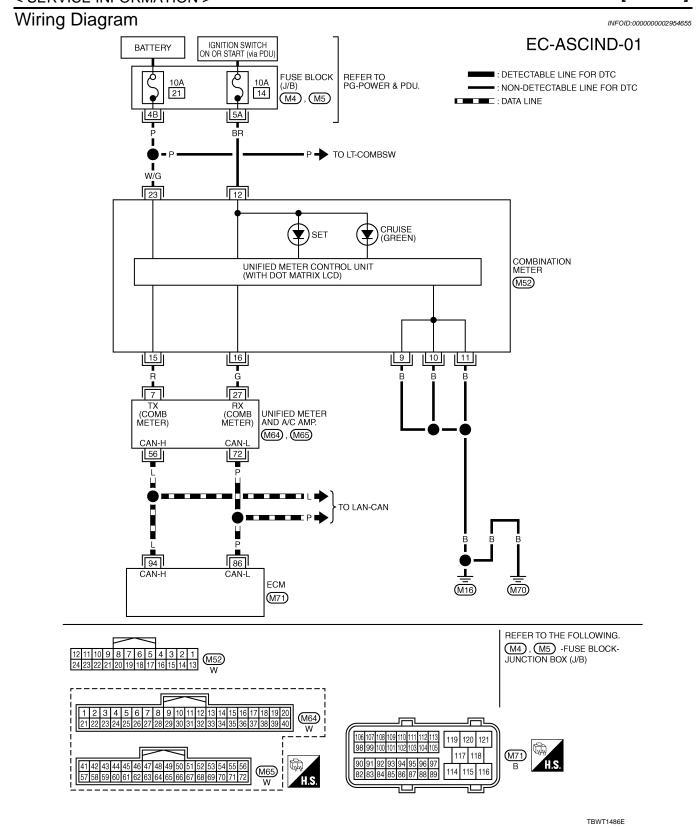
С

D

02954654 E

F

Н


K

L

ВЛ

Ν

0

Diagnosis Procedure

INFOID:0000000002954656

1. CHECK OVERALL FUNCTION

Check ASCD indicator under the following conditions.

ASCD INDICATOR

< SERVICE INFORMATION >

[VQ35DE]

at the 2nd time MAIN switch: ON When vehicle speed is between 40 km/h (25 MPH) and 144 km/h (89 MPH) OK or NG OK > INSPECTION END NG >> GO TO 2. CHECK DTC Check that DTC U1000 or U1001 is not displayed. OK >> GO TO 3. NG >> Perform trouble diagnosis for DTC U1000, U1001. Refer to EC-147. CHECK DTC WITH "UNIFIED METER AND A/C AMP." Refer to DI-27, "CONSULT-III Function (METER/M&A)". OK or NG OK >> GO TO 4. NG >> Go TO 4. NG >> Go TO 4. NG >> Go TO 1. CHECK INTERMITTENT INCIDENT	ASCD INDICATOR	CONDITION		SPECIFICATION
When vehicle speed is between 40 km/h (25 MPH) and 144 km/h (89 MPH) OK or NG OK >> INSPECTION END NG >> GO TO 2. CHECK DTC Check that DTC U1000 or U1001 is not displayed. OK or NG OK >> Perform trouble diagnosis for DTC U1000, U1001. Refer to EC-147. CHECK DTC WITH "UNIFIED METER AND A/C AMP." Refer to DI-27, "CONSULT-III Function (METER/M&A)". OK or NG OK >> GO TO 4. NG >> Go TO 4. NG >> Go to DI-30, "DTC [B2202] Meter Communication Circuit". CHECK INTERMITTENT INCIDENT Refer to EC-140.	CRUISE LAMP	Ignition switch: ON	1st time \rightarrow	$ON \to OFF$
DK or NG OK >> INSPECTION END NG >> GO TO 2. CHECK DTC Check that DTC U1000 or U1001 is not displayed. DK or NG OK >> GO TO 3. NG >> Perform trouble diagnosis for DTC U1000, U1001. Refer to EC-147. CHECK DTC WITH "UNIFIED METER AND A/C AMP." Refer to DI-27. "CONSULT-III Function (METER/M&A)". DK or NG OK >> GO TO 4. NG >> GO TO 4. NG >> GO TO 4. NG >> GO TO 10. CHECK INTERMITTENT INCIDENT Refer to EC-140.	SET LAMP	When vehicle speed is be- tween 40 km/h (25 MPH) and		
PAGE SHOULD SHOU	OK or NG OK >> INSPECTION	· · · · · · · · · · · · · · · · · · ·		
OK or NG OK >> GO TO 3. NG >> Perform trouble diagnosis for DTC U1000, U1001. Refer to EC-147. CHECK DTC WITH "UNIFIED METER AND A/C AMP." Refer to DI-27, "CONSULT-III Function (METER/M&A)". OK or NG OK >> GO TO 4. NG >> Go to DI-30, "DTC [B2202] Meter Communication Circuit". CHECK INTERMITTENT INCIDENT Refer to EC-140.				
NG >> Perform trouble diagnosis for DTC U1000, U1001. Refer to EC-147. CHECK DTC WITH "UNIFIED METER AND A/C AMP." Refer to DI-27, "CONSULT-III Function (METER/M&A)". OK or NG OK >> GO TO 4. NG >> Go to DI-30, "DTC [B2202] Meter Communication Circuit". CHECK INTERMITTENT INCIDENT Refer to EC-140.	Check that DTC U1000 or OK or NG	r U1001 is not displayed.		
OK or NG OK >> GO TO 4. NG >> Go to DI-30, "DTC [B2202] Meter Communication Circuit". CHECK INTERMITTENT INCIDENT Refer to EC-140.	NG >> Perform troub	_		
NG >> Go to DI-30, "DTC [B2202] Meter Communication Circuit". CHECK INTERMITTENT INCIDENT Refer to EC-140.	OK or NG	T-III Function (METER/M&A)	" 	
Refer to EC-140.	NG >> Go to <u>DI-30.</u> "		nication Circuit".	
>> INSPECTION END	Refer to <u>EC-140</u> .	NI INCIDENT		
	>> INSPECTION	I END		

Revision: 2009 February **EC-591** 2008 M35/M45

ELECTRICAL LOAD SIGNAL

Description INFOID:0000000002954657

The electrical load signal (Headlamp switch signal, rear window defogger switch signal, etc.) is transferred through the CAN communication line from BCM to ECM via IPDM E/R.

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002954658

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
LOAD SIGNAL	Ignition switch: ON	Rear window defogger switch: ON and/or Lighting switch: 2ND position	ON
		Rear window defogger switch and lighting switch: OFF	OFF
HEATER FAN SW	Engine: After warming up, idle the engine	Heater fan switch: ON	ON
HEATER FAN SW		Heater fan switch: OFF	OFF

Diagnosis Procedure

INFOID:0000000002954659

1. CHECK LOAD SIGNAL CIRCUIT OVERALL FUNCTION-I

- Turn ignition switch ON.
- Connect CONSULT-III and select "DATA MONITOR" mode.
- Select "LOAD SIGNAL" and check indication under the following conditions.

Condition	Indication
Rear window defogger switch: ON	ON
Rear window defogger switch: OFF	OFF

OK or NG

OK >> GO TO 2. NG >> GO TO 4.

2.CHECK LOAD SIGNAL CIRCUIT OVERALL FUNCTION-II

Check "LOAD SIGNAL" indication under the following conditions.

Condition	Indication
Lighting switch: ON at 2nd position	ON
Lighting switch: OFF	OFF

OK or NG

OK >> GO TO 3.

NG >> GO TO 5.

3.CHECK HEATER FAN SIGNAL CIRCUIT OVERALL FUNCTION

Select "HEATER FAN SW" and check indication under the following conditions.

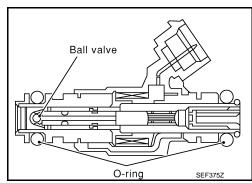
Condition	Indication
Heater fan control switch: ON	ON
Heater fan control switch: OFF	OFF

OK or NG

OK >> INSPECTION END

NG >> GO TO 6.

ELECTRICAL LOAD SIGNAL < SERVICE INFORMATION >	[VQ35DE]
4. CHECK REAR WINDOW DEFOGGER SYSTEM	[1 4002_]
Refer to GW-64.	
>> INSPECTION END 5.CHECK HEADLAMP SYSTEM	E
Refer to LT-34, LT-6 or LT-63.	
Neier to <u>L1-34, L1-0</u> or <u>L1-03</u> .	
>> INSPECTION END	
6.CHECK HEATER FAN CONTROL SYSTEM	
Refer to ATC-36.	
>> INSPECTION END	

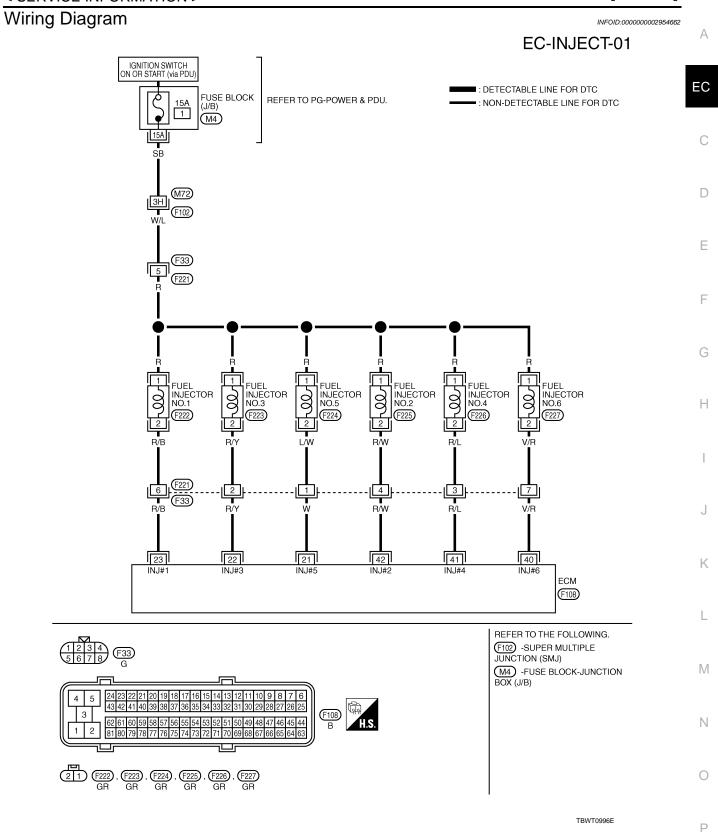

Revision: 2009 February **EC-593** 2008 M35/M45

INFOID:0000000002954660

FUEL INJECTOR

Component Description

The fuel injector is a small, precise solenoid valve. When the ECM supplies a ground to the fuel injector circuit, the coil in the fuel injector is energized. The energized coil pulls the ball valve back and allows fuel to flow through the fuel injector into the intake manifold. The amount of fuel injected depends upon the injection pulse duration. Pulse duration is the length of time the fuel injector remains open. The ECM controls the injection pulse duration based on engine fuel needs.



CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002954661

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
B/FUEL SCHDL	See <u>EC-132</u> .		
	Engine: After warming up	Idle	2.0 - 3.0 msec
INJ PULSE-B1 INJ PULSE-B2	Selector lever: P or NAir conditioner switch: OFFNo load	2,000 rpm	1.9 - 2.9 msec

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
21 22 23	W R/Y R/B	Fuel injector No. 5 Fuel injector No. 3 Fuel injector No. 1	[Engine is running] • Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle	BATTERY VOLTAGE (11 - 14V)★ → 10.0V/Div 50 ms/Div PBIB0042E
40 41 42	V/R R/L R/W	Fuel injector No. 6 Fuel injector No. 4 Fuel injector No. 2	[Engine is running]Warm-up conditionEngine speed: 2,000 rpm	BATTERY VOLTAGE (11 - 14V)★ → 10.0V/Div 50 ms/Div PBIB0043E

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnosis Procedure

INFOID:0000000002954663

1.INSPECTION START

Turn ignition switch to START.

Is any cylinder ignited?

Yes or No

Yes (With CONSULT-III)>>GO TO 2.

Yes (Without CONSULT-III)>>GO TO 3.

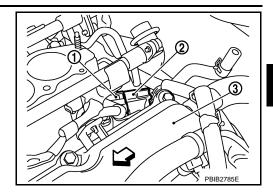
No >> GO TO 6.

2. CHECK OVERALL FUNCTION

(P) With CONSULT-III

- Start engine.
- Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-III.
- 3. Make sure that each circuit produces a momentary engine speed drop.

OK or NG

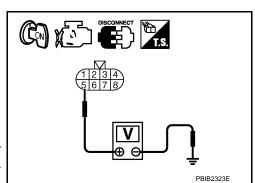

OK >> INSPECTION END

NG >> GO TO 3.

3. CHECK FUNCTION OF FUEL INJECTOR-I

1. Turn ignition switch OFF.

- 2. Disconnect harness connectors F221 (1), F33 (2).
- <□: Vehicle front
- Cylinder head (bank 2) (3)
- 3. Turn ignition switch ON.



Check voltage between harness connector F33 terminal 5 and ground with CONSULT-III or tester.

Voltage: Battery voltage

- 5. Turn ignition switch OFF.
- 6. Disconnect ECM harness connector.
- 7. Check harness continuity between the following terminals.

Cylinder	Harness connector F33 terminal	ECM terminal
1	6	23
2	4	42
3	2	22
4	3	41
5	1	21
6	7	40

Continuity should exist.

8. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M72, F102
- Harness connectors F33
- Fuse block (J/B) connector M4
- 15A fuse
- Harness for open or short between harness connector F33 and fuse
- Harness for open or short between harness connector F33 and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK FUNCTION OF FUEL INJECTOR-II

EC

Α

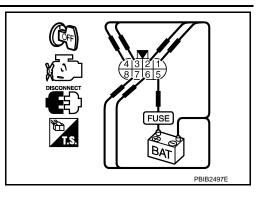
D

Е

F

G

П


IV

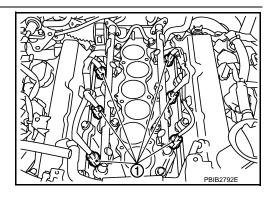
Ν

Ρ

Provide battery voltage between the following terminals, and then interrupt it. Listen to each fuel injector operating sound.

Culindor	Harness connector F221 terminal		
Cylinder	(+)	(–)	
1		6	
2		4	
3	5	2	
4	3	3	
5		1	
6		7	

Operating sound should exist.


OK or NG

OK >> INSPECTION END

NG >> GO TO 6.

6.CHECK SUB-HARNESS CIRCUIT FOR OPEN AND SHORT

1. Disconnect fuel injector harness connector (1).

2. Check harness continuity between the following terminals. Refer to Wiring Diagram.

Harness connector F221 terminal	Fuel injector terminal
1	
2	
3	2
4	2
6	
7	
5	1

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK FUEL INJECTOR

Refer to EC-599, "Component Inspection".

OK or NG

OK >> GO TO 8.

FUEL INJECTOR

< SERVICE INFORMATION >

[VQ35DE]

Α

EC

C

D

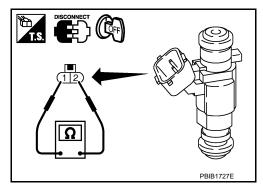
Е

NG >> Replace malfunctioning fuel injector.

8. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

>> INSPECTION END


Component Inspection

INFOID:0000000002954664

FUEL INJECTOR

- 1. Disconnect fuel injector harness connector.
- 2. Check resistance between terminals as shown in the figure.

Resistance: $11.1 - 14.5\Omega$ [at $10 - 60^{\circ}$ C ($50 - 140^{\circ}$ F)]

INFOID:0000000002954665

Removal and Installation

FUEL INJECTOR Refer to EM-46.

Н

K

L

M

Ν

0

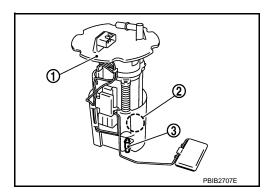
FUEL PUMP

Description INFOID:000000002954666

SYSTEM DESCRIPTION

Sensor	Input signal to ECM	ECM Function	Actuator
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed*	Fuel pump control	Fuel pump relay
Battery	Battery voltage*		

^{*:} ECM determines the start signal status by the signals of engine speed and battery voltage.

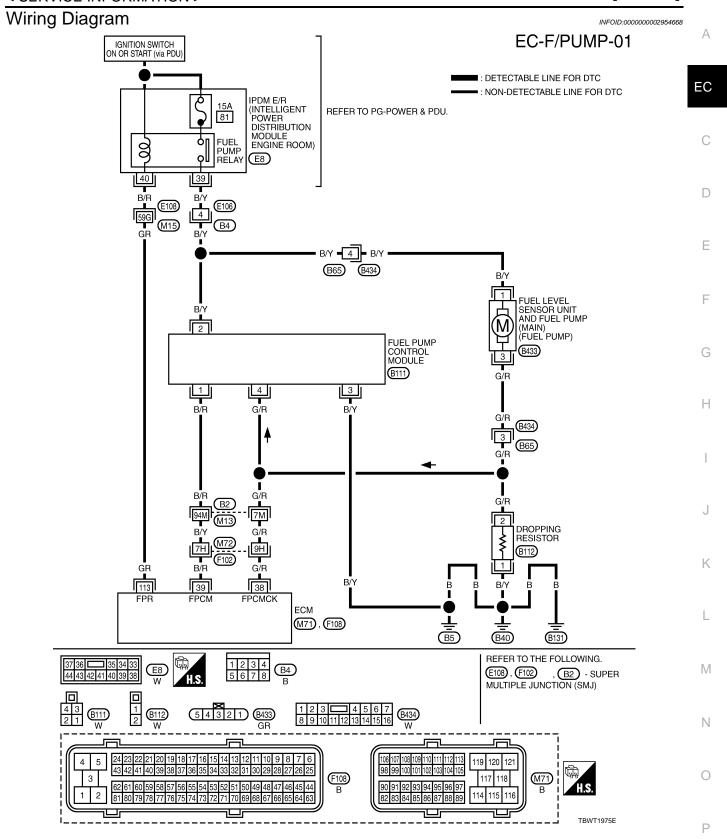

The ECM activates the fuel pump for several seconds after the ignition switch is turned ON to improve engine startability. If the ECM receives a engine speed signal from the camshaft position sensor (PHASE), it knows that the engine is rotating, and causes the pump to operate. If the engine speed signal is not received when the ignition switch is ON, the engine stalls. The ECM stops pump operation and prevents battery discharging, thereby improving safety. The ECM does not directly drive the fuel pump. It controls the ON/OFF fuel pump relay, which in turn controls the fuel pump.

Condition	Fuel pump operation
Ignition switch is turned to ON.	Operates for 1 second.
Engine running and cranking	Operates.
When engine is stopped	Stops in 1.5 seconds.
Except as shown above	Stops.

COMPONENT DESCRIPTION

A turbine type design fuel pump is used in the fuel tank.

- Fuel level sensor unit and fuel pump (1)
- Fuel pressure regulator (2)
- Fuel tank temperature sensor (3)



CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002954667

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
FUEL PUMP RLY	For 1 seconds after turning ignition switch: ONEngine running or cranking	ON
	Except above	OFF

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

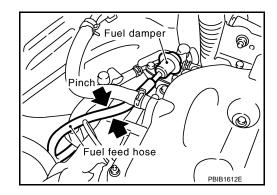
TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
38	G/R	Fuel pump control module (FPCM) check	[When cranking engine] [Engine is running] • Warm-up condition • Idle speed	Approximately 0V 4 - 6V
39	B/R	Fuel pump control module (FPCM)	[When cranking engine] [Engine is running] • Warm-up condition • Idle speed	0 - 0.5V 8 - 12V
113	GR	Fuel pump relay	[Ignition switch: ON] • For 1 second after turning ignition switch ON [Engine is running]	0 - 1.5V
113 GK	ruei pump relay	[Ignition switch: ON] • More than 1 second after turning ignition switch ON	BATTERY VOLTAGE (11 - 14V)	

FUEL PUMP

Diagnosis Procedure

INFOID:0000000002954669

1. CHECK OVERALL FUNCTION

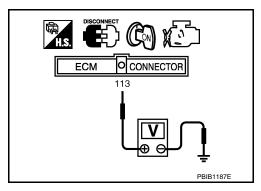

- Turn ignition switch ON.
- Pinch fuel feed hose with two fingers.

Fuel pressure pulsation should be felt on the fuel feed hose for 1 second after ignition switch is turned ON.

OK or NG

OK >> INSPECTION END

NG >> GO TO 2.


$2.\mathsf{CHECK}$ FUEL PUMP POWER SUPPLY CIRCUIT-I

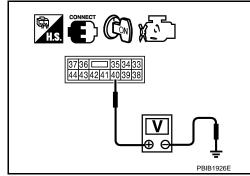
- Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Turn ignition switch ON.
- 4. Check voltage between ECM terminal 113 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 3.

3.CHECK FUEL PUMP POWER SUPPLY CIRCUIT-II


[VQ35DE]

Check voltage between IPDM E/R terminal 40 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

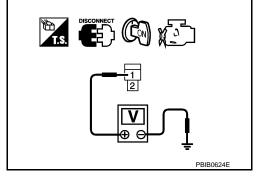
OK >> GO TO 4. NG >> GO TO 16.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- Harness for open or short between IPDM E/R and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.


${f 5}$.check condenser power supply circuit-i

- Turn ignition switch OFF.
- Reconnect all harness connectors disconnected. 2.
- 3. Disconnect condenser harness connector.
- Turn ignition switch ON.
- 5. Check voltage between condenser terminal 1 and ground with CONSULT-III or tester.

Battery voltage should exist for 1 second af-Voltage: ter ignition switch is turned ON.

OK or NG

OK >> GO TO 9. NG >> GO TO 6.

6.CHECK 15A FUSE

- Turn ignition switch OFF.
- 2. Disconnect 15A fuse.
- Check 15A fuse. 3.

OK or NG

OK >> GO TO 7. NG >> Replace fuse.

CHECK CONDENSER POWER SUPPLY CIRCUIT-II

- Disconnect IPDM E/R harness connector E8.
- Check harness continuity between IPDM E/R terminal 39 and condenser terminal 1. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 16. NG >> GO TO 8.

8. DETECT MALFUNCTIONING PART

Check the following.

Harness connectors E106, B4

EC-603 Revision: 2009 February 2008 M35/M45

EC

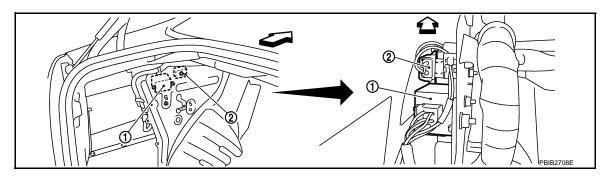
Α

D

Е

F

Н


M

Ν

- · Harness connectors B65, B434
- IPDM E/R connector E8
- Harness for open or short between IPDM E/R and condenser
 - >> Repair open circuit or short to power in harness or connectors.

9. CHECK CONDENSER GROUND CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect dropping resistor harness connector.

1. FPCM

2. Dropping resistor

3. Check harness continuity between condenser terminal 2 and dropping resistor terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 11. NG >> GO TO 10.

10. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B65, B434.
- · Harness for open or short between condenser and dropping resistor.
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

11. CHECK CONDENSER

Refer to EC-605, "Component Inspection".

OK or NG

OK >> GO TO 12.

NG >> Replace condenser.

12. CHECK FUEL PUMP POWER SUPPLY CIRCUIT-III

- 1. Turn ignition switch OFF.
- 2. Disconnect harness connectors B65, B434.

[VQ35DE]

- Disconnect "fuel level sensor unit and fuel pump" harness connector (1).
- Illustration shows the view with rear seat cushion and inspection hole cover (RH) removed.

Check harness continuity between the following;

harness connector B434 terminal 7 and "fuel level sensor unit and fuel pump" terminal 1, "fuel level sensor unit and fuel pump" terminal 3 and harness connector B434 terminal 16, harness connector B65 terminal 16 and dropping resistor terminal 2, dropping resister terminal 1 and ground. Refer to Wiring Diagram.

Continuity should exist.

OK or NG

OK >> GO TO 14. NG >> GO TO 13.

13. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B65, B434
- Harness for open or short between "fuel level sensor unit and fuel pump" and harness connector B434
- Harness for open or short between "fuel level sensor unit and fuel pump" and dropping resistor
- Harness for open or short between dropping resistor and ground

>> Repair open circuit or short to power in harness or connectors.

14. CHECK DROPPING RESISTOR

Refer to EC-605, "Component Inspection".

OK or NG

OK >> GO TO 15.

NG >> Replace dropping resistor.

15. CHECK FUEL PUMP

Refer to EC-605, "Component Inspection".

OK or NG

OK >> GO TO 16.

NG >> Replace fuel pump.

16. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

OK or NG

OK >> Replace IPDM E/R.

NG >> Repair or replace harness or connectors.

Component Inspection

FUEL PUMP

- Turn ignition switch OFF.
- Disconnect "fuel level sensor unit and fuel pump" harness connector.

EC-605 Revision: 2009 February 2008 M35/M45

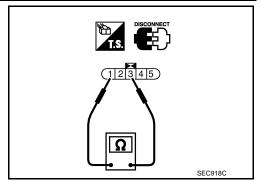
Α

EC

D

Е

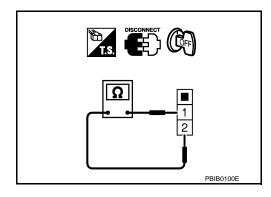
Н


N

Р

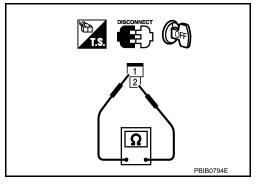
INFOID:0000000002954670

3. Check resistance between "fuel level sensor unit and fuel pump" terminals 1 and 3.


Resistance: 0.2 - 5.0 Ω [at 25°C (77°F)]

DROPPING RESISTOR

- 1. Turn ignition switch OFF.
- 2. Disconnect dropping resistor harness connector.
- 3. Check resistance between dropping resistor terminals 1 and 2.


Resistance: Approximately 0.9 Ω [at 20°C (68°F)]

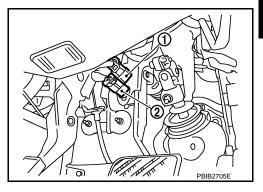
CONDENSER

- 1. Turn ignition switch OFF.
- 2. Disconnect condenser harness connector.
- Check resistance between condenser terminals 1 and 2.

Resistance: Above 1 M Ω [at 25°C (77°F)]

Removal and Installation

FUEL PUMP Refer to FL-4.


INFOID:0000000002954671

INFOID:0000000002954672

ICC BRAKE SWITCH

Component Description

When the brake pedal is depressed, ICC brake switch (2) is turned OFF and stop lamp switch (1) is turned ON. ECM detects the state of the brake pedal by this input of two kinds (ON/OFF signal). Refer to ACS-9 for the ICC function.

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002954673

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
BRAKE SW1	Ignition switch: ON	Brake pedal: Fully released	ON
(ICC brake switch)	1grillion Switch. ON	Brake pedal: Slightly depressed	OFF
BRAKE SW2	Ignition switch: ON	Brake pedal: Fully released	OFF
(Stop lamp switch)	• Igrillion Switch. ON	Brake pedal: Slightly depressed	ON

EC

Α

С

D

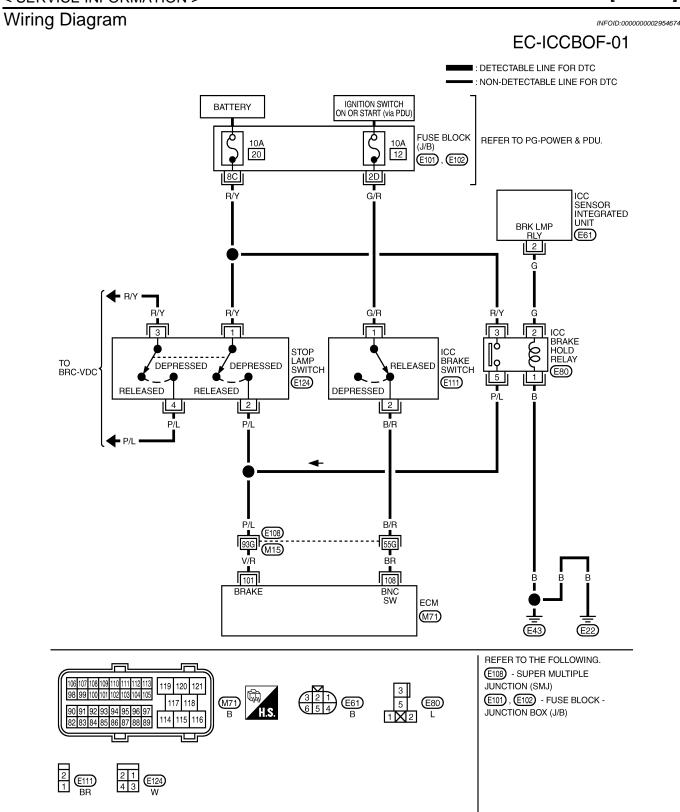
Е

F

G

Н

K


L

M

Ν

0

TBWT1976E

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

Α

D

Е

F

Н

K

< SERVICE INFORMATION >

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
404			404 V/D	Brake pedal: Fully released	Approximately 0V
101 V/R Stop lamp switch	[Ignition sw	[Ignition switch: OFF] • Brake pedal: Slightly depressed	BATTERY VOLTAGE (11 - 14V)		
400		[Ignition switch: ON] • Brake pedal: Slightly depressed	Approximately 0V		
108 BR	R ICC brake switch	[Ignition switch: ON] • Brake pedal: Fully released	BATTERY VOLTAGE (11 - 14V)		

Diagnosis Procedure

INFOID:0000000002954675

1. CHECK OVERALL FUNCTION-I

(II) With CONSULT-III

- 1. Turn ignition switch ON.
- 2. Select "BRAKE SW1" in "DATA MONITOR" mode with CONSULT-III.
- 3. Check "BRAKE SW1" indication under the following conditions.

CONDITION	INDICATION
Brake pedal: Slightly depressed	OFF
Brake pedal: Fully released	ON

(Marcolland) Without CONSULT-III

- Turn ignition switch ON.
- 2. Check voltage between ECM terminal 108 and ground under the following conditions.

CONDITION	VOLTAGE
Brake pedal: Slightly depressed	Approximately 0V
Brake pedal: Fully released	Battery voltage

ECM O CONNECTOR 108 MBIB0061E

OK or NG

OK >> GO TO 2. NG >> GO TO 3.

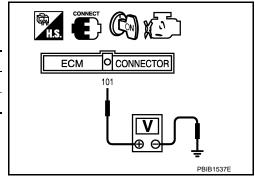
2. CHECK OVERALL FUNCTION-II

(P) With CONSULT-III

Check "BRAKE SW2" indication in "DATA MONITOR" mode.

CONDITION	INDICATION
Brake pedal: Fully released	OFF
Brake pedal: Slightly depressed	ON

Without CONSULT-III

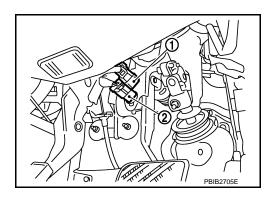

Ν

M

0

Check voltage between ECM terminal 101 and ground under the following conditions.

CONDITION	VOLTAGE	
Brake pedal: Fully released	Approximately 0V	
Brake pedal: Slightly depressed	Battery voltage	

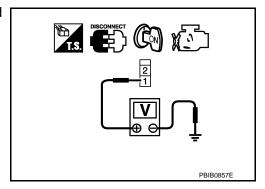

OK or NG

OK >> INSPECTION END

NG >> GO TO 8.

3.CHECK ICC BRAKE SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect ICC brake switch (2) harness connector.
- Stop lamp switch (1)
- 3. Turn ignition switch ON.



Check voltage between ICC brake switch terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E102
- 10A fuse
- · Harness for open or short between ICC brake switch and fuse
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

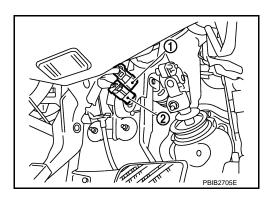
$5. \mathsf{CHECK}$ ICC BRAKE SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT-I

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ICC brake switch terminal 2 and ECM terminal 108. Refer Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

ICC BRAKE SWITCH [VQ35DE] < SERVICE INFORMATION > OK or NG Α OK >> GO TO 7. NG >> GO TO 6. 6. DETECT MALFUNCTIONING PART EC Check the following. Harness connectors E108, M15 · Harness for open or short between ICC brake switch and ECM >> Repair open circuit or short to ground or short to power in harness or connectors. 7. CHECK ICC BRAKE SWITCH D Refer to EC-613, "Component Inspection". OK or NG Е >> GO TO 15. OK NG >> Replace ICC brake switch. $oldsymbol{\delta}.$ CHECK DTC WITH ICC SENSOR INTEGRATED UNIT Refer to ACS-40.


OK or NG

OK >> GO TO 9.

NG >> Repair or replace.

9. CHECK STOP LAMP SWITCH POWER SUPPLY CIRCUIT

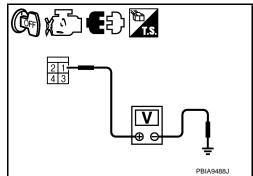
- 1. Turn ignition switch OFF.
- 2. Disconnect stop lamp switch (1) harness connector.
- ICC brake switch (2)

- 3. Disconnect ICC brake hold relay (1) harness connector.
- <: Vehicle front

Р

K

L

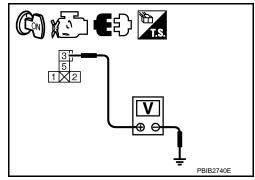

M

Ν

Revision: 2009 February

4. Check voltage between stop lamp switch terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage



5. Check voltage between ICC brake hold relay terminal 3 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 11. NG >> GO TO 10.

10. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E101
- 10A fuse
- Harness for open or short between battery and stop lamp switch
- Harness for open or short between battery and ICC brake hold relay
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

11. CHECK STOP LAMP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between the following;

ECM terminal 101 and stop lamp switch terminal 2,

ECM terminal 101 and ICC brake hold relay terminal 5.

Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 13.

NG >> GO TO 12.

12. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- Harness for open or short between ECM and stop lamp switch
- Harness for open or short between ECM and ICC brake hold relay
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

13. CHECK STOP LAMP SWITCH

Refer to EC-613, "Component Inspection".

OK or NG

OK >> GO TO 14.

Revision: 2009 February

ICC BRAKE SWITCH

< SERVICE INFORMATION >

>> Replace stop lamp switch.

14. CHECK ICC BRAKE HOLD RELAY

Refer to EC-613, "Component Inspection".

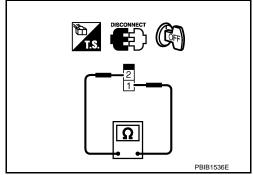
OK >> GO TO 15.

NG >> Replace ICC brake hold relay.

15. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

>> INSPECTION END


Component Inspection

ICC BRAKE SWITCH

- 1. Turn ignition switch OFF.
- 2. Disconnect ICC brake switch harness connector.
- 3. Check continuity between ICC brake switch terminals 1 and 2 under the following conditions.

Condition	Continuity
Brake pedal: Fully released.	Should exist.
Brake pedal: Slightly depressed.	Should not exist.

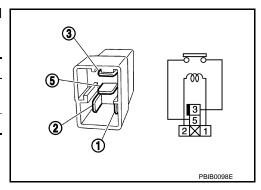
4. If NG, adjust ICC brake switch installation, refer to <u>BR-6</u>, and perform step 3 again.

STOP LAMP SWITCH

- 1. Turn ignition switch OFF.
- Disconnect stop lamp switch harness connector.
- 3. Check continuity between stop lamp switch terminals 1 and 2 under the following conditions.

Condition	Continuity
Brake pedal: Fully released.	Should not exist.
Brake pedal: Slightly depressed.	Should exist.

4. If NG, adjust stop lamp switch installation, refer to <u>BR-6</u>, and perform step 3 again.


11/2 3 | 4 PBIA9489J

ICC BRAKE HOLD RELAY

1. Check continuity between ICC brake hold relay terminals 3 and 5 under the following conditions.

Condition	Continuity
12V direct current supply between terminals 1 and 2	Should not exist
No current supply	Should exist

If NG, replace ICC brake hold relay.

EC

Α

[VQ35DE]

INFOID:0000000002954676

D

Е

F

G

Н

ı

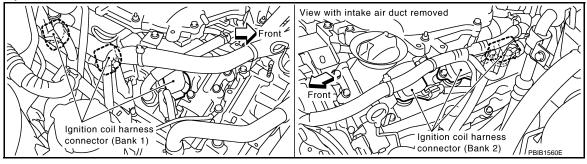
Κ

L

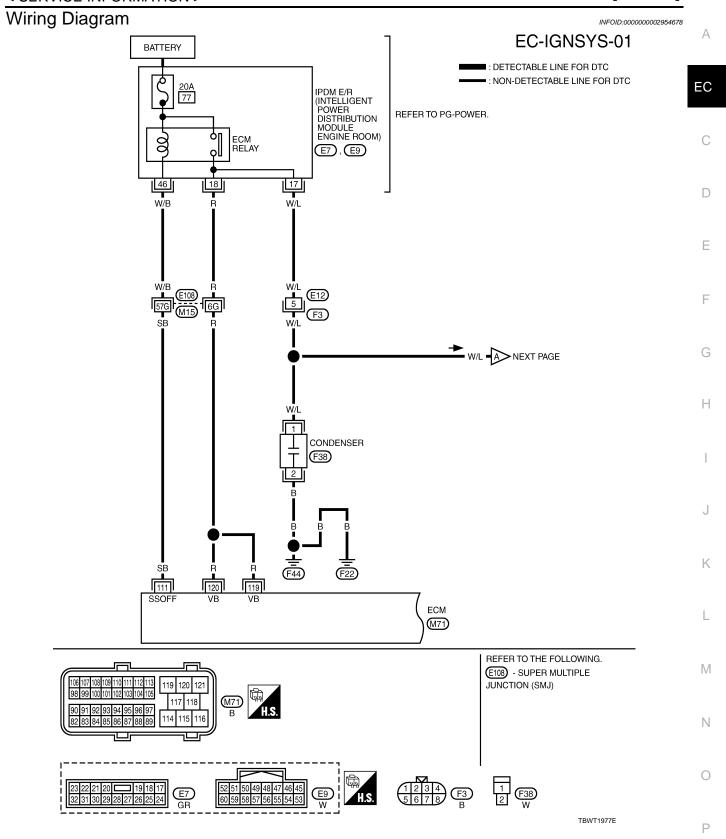
M

Ν

[VQ35DE]


IGNITION SIGNAL

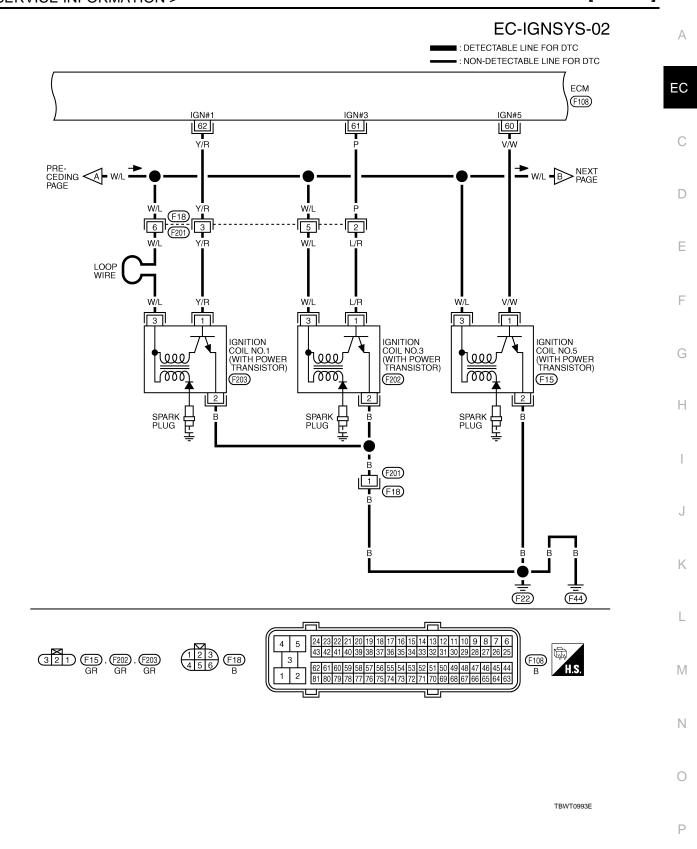
Component Description


INFOID:0000000002954677

IGNITION COIL & POWER TRANSISTOR

The ignition signal from the ECM is sent to and amplified by the power transistor. The power transistor turns ON and OFF the ignition coil primary circuit. This ON/OFF operation induces the proper high voltage in the coil secondary circuit.

[VQ35DE]


Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

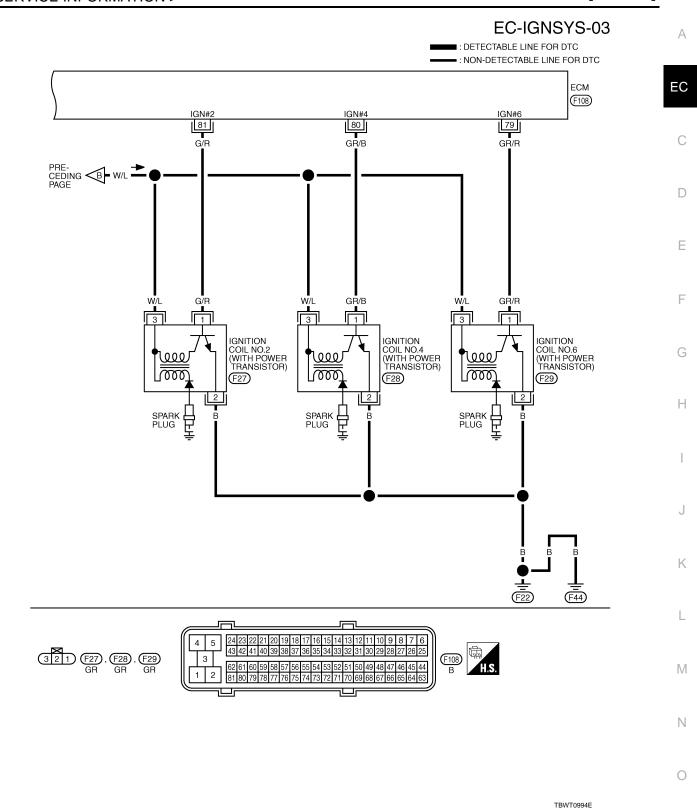
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

IGNITION SIGNAL

[VQ35DE]

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
111	111 SB ECM relay	[Engine is running][Ignition switch: OFF]For a few seconds after turning ignition switch OFF	0 - 1.5V	
		(Self shut-off)	[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
119 120	R R	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.


CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
60 61	V/W P	Ignition signal No. 5 Ignition signal No. 3	 [Engine is running] Warm-up condition Idle speed NOTE: The pulse cycle changes depending on rpm at idle 	0 - 0.2V ★
62	Y/R	Ignition signal No. 1	[Engine is running]Warm-up conditionEngine speed: 2,000 rpm	0.1 - 0.4V★

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Р

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
79 80	GR/R GR/B	Ignition signal No. 6 Ignition signal No. 4	 [Engine is running] Warm-up condition Idle speed NOTE: The pulse cycle changes depending on rpm at idle 	0 - 0.2V★
81	G/R	Ignition signal No. 2	[Engine is running]Warm-up conditionEngine speed: 2,000 rpm	0.1 - 0.4V★

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnosis Procedure

INFOID:0000000002954679

1. CHECK ENGINE START

Turn ignition switch OFF, and restart engine.

Is engine running?

Yes or No

Yes (With CONSULT-III)>>GO TO 2.

Yes (Without CONSULT-III)>>GO TO 3.

No >> GO TO 4.

2.check overall function

(P) With CONSULT-III

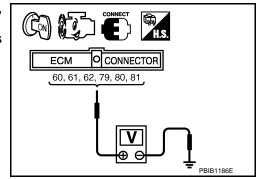
- 1. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-III.
- 2. Make sure that each circuit produces a momentary engine speed drop.

OK or NG

OK >> INSPECTION END

NG >> GO TO 10.

3. CHECK OVERALL FUNCTION


⋈ Without CONSULT-III

- 1. Let engine idle.
- 2. Read the voltage signal between ECM terminals 60, 61, 62, 79, 80, 81 and ground with an oscilloscope.
- 3. Verify that the oscilloscope screen shows the signal wave as shown below.

NOTE:

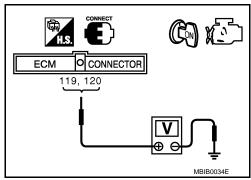
The pulse cycle changes depending on rpm at idle.

PBIB00448

OK or NG

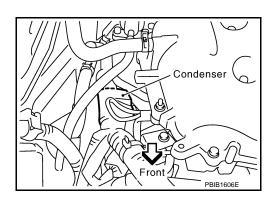
OK >> INSPECTION END

NG >> GO TO 10.


4. CHECK IGNITION COIL POWER SUPPLY CIRCUIT-I

- 1. Turn ignition switch OFF, wait at least 10 seconds and then turn ON.
- 2. Check voltage between ECM terminals 119, 120 and ground with CONSULT-III or tester.

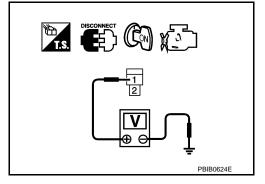
Voltage: Battery voltage


OK or NG

OK >> GO TO 5. NG >> Go to <u>EC-141</u>.

5. CHECK IGNITION COIL POWER SUPPLY CIRCUIT-II

- 1. Turn ignition switch OFF.
- 2. Disconnect condenser harness connector.
- 3. Turn ignition switch ON.



Check voltage between condenser terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 8. NG >> GO TO 6.

6. CHECK IGNITION COIL POWER SUPPLY CIRCUIT-III

- 1. Turn ignition switch OFF.
- 2. Disconnect IPDM E/R harness connector E7.
- Check harness continuity between IPDM E/R terminal 17 and condenser terminal 1. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> Go to <u>EC-141</u>. NG >> GO TO 7.

1. DETECT MALFUNCTIONING PART

Check the following.

• Harness connectors E12, F3

EC

Α

С

D

Е

F

Н

J

K

L

M

Ν

0

- · Harness for open or short between IPDM E/R and condenser
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK CONDENSER GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Check harness continuity between condenser terminal 2 and ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

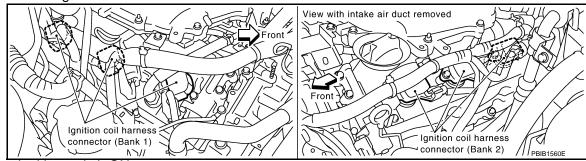
OK or NG

OK >> GO TO 9.

NG >> Repair open circuit or short to power in harness or connectors.

9. CHECK CONDENSER

Refer to EC-623, "Component Inspection"

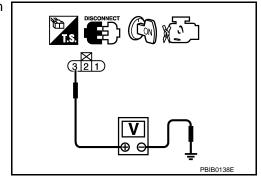

OK or NG

OK >> GO TO 10.

NG >> Replace condenser.

10.check ignition coil power supply circuit-v

- 1. Reconnect all harness connectors disconnected.
- 2. Disconnect ignition coil harness connector.



- 3. Turn ignition switch ON.
- 4. Check voltage between ignition coil terminal 3 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 12. NG >> GO TO 11.

11. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F18, F201
- Harness connector F3
- Harness for open or short between ignition coil and harness connector F3

>> Repair or replace harness or connectors.

12. CHECK IGNITION COIL GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Check harness continuity between ignition coil terminal 2 and ground.

IGNITION SIGNAL

< SERVICE INFORMATION >	[VQ35DE]
Refer to Wiring Diagram.	Δ
Continuity should exist.	
3. Also check harness for short to power.	E
OK or NG OK >> GO TO 14.	
NG >> GO TO 13.	
13. DETECT MALFUNCTIONING PART	
Check the following. • Harness connectors F201, F18	-
Harness for open or short between ignition coil and ground	
>> Repair open circuit or short to power in harness or connectors.	E
14. CHECK IGNITION COIL OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT	
 Disconnect ECM harness connector. Check harness continuity between ECM terminals 60, 61, 62, 79, 80, 81 and ignition coil terminals to Wiring Diagram. 	inal 1. Refer F
Continuity should exist.	G
3. Also check harness for short to ground and short to power.	
<u>OK or NG</u> OK >> GO TO 16.	H
NG >> GO TO 10.	
15. DETECT MALFUNCTIONING PART	ı
Check the following. • Harness connectors F201, F18	
Harness for open or short between ignition coil and ECM	J
>> Repair open circuit or short to ground or short to power in harness or connectors.	
16. CHECK IGNITION COIL WITH POWER TRANSISTOR	k
Refer to EC-623, "Component Inspection".	
OK or NG OK >> GO TO 17.	L
NG >> Replace ignition coil with power transistor.	
17. CHECK INTERMITTENT INCIDENT	N
Refer to EC-140.	
>> INSPECTION END	N
Component Inspection	FOID:00000000002954680
IGNITION COIL WITH POWER TRANSISTOR	C
CAUTION:	
 Turn ignition switch OFF. Disconnect ignition coil harness connector. 	F

3. Check resistance between ignition coil terminals as follows.

Terminal No. (Polarity)	Resistance Ω [at 25°C (77°F)]	
1 and 2	Except 0 or ∞	
1 and 3	Event 0	
2 and 3	Except 0	

- 4. If NG, replace ignition coil with power transistor. If OK, go to next step.
- 5. Turn ignition switch OFF.
- 6. Reconnect all harness connectors disconnected.
- Remove fuel pump fuse (1) in IPDM E/R (2) to release fuel pressure.

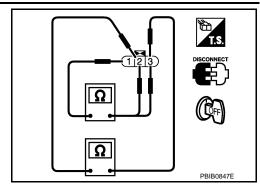
NOTE:

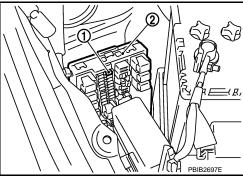
Do not use CONSULT-III to release fuel pressure, or fuel pressure applies again during the following procedure.

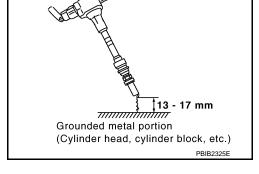
- 8. Start engine.
- 9. After engine stalls, crank it two or three times to release all fuel pressure.
- 10. Turn ignition switch OFF.
- 11. Remove all ignition coil harness connectors to avoid the electrical discharge from the ignition coils.
- 12. Remove ignition coil and spark plug of the cylinder to be checked.
- 13. Crank engine for 5 seconds or more to remove combustion gas in the cylinder.
- 14. Connect spark plug and harness connector to ignition coil.
- 15. Fix ignition coil using a rope etc. with gap of 13 17 mm between the edge of the spark plug and grounded metal portion as shown in the figure.
- 16. Crank engine for about 3 seconds, and check whether spark is generated between the spark plug and the grounded metal portion.

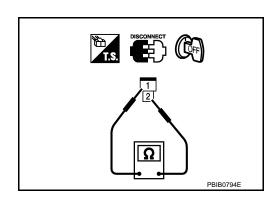
CAUTION:

 Do not approach to the spark plug and the ignition coil within 50cm. Be careful not to get an electrical shock while checking, because the electrical discharge voltage becomes 20kV or more.


When the gap is less than 13, the spark might be generated even if the coil is malfunctioning.


17. If NG, replace ignition coil with power transistor.


CONDENSER


- 1. Turn ignition switch OFF.
- 2. Disconnect condenser harness connector.
- Check resistance between condenser terminals 1 and 2.

Resistance: Above 1 M Ω [at 25°C (77°F)]

IGNITION SIGNAL

< SERVICE INFORMATION >

[VQ35DE]

Removal and Installation

INFOID:0000000002954681

IGNITION COIL WITH POWER TRANSISTOR Refer to $\underline{\mathsf{EM-43}}$.

EC

Α

С

D

Е

F

G

Н

J

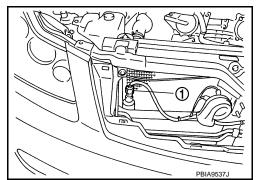
K

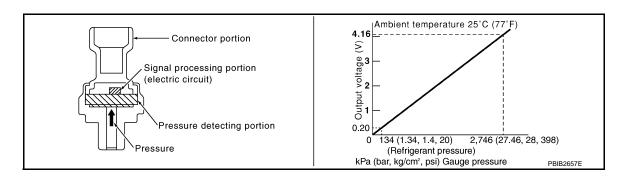
L

M

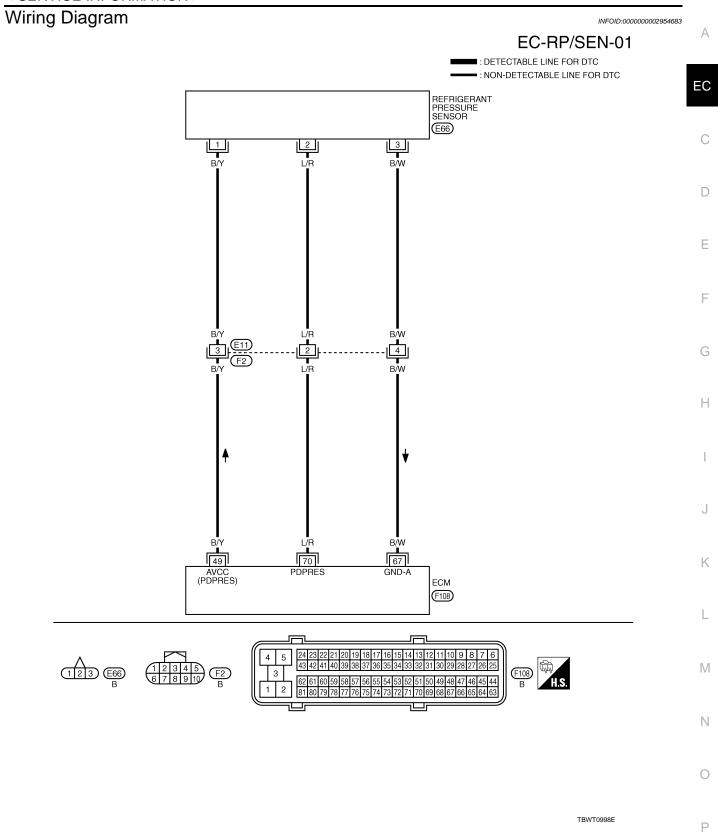
Ν

0


Ρ


INFOID:0000000002954682

REFRIGERANT PRESSURE SENSOR


Component Description

The refrigerant pressure sensor (1) is installed at the condenser of the air conditioner system. The sensor uses an electrostatic volume pressure transducer to convert refrigerant pressure to voltage. The voltage signal is sent to ECM, and ECM controls cooling fan system.

[VQ35DE]

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

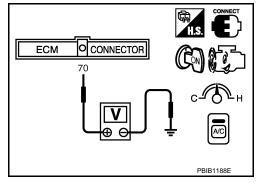
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
49	B/Y	Sensor power supply (Refrigerant pressure sensor, Battery current sensor)	[Ignition switch: ON]	Approximately 5V
67	B/W	Sensor ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
70	L/R	Refrigerant pressure sensor	 [Engine is running] Warm-up condition Both A/C switch and blower fan motor switch: ON (Compressor operates) 	1.0 - 4.0V

Diagnosis Procedure

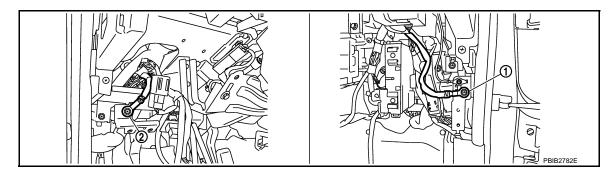
INFOID:0000000002954684

1. CHECK REFRIGERANT PRESSURE SENSOR OVERALL FUNCTION


- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn A/C switch and blower fan switch ON.
- 3. Check voltage between ECM terminal 70 and ground with CON-SULT-III or tester.

Voltage: 1.0 - 4.0V

OK or NG


OK >> INSPECTION END

NG >> GO TO 2.

2. CHECK GROUND CONNECTIONS

- 1. Turn A/C switch and blower switch OFF.
- 2. Stop engine.
- 3. Turn ignition switch OFF.
- 4. Loosen and retighten two ground screws on the body. Refer to <u>EC-146</u>, "<u>Ground Inspection</u>".

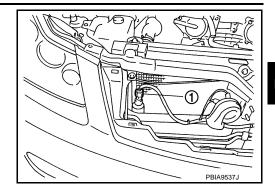
1. Body ground M70

2. Body ground M16

OK or NG

OK >> GO TO 3.

NG >> Repair or replace ground connections.

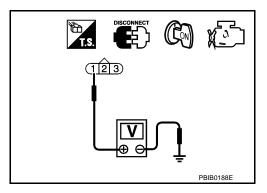

3.CHECK REFRIGERANT PRESSURE SENSOR POWER SUPPLY CIRCUIT

REFRIGERANT PRESSURE SENSOR

< SERVICE INFORMATION >

[VQ35DE]

- Disconnect refrigerant pressure sensor (1) harness connector.
- Turn ignition switch ON.



Check voltage between refrigerant pressure sensor terminal 1 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

f 4.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E11, F2
- Harness for open or short between ECM and refrigerant pressure sensor

>> Repair open circuit or short to ground or short to power in harness or connectors.

${f 5.}$ CHECK REFRIGERANT PRESSURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- Disconnect ECM harness connector. 2.
- Check harness continuity between refrigerant pressure sensor terminal 3 and ECM terminal 67. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

O. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E11, F2
- Harness for open or short between ECM and refrigerant pressure sensor

>> Repair open circuit or short to ground or short to power in harness or connectors.

1. CHECK REFRIGERANT PRESSURE SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Check harness continuity between ECM terminal 70 and refrigerant pressure sensor terminal 2. Refer to Wiring Diagram.

Continuity should exist.

Also check harness for short to ground and short to power.

OK or NG

EC-629 Revision: 2009 February 2008 M35/M45

EC

Α

D

Е

F

REFRIGERANT PRESSURE SENSOR

OK >> GO TO 9.

NG >> GO TO 8. 8. DETECT MALFUNCTIONING PART

Check the following.

• Harness connectors E11, F2

< SERVICE INFORMATION >

- Harness for open or short between ECM and refrigerant pressure sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

OK or NG

OK >> Replace refrigerant pressure sensor.

>> Repair or replace. NG

Removal and Installation

INFOID:0000000002954685

[VQ35DE]

REFRIGERANT PRESSURE SENSOR

Refer to ATC-151, "Removal and Installation of Refrigerant Pressure Sensor".

[VQ35DE]

INFOID:0000000002954687

SNOW MODE SWITCH

Description

NOTE:

If DTC U1000 or U1001 are displayed, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-147.

If DTC U1010 is displayed, first perform the trouble diagnosis for DTC U1010.

Refer to EC-149.

The snow mode switch signal is sent to the "unified meter and A/C amp." from the snow mode switch. The "unified meter and A/C amp." then sends the signal to the ECM by CAN communication line.

The snow mode is used for driving or starting the vehicle on snowy roads or slippery areas. If the snow mode is activated, the vehicle speed will not be accelerated immediately than your original pedal in due to avoid the vehicle slip. In other words, ECM controls the rapid engine torque change by controlling the electric throttle control actuator operating speed.

CONSULT-III Reference Value in Data Monitor Mode

MONITOR ITEM	CONDITION		SPECIFICATION
SNOW MODE SW	Ignition switch: ON	SNOW MODE SW: ON	ON
SINOW MODE SW	1911tion switch. ON	SNOW MODE SW: OFF	OFF

EC

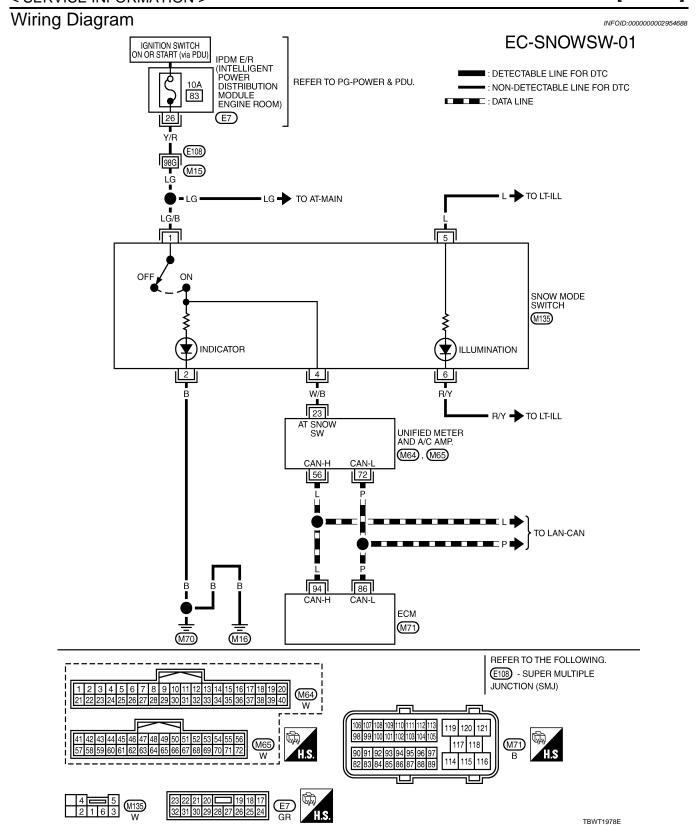
Α

С

Е

D

F


Н

J

K

L

Ν

Diagnosis Procedure

INFOID:0000000002954689

1.CHECK SNOW MODE SWITICH OVERALL FUNCTION-I

- Turn ignition switch ON.
- 2. Select "SNOW MODE SW" in "DATA MONITOR" mode with CONSULT-III.
- 3. Check "SNOW MODE SW" indication under the following conditions.

[VQ35DE]

CONDITION	INDICATION
Snow mode switch: ON	ON
Snow mode switch: OFF	OFF

EC

Α

OK or NG

OK >> GO TO 2. NG >> GO TO 3.

- 2.check snow mode switich overall function-ii
- 1. Turn ignition switch ON.
- 2. Start engine.
- 3. Check the snow mode indicator in the snow mode switch under the following condition.

CONDITION	INDICATION
Snow mode switch: ON	ON
Snow mode switch: OFF	OFF

Е

F

D

OK or NG

OK >> INSPECTION END

NG >> GO TO 7.

G

${f 3.}$ CHECK DTC WITH "UNIFIED METER AND A/C AMP."

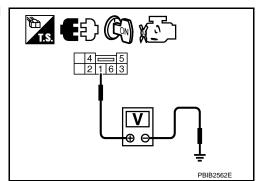
Refer to DI-27, "CONSULT-III Function (METER/M&A)".

OK or NG

OK >> GO TO 4. NG >> Go to <u>DI-26</u>.

K

M


Ν

Р

Н

4.CHECK SNOW MODE SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect snow mode switch harness connector.
- Turn ignition switch ON.
- Check voltage between snow mode switch terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- IPDM E/R harness connector E7
- 10A fuse
- Harness for open or short between snow mode switch and fuse.

>> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK SNOW MODE SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

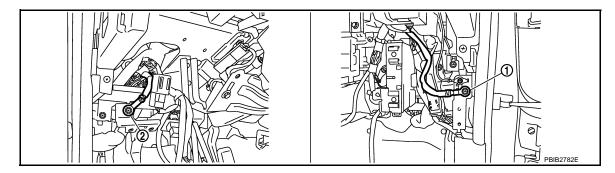
- Turn ignition switch OFF.
- Disconnect "unified meter and A/C amp." harness connector.
- Check harness continuity between snow mode switch terminal 4 and "unified meter and A/C amp." terminal 23. Refer to Wiring Diagram.

OR OPEN AND SHORT

Revision: 2009 February **EC-633** 2008 M35/M45

Continuity should exist.

4. Also check harness for short to ground and short to power.


OK or NG

OK >> GO TO 9.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- Loosen and retighten two ground screws on the body.
 Refer to <u>EC-146</u>, "Ground Inspection".

1. Body ground M70

2. Body ground M16

OK or NG

OK >> GO TO 8.

NG >> Repair or replace ground connections.

8.CHECK SNOW MODE INDICATOR LAMP GROUND CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between snow mode switch terminal 2 and ground. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to power.

OK or NG

OK >> GO TO 9.

NG >> Repair open circuit or short to power in harness or connectors.

9. CHECK SNOW MODE SWITCH

Refer to EC-634, "Component Inspection".

OK or NG

OK >> GO TO 10.

NG >> Replace snow mode switch.

10. CHECK INTERMITTENT INCIDENT

Refer to EC-140.

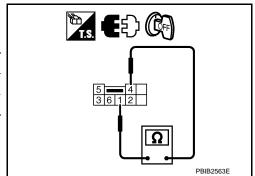
>> INSPECTION END

Component Inspection

SNOW MODE SWITCH

INFOID:0000000002954690

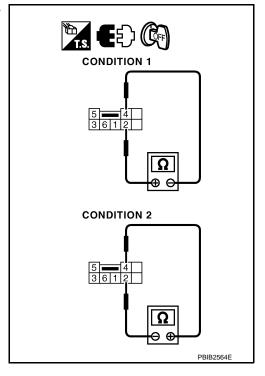
SNOW MODE SWITCH


< SERVICE INFORMATION >

[VQ35DE]

1. Check continuity between snow mode switch terminals 1 and 4 under the following conditions.

CONDITION	CONTINUITY
Snow mode switch: ON	Should exist
Snow mode switch: OFF	Should not exist


2. If NG, replace snow mode switch. If OK, go to following step.

3. Check continuity between snow mode switch terminals 2 and 4 under the following conditions.

CONDITION	CONTINUITY
1	Should exist.
2	Should not exist.

4. If NG, replace snow mode switch.

Α

EC

C

D

Е

F

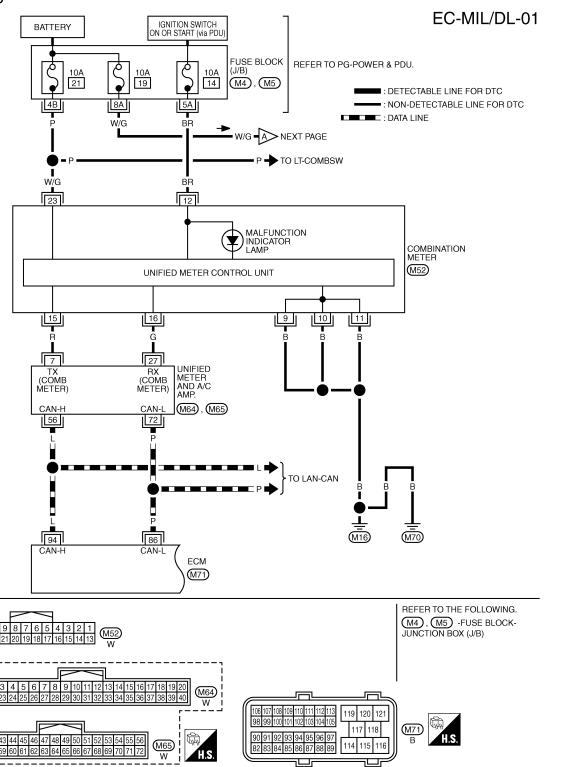
G

Н

I

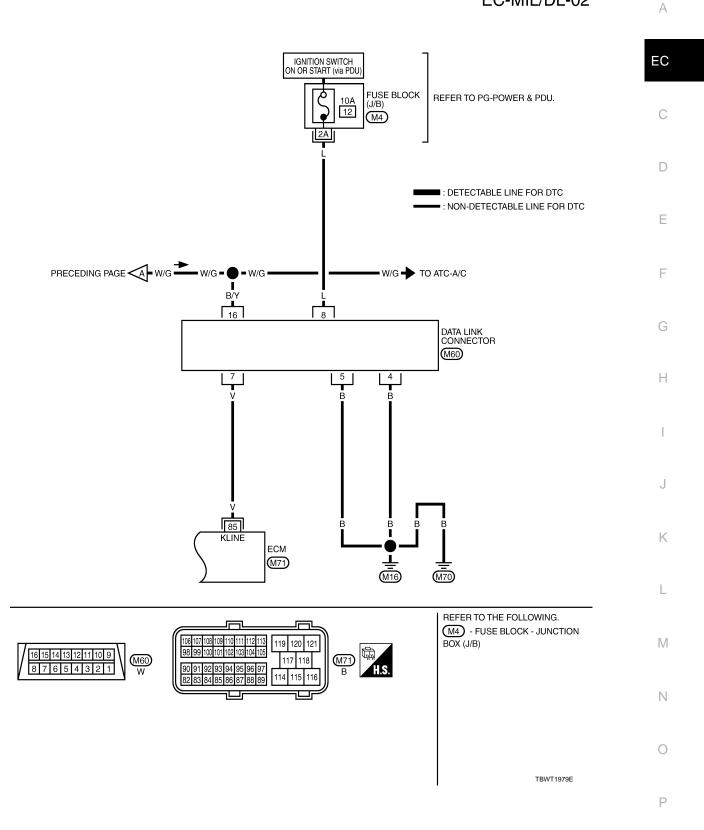
J

K


M

Ν

0


MIL AND DATA LINK CONNECTOR

Wiring Diagram

TBWT1487E

EC-MIL/DL-02

[VQ35DE]

SERVICE DATA AND SPECIFICATIONS (SDS)

Fuel Pressure

Fuel pressure at idling kPa (kg/cm ² , psi)	Approximately 350 (3.57, 51)

Idle Speed and Ignition Timing

INFOID:0000000002954693

Target idle speed	No load* (in P or N position)	650 ± 50 rpm
Air conditioner: ON	In P or N position	700 rpm or more
Ignition timing	In P or N position	15° ± 5° BTDC

^{*:} Under the following conditions:

- · Air conditioner switch: OFF
- Electric load: OFF (Lights, heater fan & rear window defogger)
- · Steering wheel: Kept in straight-ahead position

Calculated Load Value

INFOID:0000000002954694

Condition	Calculated load value% (Using CONSULT-III or GST)	
At idle	5.0 - 35.0	
At 2,500 rpm	5.0 - 35.0	

Mass Air Flow Sensor

INFOID:0000000002954695

Supply voltage	Battery voltage (11 - 14V)	
Output voltage at idle	0.9 - 1.2V*	
Mass air flow (Using CONSULT-III or GST)	2.0 - 6.0 g·m/sec at idle* 7.0 - 20.0 g·m/sec at 2,500 rpm*	

^{*:} Engine is warmed up to normal operating temperature and running under no load.

Intake Air Temperature Sensor

INFOID:0000000002954696

Temperature °C (°F)	Resistance kΩ	
25 (77)	1.800 - 2.200	
80 (176)	0.283 - 0.359	

Engine Coolant Temperature Sensor

INFOID:0000000002954697

Temperature °C (°F)	Resistance k Ω	
20 (68)	2.1 - 2.9	
50 (122)	0.68 - 1.00	
90 (194)	0.236 - 0.260	

Fuel Tank Temperature Sensor

INFOID:0000000002954698

Temperature °C (°F)	Resistance kΩ	
20 (68)	2.3 - 2.7	
50 (122)	0.79 - 0.90	

SERVICE DATA AND SPECIFICATIONS (SDS)

< SERVICE INFORMATION >	SPECIFICATIONS (SDS)	[VQ35DE]	
Crankshaft Position Sensor (POS)		INFOID:0000000002954699	A
Refer to EC-334, "Component Inspection". Camshaft Position Sensor (PHASE)		INFOID:000000002954700	E
Refer to EC-341, "Component Inspection".			
A/F Sensor 1 Heater		INFOID:0000000002954701	(
Resistance [at 25°C (77°F)]	2.3 - 4.3Ω		,
Heated Oxygen Sensor 2 Heater		INFOID:0000000002954702	[
Resistance [at 25°C (77°F)]	3.4 - 4.4Ω		Е
Throttle Control Motor		INFOID:0000000002954703	F
Resistance [at 25°C (77°F)]	Approximately 1 - 15Ω		
Fuel Injector		INFOID:0000000002954704	(
Resistance [at 10 - 60°C (50 - 140°F)]	11.1 - 14.5Ω		ŀ
Fuel Pump		INFOID:0000000002954705	
	0.2 - 5.0Ω		

Κ

L

Ν

 \bigcirc

Р

Revision: 2009 February **EC-639** 2008 M35/M45

SERVICE INFORMATION

INDEX FOR DTC

U1000 - U1010

DT	C* ¹	Items	
CONSULT-III GST* ²	ECM* ³	(CONSULT-III screen terms)	Reference page
U1000	1000*4	CAN COMM CIRCUIT	EC-770
U1001	1001*4	CAN COMM CIRCUIT	EC-770
U1010	1010	CONTROL UNIT(CAN)	EC-772

^{*1: 1}st trip DTC No. is the same as DTC No.

P0011 - P0081

DT	C* ¹	ltores	
CONSULT-III GST* ²	ECM* ³	Items (CONSULT-III screen terms)	Reference page
P0011	0011	INT/V TIM CONT-B1	EC-773
P0021	0021	INT/V TIM CONT-B2	EC-773
P0031	0031	A/F SEN1 HTR (B1)	EC-785
P0032	0032	A/F SEN1 HTR (B1)	<u>EC-785</u>
P0037	0037	HO2S2 HTR (B1)	EC-792
P0038	0038	HO2S2 HTR (B1)	EC-792
P0051	0051	A/F SEN1 HTR (B2)	<u>EC-785</u>
P0052	0052	A/F SEN1 HTR (B2)	<u>EC-785</u>
P0057	0057	HO2S2 HTR (B2)	EC-792
P0058	0058	HO2S2 HTR (B2)	EC-792
P0075	0075	INT/V TIM V/CIR-B1	EC-799
P0081	0081	INT/V TIM V/CIR-B2	EC-799

^{*1: 1}st trip DTC No. is the same as DTC No.

P0101 - P0128

DTC* ¹		Items	
CONSULT-III GST* ²	ECM* ³	(CONSULT-III screen terms)	Reference page
P0101	0101	MAF SEN/CIRCUIT-B1	EC-806
P0102	0102	MAF SEN/CIRCUIT-B1	EC-814
P0103	0103	MAF SEN/CIRCUIT-B1	EC-814
P0112	0112	IAT SEN/CIRCUIT-B1	EC-821

^{*2:} This number is prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.

^{*4:} The troubleshooting for this DTC needs CONSULT-III.

^{*2:} This number is prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.

INDEX FOR DTC

< SERVICE INFORMATION >

[VK45DE]

Α

D

Е

F

G

Н

K

M

Ν

0

DTC*1		Homo	
CONSULT-III GST* ²	ECM* ³	ltems (CONSULT-III screen terms)	Reference page
P0113	0113	IAT SEN/CIRCUIT-B1	<u>EC-821</u>
P0116	0116	ECT SENSOR	<u>EC-825</u>
P0117	0117	ECT SEN/CIRC	<u>EC-828</u>
P0118	0118	ECT SEN/CIRC	<u>EC-828</u>
P0122	0122	TP SEN 2/CIRC-B1	<u>EC-833</u>
P0123	0123	TP SEN 2/CIRC-B1	<u>EC-833</u>
P0125	0125	ECT SENSOR	<u>EC-839</u>
P0127	0127	IAT SENSOR-B1	<u>EC-842</u>
P0128	0128	THERMSTAT FNCTN	<u>EC-845</u>

^{*1: 1}st trip DTC No. is the same as DTC No.

P0130 - P0159

INFOID:0000000003508916

DT	C* ¹	ltems	Reference page
CONSULT-III GST* ²	ECM* ³	(CONSULT-III screen terms)	
P0130	0130	A/F SENSOR1 (B1)	EC-848
P0131	0131	A/F SENSOR1 (B1)	EC-856
P0132	0132	A/F SENSOR1 (B1)	<u>EC-864</u>
P0133	0133	A/F SENSOR1 (B1)	EC-872
P0137	0137	HO2S2 (B1)	<u>EC-881</u>
P0138	0138	HO2S2 (B1)	EC-890
P0139	0139	HO2S2 (B1)	EC-902
P0150	0150	A/F SENSOR1 (B2)	<u>EC-848</u>
P0151	0151	A/F SENSOR1 (B2)	<u>EC-856</u>
P0152	0152	A/F SENSOR1 (B2)	<u>EC-864</u>
P0153	0153	A/F SENSOR1 (B2)	EC-872
P0157	0157	HO2S2 (B2)	<u>EC-881</u>
P0158	0158	HO2S2 (B2)	EC-890
P0159	0159	HO2S2 (B2)	EC-902

^{*1: 1}st trip DTC No. is the same as DTC No.

P0171 - P0223

INFOID:0000000003508917

DTC* ¹		Items	
CONSULT-III GST* ²	ECM* ³	(CONSULT-III screen terms)	Reference page
P0171	0171	FUEL SYS-LEAN-B1	EC-911
P0172	0172	FUEL SYS-RICH-B1	EC-922
P0174	0174	FUEL SYS-LEAN-B2	EC-911

^{*2:} This number is prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.

^{*2:} This number is prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.

DTC* ¹		- Items	
CONSULT-III GST* ²	ECM* ³	(CONSULT-III screen terms)	Reference page
P0175	0175	FUEL SYS-RICH-B2	EC-922
P0181	0181	FTT SENSOR	EC-933
P0182	0182	FTT SEN/CIRCUIT	EC-937
P0183	0183	FTT SEN/CIRCUIT	EC-937
P0222	0222	TP SEN 1/CIRC-B1	EC-941
P0223	0223	TP SEN 1/CIRC-B1	EC-941

^{*1: 1}st trip DTC No. is the same as DTC No.

P0300 - P0308

INFOID:0000000003508921

DT	·C*1	Litems (CONSULT-III screen terms)	
CONSULT-III GST* ²	ECM* ³		Reference page
P0300	0300	MULTI CYL MISFIRE	EC-947
P0301	0301	CYL 1 MISFIRE	EC-947
P0302	0302	CYL 2 MISFIRE	EC-947
P0303	0303	CYL 3 MISFIRE	EC-947
P0304	0304	CYL 4 MISFIRE	EC-947
P0305	0305	CYL 5 MISFIRE	EC-947
P0306	0306	CYL 6 MISFIRE	EC-947
P0307	0307	CYL 7 MISFIRE	EC-947
P0308	0308	CYL 8 MISFIRE	EC-947

^{*1: 1}st trip DTC No. is the same as DTC No.

P0327 - P0430

INFOID:0000000003508920

DTC*1		Items	
CONSULT-III GST* ²	ECM* ³	(CONSULT-III screen terms)	Reference page
P0327	0327	KNOCK SEN/CIRC-B1	<u>EC-953</u>
P0328	0328	KNOCK SEN/CIRC-B1	<u>EC-953</u>
P0332	0332	KNOCK SEN/CIRC-B2	EC-953
P0333	0333	KNOCK SEN/CIRC-B2	EC-953
P0335	0335	CKP SEN/CIRCUIT	EC-958
P0340	0340	CMP SEN/CIRC-B1	EC-963
P0420	0420	TW CATALYST SYS-B1	EC-969
P0430	0430	TW CATALYST SYS-B2	EC-969

^{*1: 1}st trip DTC No. is the same as DTC No.

^{*2:} This number is prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.

^{*2:} This number is prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.

^{*2:} This number is prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.

P0441 - P0456 INFOID:0000000003508919

DT	C* ¹	Itomo		
CONSULT-III GST* ²	ECM*3	ltems (CONSULT-III screen terms)	Reference page	EC
P0441	0441	EVAP PURG FLOW/MON	<u>EC-973</u>	_
P0442	0442	EVAP SMALL LEAK	EC-978	- (
P0443	0443	PURG VOLUME CONT/V	EC-985	_
P0444	0444	PURG VOLUME CONT/V	EC-992	D
P0445	0445	PURG VOLUME CONT/V	<u>EC-992</u>	-
P0447	0447	VENT CONTROL VALVE	EC-998	_
P0448	0448	VENT CONTROL VALVE	EC-1003	- E
P0451	0451	EVAP SYS PRES SEN	EC-1009	-
P0452	0452	EVAP SYS PRES SEN	EC-1012	F
P0453	0453	EVAP SYS PRES SEN	EC-1018	-
P0455	0455	EVAP GROSS LEAK	EC-1025	_
P0456	0456	EVAP VERY SML LEAK	EC-1031	G

^{*1: 1}st trip DTC No. is the same as DTC No.

P0460 - P0643 INFOID:0000000003508918

DTC* ¹		Items	
CONSULT-III GST* ²	ECM* ³	(CONSULT-III screen terms)	Reference page
P0460	0460	FUEL LEV SEN SLOSH	EC-1038
P0461	0461	FUEL LEVEL SENSOR	EC-1040
P0462	0462	FUEL LEVL SEN/CIRC	EC-1042
P0463	0463	FUEL LEVL SEN/CIRC	EC-1042
P0500	0500	VEH SPEED SEN/CIRC*4	EC-1044
P0506	0506	ISC SYSTEM	EC-1046
P0507	0507	ISC SYSTEM	EC-1048
P0550	0550	PW ST P SEN/CIRC	EC-1050
P0603	0603	ECM BACK UP/CIRCUIT	EC-1055
P0605	0605	ECM	EC-1059
P0643	0643	SENSOR POWER/CIRC	EC-1061

^{*1: 1}st trip DTC No. is the same as DTC No.

Α

F

Н

L

K

M

Ν

0

^{*2:} This number is prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.

^{*2:} This number is prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.

^{*4:} When the fail-safe operations for both self-diagnoses (DTC P0500 and P0720) occur, the MIL illuminates.

P0700 - P0745

DTC*1		Items	
CONSULT-III GST* ²	ECM* ³	(CONSULT-III screen terms)	Reference page
P0700	0700	TCM	<u>AT-102</u>
P0705	0705	PNP SW/CIRC	<u>AT-103</u>
P0710	0710	ATF TEMP SEN/CIRC	<u>AT-133</u>
P0717	0717	TURBINE SENSOR	<u>AT-106</u>
P0720	0720	VEH SPD SEN/CIR AT*4	<u>AT-108</u>
P0731	0731	A/T 1ST GR FNCTN	<u>AT-115</u>
P0732	0732	A/T 2ND GR FNCTN	<u>AT-117</u>
P0733	0733	A/T 3RD GR FNCTN	<u>AT-119</u>
P0734	0734	A/T 4TH GR FNCTN	<u>AT-121</u>
P0735	0735	A/T 5TH GR FNCTN	<u>AT-123</u>
P0740	0740	TCC SOLENOID/CIRC	<u>AT-125</u>
P0744	0744	A/T TCC S/V FNCTN	<u>AT-127</u>
P0745	0745	L/PRESS SOL/CIRC	<u>AT-129</u>

^{*1: 1}st trip DTC No. is the same as DTC No.

P0850 - P1421

DTC	·*1	Items (CONSULT-III screen terms)	Reference page
CONSULT-III GST* ²	ECM*3		
P0850	0850	P-N POS SW/CIRCUIT	EC-1066
P1140	1140	INTK TIM S/CIRC-B1	EC-1071
P1145	1145	INTK TIM S/CIRC-B2	EC-1071
P1148	1148	CLOSED LOOP-B1	EC-1079
P1168	1168	CLOSED LOOP-B2	EC-1079
P1211	1211	TCS C/U FUNCTN	EC-1080
P1212	1212	TCS/CIRC	EC-1081
P1217	1217	ENG OVER TEMP	EC-1082
P1220	1220	FPCM/CIRCUIT	<u>EC-1092</u>
P1225	1225	CTP LEARNING-B1	<u>EC-1099</u>
P1226	1226	CTP LEARNING-B1	EC-1101
P1421	1421	COLD START CONTROL	EC-1103

^{*1: 1}st trip DTC No. is the same as DTC No.

^{*2:} This number is prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.

^{*5:} When the fail-safe operations for both self-diagnoses (DTC P0500 and P0720) occur, the MIL illuminates.

^{*2:} This number is prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.

Α

D

Е

F

Н

P1550 - P1574

INFOID:0000000003508913

רם	「C* ¹	ltems (CONSULT-III screen terms)	
CONSULT-III GST* ²	ECM* ³		Reference page
P1550	1550	BAT CURRENT SENSOR	EC-1105
P1551	1551	BAT CURRENT SENSOR	EC-1110
P1552	1552	BAT CURRENT SENSOR	EC-1110
P1553	1553	BAT CURRENT SENSOR	EC-1115
P1554	1554	BAT CURRENT SENSOR	EC-1120
P1564	1564	ASCD SW	EC-1126 (Models with ICC) EC-1132 (Models with ASCD)
P1568	1568	ICC COMMAND VALUE*4	EC-1138
P1572	1572	ASCD BRAKE SW	EC-1139 (Models with ICC) EC-1147 (Models with ASCD)
P1574	1574	ASCD VHL SPD SEN	EC-1154 (Models with ICC) EC-1156 (Models with ASCD)

^{*1: 1}st trip DTC No. is the same as DTC No.

P1610 - P1774

INFOID:0000000003508912

DTC*1		Marina.		_
CONSULT-III GST* ²	ECM* ³	(CONSULT-III screen terms)	Reference page	J
P1610	1610	LOCK MODE	<u>BL-5</u>	_
P1611	1611	ID DISCORD, IMMU-ECM	<u>BL-5</u>	K
P1612	1612	CHAIN OF ECM-IMMU	<u>BL-5</u>	
P1614	1614	CHAIN OF IMMU-KEY	<u>BL-5</u>	
P1715	1715	IN PULY SPEED	EC-1158	
P1730	1730	A/T INTERLOCK	<u>AT-140</u>	
P1752	1752	I/C SOLENOID/CIRC	<u>AT-144</u>	N
P1757	1757	FR/B SOLENOID/CIRC	<u>AT-146</u>	_
P1762	1762	D/C SOLENOID/CIRC	<u>AT-148</u>	_ N
P1767	1767	HLR/C SOL/CIRC	<u>AT-150</u>	
P1772	1772	LC/B SOLENOID/CIRC	<u>AT-152</u>	
P1774	1774	LC/B SOLENOID FNCT	<u>AT-154</u>	С

^{*1: 1}st trip DTC No. is the same as DTC No.

^{*2:} This number is prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.

^{*4:} Models with ICC.

^{*2:} This number is prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.

P1800 - P2A03

DTC*1		lt	
CONSULT-III GST* ²	ECM*3	ltems (CONSULT-III screen terms)	Reference page
P1800	1800	VIAS S/V-1	EC-1159
P1805	1805	BRAKE SW/CIRCUIT	EC-1164
P2100	2100	ETC MOT PWR-B1	EC-1171
P2101	2101	ETC FNCTN/CIRC-B1	EC-1175
P2103	2103	ETC MOT PWR	EC-1171
P2118	2118	ETC MOT-B1	EC-1181
P2119	2119	ETC ACTR-B1	EC-1186
P2122	2122	APP SEN 1/CIRC	EC-1188
P2123	2123	APP SEN 1/CIRC	EC-1188
P2127	2127	APP SEN 2/CIRC	EC-1193
P2128	2128	APP SEN 2/CIRC	EC-1193
P2135	2135	TP SENSOR-B1	EC-1199
P2138	2138	APP SENSOR	EC-1205
P2A00	2A00	A/F SENSOR1 (B1)	EC-1212
P2A03	2A03	A/F SENSOR1 (B2)	EC-1212

^{*1: 1}st trip DTC No. is the same as DTC No.

^{*2:} This number is prescribed by SAE J2012.

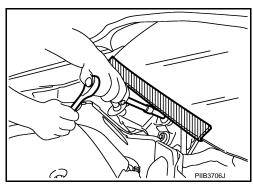
^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.

PRECAUTIONS

Precaution for Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT PRE-TENSIONER" INFOID:0000000005154050

The Supplemental Restraint System such as "AIR BAG" and "SEAT BELT PRE-TENSIONER", used along with a front seat belt, helps to reduce the risk or severity of injury to the driver and front passenger for certain types of collision. This system includes seat belt switch inputs and dual stage front air bag modules. The SRS system uses the seat belt switches to determine the front air bag deployment, and may only deploy one front air bag, depending on the severity of a collision and whether the front occupants are belted or unbelted. Information necessary to service the system safely is included in the "SUPPLEMENTAL RESTRAINT SYS-TEM" and "SEAT BELTS" of this Service Manual.

- To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death in the event of a collision which would result in air bag inflation, all maintenance must be performed by an authorized NISSAN/INFINITI dealer.
- Improper maintenance, including incorrect removal and installation of the SRS, can lead to personal injury caused by unintentional activation of the system. For removal of Spiral Cable and Air Bag Module, see the "SUPPLEMENTAL RESTRAINT SYSTEM".
- Do not use electrical test equipment on any circuit related to the SRS unless instructed to in this Service Manual. SRS wiring harnesses can be identified by yellow and/or orange harnesses or harness connectors.


PRECAUTIONS WHEN USING POWER TOOLS (AIR OR ELECTRIC) AND HAMMERS

WARNING:

- When working near the Air Bag Diagnosis Sensor Unit or other Air Bag System sensors with the ignition ON or engine running, DO NOT use air or electric power tools or strike near the sensor(s) with a hammer. Heavy vibration could activate the sensor(s) and deploy the air bag(s), possibly causing serious injury.
- When using air or electric power tools or hammers, always switch the ignition OFF, disconnect the battery, and wait at least 3 minutes before performing any service.

Precaution for Procedure without Cowl Top Cover

When performing the procedure after removing cowl top cover, cover the lower end of windshield with urethane, etc.

On Board Diagnosis (OBD) System of Engine and A/T

The ECM has an on board diagnostic system. It will light up the malfunction indicator lamp (MIL) to warn the driver of a malfunction causing emission deterioration.

CAUTION:

Revision: 2009 February

- Be sure to turn the ignition switch OFF and disconnect the negative battery cable before any repair or inspection work. The open/short circuit of related switches, sensors, solenoid valves, etc. will cause the MIL to light up.
- Be sure to connect and lock the connectors securely after work. A loose (unlocked) connector will cause the MIL to light up due to the open circuit. (Be sure the connector is free from water, grease, dirt, bent terminals, etc.)
- Certain systems and components, especially those related to OBD, may use a new style slide-locking type harness connector. For description and how to disconnect, refer to PG-75, "Description".
- Be sure to route and secure the harnesses properly after work. The interference of the harness with a bracket, etc. may cause the MIL to light up due to the short circuit.

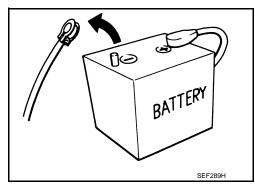
EC

Α

D

INFOID:0000000002954709

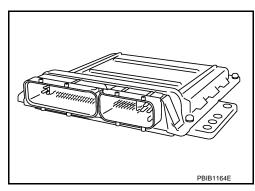
INFOID:0000000002954710

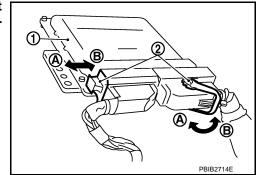

2008 M35/M45

M

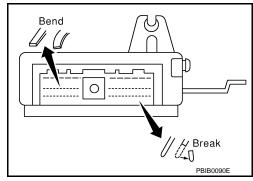
- Be sure to connect rubber tubes properly after work. A misconnected or disconnected rubber tube
 may cause the MIL to light up due to the malfunction of the EVAP system or fuel injection system,
 etc.
- Be sure to erase the unnecessary malfunction information (repairs completed) from the ECM and TCM (Transmission control module) before returning the vehicle to the customer.

Precaution INFOID:000000002954711

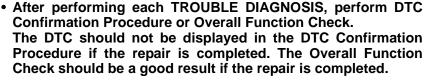

- Always use a 12 volt battery as power source.
- Do not attempt to disconnect battery cables while engine is running.
- Before connecting or disconnecting the ECM harness connector, turn ignition switch OFF and disconnect negative battery cable. Failure to do so may damage the ECM because battery voltage is applied to ECM even if ignition switch is turned OFF.
- Before removing parts, turn ignition switch OFF and then disconnect negative battery cable.

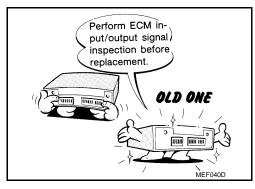


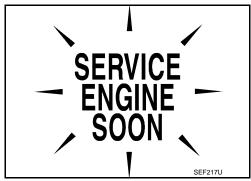
- · Do not disassemble ECM.
- If a battery cable is disconnected, the memory will return to the ECM value.

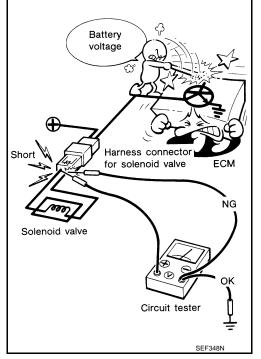

The ECM will now start to self-control at its initial value. So, engine operation can vary slightly in this case. However, this is not an indication of a malfunction. Do not replace parts because of a slight variation.

- If the battery is disconnected, the following emission-related diagnostic information will be lost within 24 hours.
- Diagnostic trouble codes
- 1st trip diagnostic trouble codes
- Freeze frame data
- 1st trip freeze frame data
- System readiness test (SRT) codes
- Test values
- When connecting ECM harness connector, fasten (B) it securely with a lever (2) as far as it will go as shown in the figure.
- ECM (1)
- Loosen (A)






- When connecting or disconnecting pin connectors into or from ECM, take care not to damage pin terminals (bend or break).
 - Make sure that there are not any bends or breaks on ECM pin terminal, when connecting pin connectors.
- Securely connect ECM harness connectors.
 A poor connection can cause an extremely high (surge) voltage to develop in coil and condenser, thus resulting in damage to ICs.
- Keep engine control system harness at least 10 cm (4 in) away from adjacent harness, to prevent engine control system malfunctions due to receiving external noise, degraded operation of ICs, etc.


- Keep engine control system parts and harness dry.
- Before replacing ECM, perform ECM Terminals and Reference Value inspection and make sure ECM functions properly.
 Refer to EC-733, "ECM Terminal and Reference Value".
- Handle mass air flow sensor carefully to avoid damage.
- Do not clean mass air flow sensor with any type of detergent.
- Do not disassemble electric throttle control actuator.
- Even a slight leak in the air intake system can cause serious incidents.
- Do not shock or jar the camshaft position sensor (PHASE), crankshaft position sensor (POS).

- When measuring ECM signals with a circuit tester, never allow the two tester probes to contact.
 - Accidental contact of probes will cause a short circuit and damage the ECM power transistor.
- Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

EC

Α

С

D

Е

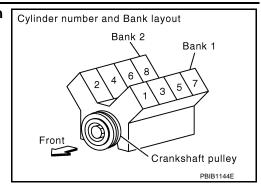
F

G

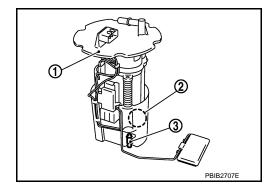
Н

Κ

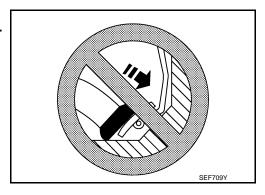
L

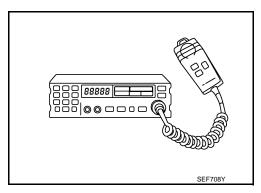

M

N


0

Ρ


• B1 indicates the bank 1, B2 indicates the bank 2 as shown in the figure.


- Do not operate fuel pump when there is no fuel in lines.
- Fuel level sensor unit and fuel pump (1)
- Fuel pressure regulator (2)
- Fuel tank temperature sensor (3)
- Tighten fuel hose clamps to the specified torque.

- Do not depress accelerator pedal when starting.
- Immediately after starting, do not rev up engine unnecessarilv.
- Do not rev up engine just prior to shutdown.

- When installing C.B. ham radio or a mobile phone, be sure to observe the following as it may adversely affect electronic control systems depending on installation location.
- Keep the antenna as far as possible from the electronic control units.
- Keep the antenna feeder line more than 20 cm (8 in) away from the harness of electronic controls.
 - Do not let them run parallel for a long distance.
- Adjust the antenna and feeder line so that the standing-wave radio can be kept smaller.
- Be sure to ground the radio to vehicle body.

Α

Н

PREPARATION

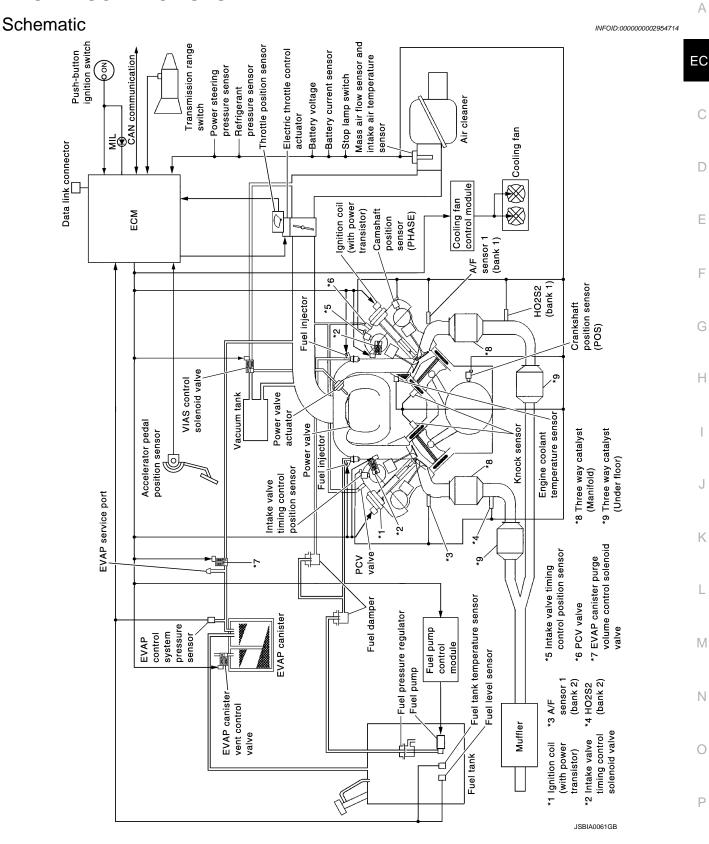
Special Service Tool

INFOID:0000000002954712

	re tools may differ from those of special service too	ols illustrated here.	EC
Tool number (Kent-Moore No.) Tool name		Description	
EG17650301 (J-33984-A) Radiator cap tester adapter		Adapting radiator cap tester to radiator cap and radiator filler neck a: 28 (1.10) dia. b: 31.4 (1.236) dia. c: 41.3 (1.626) dia. Unit: mm (in)	D
	S-NT564		Е
(J-44321)		Checking fuel pressure	-
Fuel pressure gauge kit			F
	LEC642		G

Commercial Service Tool

INFOID:0000000002954713	
-------------------------	--


Tool name (Kent-Moore No.)		Description
Leak detector i.e.: (J-41416)	S-NT703	Locating the EVAP leak
EVAP service port adapter i.e.: (J-41413-OBD)	341703	Applying positive pressure through EVAP service port
	S-NT704	
Fuel filler cap adapter i.e.: (MLR-8382)		Checking fuel tank vacuum relief valve opening pressure
	S-NT815	

< SERVICE INFORMATION >

Tool name (Kent-Moore No.)	Description
Socket wrench 19 mm (0.75 in) Note	Removing and installing engine coolant temperature sensor
Oxygen sensor thread cleaner i.e.: (J-43897-18) (J-43897-12) Mating surface shave cylinder-	Reconditioning the exhaust system threads before installing a new oxygen sensor. Use with antiseize lubricant shown below. a: 18 mm diameter with pitch 1.5 mm for Zirconia Oxygen Sensor b: 12 mm diameter with pitch 1.25 mm for Titania Oxygen Sensor
Anti-seize lubricant i.e.: (Permatex TM 133AR or equivalent meeting MIL specifica- tion MIL-A-907)	Lubricating oxygen sensor thread cleaning tool when reconditioning exhaust system threads.

INFOID:0000000002954715

ENGINE CONTROL SYSTEM

Multiport Fuel Injection (MFI) System

INPUT/OUTPUT SIGNAL CHART

Sensor	Input Signal to ECM	ECM function	Actuator		
Crankshaft position sensor (POS)	Engine speed*3				
Camshaft position sensor (PHASE)	Piston position				
Mass air flow sensor	Amount of intake air				
Engine coolant temperature sensor	Engine coolant temperature				
Air fuel ratio (A/F) sensor 1	Density of oxygen in exhaust gas				
Throttle position sensor	Throttle position		Fuel injector		
Accelerator pedal position sensor	Accelerator pedal position				
Transmission range switch	Gear position	Fuel injection & mixture ratio			
Battery	Battery voltage*3	control			
Knock sensor	Engine knocking condition				
Power steering pressure sensor	Power steering operation				
Heated oxygen sensor 2*1	Density of oxygen in exhaust gas				
ABS actuator and electric unit (control unit)	VDC/TCS operation command*2				
Air conditioner switch	Air conditioner operation* ²				
Wheel sensor	Vehicle speed*2				

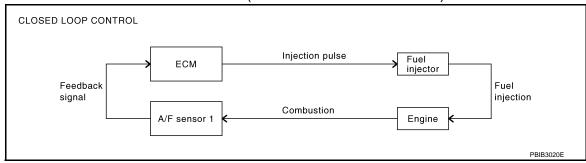
^{*1:} This sensor is not used to control the engine system under normal conditions.

SYSTEM DESCRIPTION

The amount of fuel injected from the fuel injector is determined by the ECM. The ECM controls the length of time the valve remains open (injection pulse duration). The amount of fuel injected is a program value in the ECM memory. The program value is preset by engine operating conditions. These conditions are determined by input signals (for engine speed and intake air) from the crankshaft position sensor (POS), camshaft position sensor (PHASE) and the mass air flow sensor.

VARIOUS FUEL INJECTION INCREASE/DECREASE COMPENSATION

In addition, the amount of fuel injected is compensated to improve engine performance under various operating conditions as listed below.


<Fuel increase>

- During warm-up
- · When starting the engine
- During acceleration
- Hot-engine operation
- When selector lever is changed from N to D
- High-load, high-speed operation

<Fuel decrease>

- During deceleration
- During high engine speed operation

MIXTURE RATIO FEEDBACK CONTROL (CLOSED LOOP CONTROL)

^{*2:} This signal is sent to the ECM through CAN communication line.

^{*3:} ECM determines the start signal status by the signals of engine speed and battery voltage.

The mixture ratio feedback system provides the best air-fuel mixture ratio for driveability and emission control. The three way catalyst (manifold) can then better reduce CO, HC and NOx emissions. This system uses A/F sensor 1 in the exhaust manifold to monitor whether the engine operation is rich or lean. The ECM adjusts the injection pulse width according to the sensor voltage signal. For more information about A/F sensor 1, refer to EC-848. This maintains the mixture ratio within the range of stoichiometric (ideal air-fuel mixture).

This stage is referred to as the closed loop control condition.

Heated oxygen sensor 2 is located downstream of the three way catalyst (manifold). Even if the switching characteristics of A/F sensor 1 shift, the air-fuel ratio is controlled to stoichiometric by the signal from heated oxygen sensor 2.

Open Loop Control

The open loop system condition refers to when the ECM detects any of the following conditions. Feedback control stops in order to maintain stabilized fuel combustion.

- Deceleration and acceleration
- · High-load, high-speed operation
- Malfunction of A/F sensor 1 or its circuit
- Insufficient activation of A/F sensor 1 at low engine coolant temperature
- High engine coolant temperature
- During warm-up
- After shifting from N to D
- When starting the engine

MIXTURE RATIO SELF-LEARNING CONTROL

The mixture ratio feedback control system monitors the mixture ratio signal transmitted from A/F sensor 1. This feedback signal is then sent to the ECM. The ECM controls the basic mixture ratio as close to the theoretical mixture ratio as possible. However, the basic mixture ratio is not necessarily controlled as originally designed. Both manufacturing differences (i.e., mass air flow sensor hot wire) and characteristic changes during operation (i.e., fuel injector clogging) directly affect mixture ratio.

Accordingly, the difference between the basic and theoretical mixture ratios is monitored in this system. This is then computed in terms of "injection pulse duration" to automatically compensate for the difference between the two ratios.

"Fuel trim" refers to the feedback compensation value compared against the basic injection duration. Fuel trim includes short term fuel trim and long term fuel trim.

"Short term fuel trim" is the short-term fuel compensation used to maintain the mixture ratio at its theoretical value. The signal from A/F sensor 1 indicates whether the mixture ratio is RICH or LEAN compared to the theoretical value. The signal then triggers a reduction in fuel volume if the mixture ratio is rich, and an increase in fuel volume if it is lean.

"Long term fuel trim" is overall fuel compensation carried out long-term to compensate for continual deviation of the short term fuel trim from the central value. Such deviation will occur due to individual engine differences, wear over time and changes in the usage environment.

FUEL INJECTION TIMING

Two types of systems are used.

Sequential Multiport Fuel Injection System

Fuel is injected into each cylinder during each engine cycle according to the firing order. This system is used when the engine is running.

Simultaneous Multiport Fuel Injection System

Fuel is injected simultaneously into all eight cylinders twice each engine cycle. In other words, pulse signals of the same width are simultaneously transmitted from the ECM.

The eight fuel injectors will then receive the signals two times for each engine cycle.

This system is used when the engine is being started and/or if the fail-safe system (CPU) is operating.

EC

D

Е

F

Н

I

J

Κ

R. /

N

0

2008 M35/M45

FUEL SHUT-OFF

Fuel to each cylinder is cut off during deceleration, operation of the engine at excessively high speeds or operation of the vehicle at excessively high speeds.

Electronic Ignition (EI) System

INFOID:0000000002954716

INPUT/OUTPUT SIGNAL CHART

Sensor	Input Signal to ECM	ECM function	Actuator	
Crankshaft position sensor (POS)	Engine speed*2			
Camshaft position sensor (PHASE)	Piston position			
Mass air flow sensor	Amount of intake air			
Engine coolant temperature sensor	Engine coolant temperature		Power transistor	
Throttle position sensor	Throttle position	Ignition timing		
Accelerator pedal position sensor	Accelerator pedal position	control		
Battery	Battery voltage*2			
Knock sensor	Engine knocking			
Transmission range switch	Gear position			
Wheel sensor	Vehicle speed*1			

^{*1:} This signal is sent to the ECM through CAN communication line.

SYSTEM DESCRIPTION

Firing order: 1 - 8 - 7 - 3 - 6 - 5 - 4 - 2

The ignition timing is controlled by the ECM to maintain the best air-fuel ratio for every running condition of the engine. The ignition timing data is stored in the ECM.

The ECM receives information such as the injection pulse width and camshaft position sensor (PHASE) signal. Computing this information, ignition signals are transmitted to the power transistor.

During the following conditions, the ignition timing is revised by the ECM according to the other data stored in the ECM.

- At starting
- During warm-up
- At idle
- At low battery voltage
- During acceleration

The knock sensor retard system is designed only for emergencies. The basic ignition timing is programmed within the anti-knocking zone, if recommended fuel is used under dry conditions. The retard system does not operate under normal driving conditions. If engine knocking occurs, the knock sensor monitors the condition. The signal is transmitted to the ECM. The ECM retards the ignition timing to eliminate the knocking condition.

Fuel Cut Control (At No Load and High Engine Speed)

INFOID:0000000002954717

INPUT/OUTPUT SIGNAL CHART

Sensor	Input Signal to ECM	ECM function	Actuator	
Transmission range switch	nsmission range switch Neutral position			
Accelerator pedal position sensor	Accelerator pedal position			
Engine coolant temperature sensor	Engine coolant temperature	Fuel cut control	Fuel injector	
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed		,	
Wheel sensor	Vehicle speed*	1		

^{*:} This signal is sent to the ECM through CAN communication line.

SYSTEM DESCRIPTION

^{*2:} ECM determines the start signal status by the signals of engine speed and battery voltage.

ENGINE CONTROL SYSTEM

< SERVICE INFORMATION >

[VK45DE]

If the engine speed is above 1,400 rpm under no load (for example, the selector lever position is neutral and engine speed is over 1,400 rpm) fuel will be cut off after some time. The exact time when the fuel is cut off varies based on engine speed.

Fuel cut will be operated until the engine speed reaches 1,000 rpm, then fuel cut will be cancelled. **NOTE:**

This function is different from deceleration control listed under Multiport Fuel Injection (MFI) System, <u>EC-653</u>, "Multiport Fuel Injection (MFI) System".

EC

С

D

Е

F

G

Н

K

L

Ν

0

Р

AIR CONDITIONING CUT CONTROL

Input/Output Signal Chart

INFOID:0000000002954718

Sensor Input Signal to ECN		ECM function	Actuator		
Air conditioner switch	Air conditioner ON signal*1				
Accelerator pedal position sensor	Accelerator pedal position				
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed*2	-			
Engine coolant temperature sensor	Engine coolant temperature	Air conditioner	Air conditioner relay		
Battery	Battery voltage*2	cut control			
Refrigerant pressure sensor	Refrigerant pressure				
Power steering pressure sensor	Power steering operation				
Wheel sensor	Vehicle speed*1				

^{*1:} This signal is sent to the ECM through CAN communication line.

System Description

INFOID:0000000002954719

This system improves engine operation when the air conditioner is used. Under the following conditions, the air conditioner is turned off.

- · When the accelerator pedal is fully depressed.
- When cranking the engine.
- At high engine speeds.
- · When the engine coolant temperature becomes excessively high.
- When operating power steering during low engine speed or low vehicle speed.
- When engine speed is excessively low.
- When refrigerant pressure is excessively low or high.

^{*2:} ECM determines the start signal status by the signals of engine speed and battery voltage.

AUTOMATIC SPEED CONTROL DEVICE (ASCD)

< SERVICE INFORMATION >

[VK45DE]

AUTOMATIC SPEED CONTROL DEVICE (ASCD)

System Description

INFOID:0000000002954720

INPUT/OUTPUT SIGNAL CHART

Sensor	Input signal to ECM	ECM function	Actuator		
ASCD brake switch	Brake pedal operation				
Stop lamp switch	Brake pedal operation				
ASCD steering switch	ASCD steering switch operation	ASCD vehicle speed control	Electric throttle control		
Transmission range switch	Gear position	AOOD Verlicie speed control	actuator		
Wheel sensor	Vehicle speed*				
TCM	Powertrain revolution*				

^{*:} This signal is sent to the ECM through CAN communication line

BASIC ASCD SYSTEM

Refer to Owner's Manual for ASCD operating instructions.

Automatic Speed Control Device (ASCD) allows a driver to keep vehicle at predetermined constant speed without depressing accelerator pedal. Driver can set vehicle speed in advance between approximately 40 km/ h (25 MPH) and 144 km/h (89 MPH).

ECM controls throttle angle of electric throttle control actuator to regulate engine speed.

Operation status of ASCD is indicated by CRUISE lamp and SET lamp in combination meter. If any malfunction occurs in ASCD system, it automatically deactivates control.

Always drive vehicle in safe manner according to traffic conditions and obey all traffic laws.

SET OPERATION

Press MAIN switch. (The CRUISE lamp in combination meter illuminates.)

When vehicle speed reaches a desired speed between approximately 40 km/h (25 MPH) and 144 km/h (89 MPH), press SET/COAST switch. (Then SET lamp in combination meter illuminates.)

ACCELERATE OPERATION

If the RESUME/ACCELERATE switch is pressed during cruise control driving, increase the vehicle speed until the switch is released or vehicle speed reaches maximum speed controlled by the system. And then ASCD will keep the new set speed.

CANCEL OPERATION

When any of following conditions exist, cruise operation will be canceled.

- CANCEL switch is pressed
- More than 2 switches at ASCD steering switch are pressed at the same time (Set speed will be cleared)
- Brake pedal is depressed
- Selector lever is changed to N, P, R position
- Vehicle speed decreased to 13 km/h (8 MPH) lower than the set speed
- TCS system is operated

When the ECM detects any of the following conditions, the ECM will cancel the cruise operation and inform the driver by blinking indicator lamp.

- Engine coolant temperature is slightly higher than the normal operating temperature, CRUISE lamp may blink slowly.
 - When the engine coolant temperature decreases to the normal operating temperature, CRUISE lamp will stop blinking and the cruise operation will be able to work by pressing SET/COAST switch or RESUME/ ACCELERATE switch.
- Malfunction for some self-diagnoses regarding ASCD control: SET lamp will blink quickly.

If MAIN switch is turned to OFF during ASCD is activated, all of ASCD operations will be canceled and vehicle speed memory will be erased.

COAST OPERATION

When the SET/COAST switch is pressed during cruise control driving, decrease vehicle set speed until the switch is released. And then ASCD will keep the new set speed.

RESUME OPERATION

EC-659 Revision: 2009 February 2008 M35/M45

EC

Α

Е

Н

AUTOMATIC SPEED CONTROL DEVICE (ASCD)

< SERVICE INFORMATION >

[VK45DE]

When the RESUME/ACCELERATE switch is pressed after cancel operation other than pressing MAIN switch is performed, vehicle speed will return to last set speed. To resume vehicle set speed, vehicle condition must meet following conditions.

- Brake pedal is released
- A/T selector lever is in other than P and N positions
- Vehicle speed is greater than 40 km/h (25 MPH) and less than 144 km/h (89 MPH)

Component Description

INFOID:0000000002954721

ASCD STEERING SWITCH

Refer to EC-1132.

ASCD BRAKE SWITCH

Refer to <u>EC-1147</u> and <u>EC-1222</u>.

STOP LAMP SWITCH

Refer to <u>EC-1147</u>, <u>EC-1164</u> and <u>EC-1222</u>.

ELECTRIC THROTTLE CONTROL ACTUATOR

Refer to <u>EC-1171</u>, <u>EC-1175</u>, <u>EC-1181</u> and <u>EC-1186</u>.

ASCD INDICATOR

Refer to EC-1227.

CAN COMMUNICATION

[VK45DE] < SERVICE INFORMATION >

CAN COMMUNICATION

System Description

CAN (Controller Area Network) is a serial communication line for real time application. It is an on-vehicle multiplex communication line with high data communication speed and excellent error detection ability. Many electronic control units are equipped onto a vehicle, and each control unit shares information and links with other control units during operation (not independent). In CAN communication, control units are connected with 2 communication lines (CAN H line, CAN L line) allowing a high rate of information transmission with less wiring.

Each control unit transmits/receives data but selectively reads required data only. Refer to LAN-30, "CAN Communication Signal Chart", about CAN communication for detail. EC

Α

INFOID:0000000002954722

D

Е

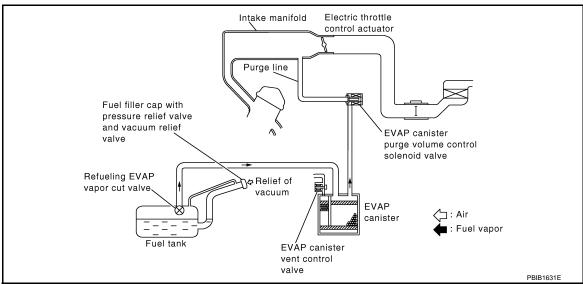
F

Н

K

L

M


Ν

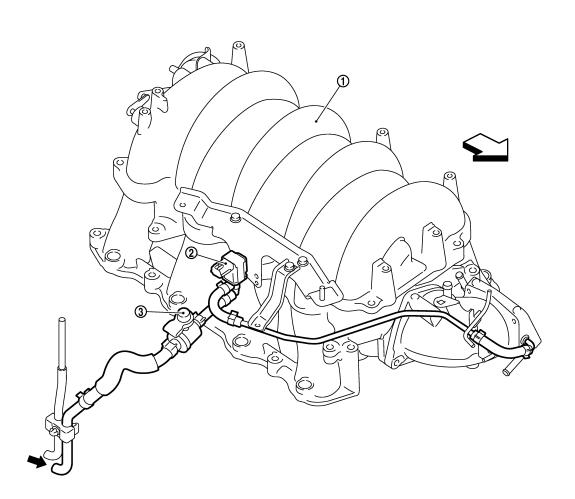
Р

EVAPORATIVE EMISSION SYSTEM

Description INFOID:000000002954723

SYSTEM DESCRIPTION

The evaporative emission system is used to reduce hydrocarbons emitted into the atmosphere from the fuel system. This reduction of hydrocarbons is accomplished by activated charcoals in the EVAP canister.


The fuel vapor in the sealed fuel tank is led into the EVAP canister which contains activated carbon and the vapor is stored there when the engine is not operating or when refueling to the fuel tank.

The vapor in the EVAP canister is purged by the air through the purge line to the intake manifold when the engine is operating. EVAP canister purge volume control solenoid valve is controlled by ECM. When the engine operates, the flow rate of vapor controlled by EVAP canister purge volume control solenoid valve is proportionally regulated as the air flow increases.

EVAP canister purge volume control solenoid valve also shuts off the vapor purge line during decelerating and idling.

EVAPORATIVE EMISSION LINE DRAWING

Α

PBIB2726E

= : From next page

1. Intake manifold collector

EVAP canister purge volume control 3. EVAP service port solenoid valve

NOTE:

Do not use soapy water or any type of solvent while installing vacuum hose or purge hoses.

EC

D

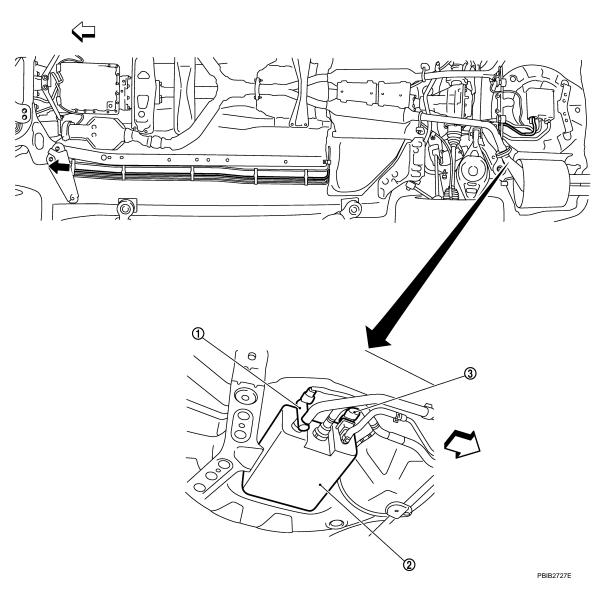
Е

F

G

Н

K


L

M

Ν

0

Р

<□ : Vehicle front

: To previous page

1. EVAP canister vent control valve

2. EVAP canister

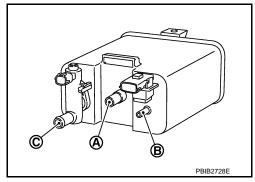
3. EVAP control system pressure sensor

NOTE:

Do not use soapy water or any type of solvent while installing vacuum hose or purge hoses.

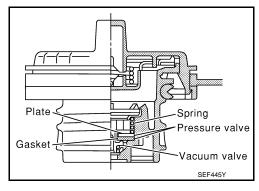
Component Inspection

INFOID:0000000002954724


EVAP CANISTER

EVAPORATIVE EMISSION SYSTEM

< SERVICE INFORMATION >


Check EVAP canister as follows:

- 1. Block port (B).
- 2. Blow air into port (A) and check that it flows freely out of port (C).
- 3. Release blocked port (B).
- 4. Apply vacuum pressure to port (B) and check that vacuum pressure exists at the ports (A) and (C).
- 5. Block port (A) and (B).
- 6. Apply pressure to port (C) and check that there is no leakage.

FUEL TANK VACUUM RELIEF VALVE (BUILT INTO FUEL FILLER CAP)

1. Wipe clean valve housing.

2. Check valve opening pressure and vacuum.

Pressure: 15.3 - 20.0 kPa (0.156 - 0.204 kg/cm², 2.22 -

2.90 psi)

Vacuum: -6.0 to -3.3 kPa (-0.061 to -0.034 kg/cm²,

-0.87 to -0.48 psi)

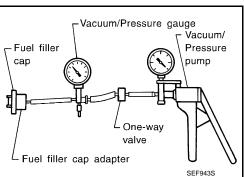
3. If out of specification, replace fuel filler cap as an assembly.

CAUTION:

Use only a genuine fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.

FUEL TANK TEMPERATURE SENSOR

Refer to EC-940.


EVAP CANISTER VENT CONTROL VALVE

Refer to EC-1002.

EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to <u>EC-1017</u>.

EVAP SERVICE PORT

Α

[VK45DE]

EC

C

Е

D

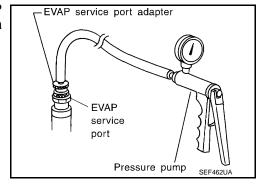
F

Н

J

K

M

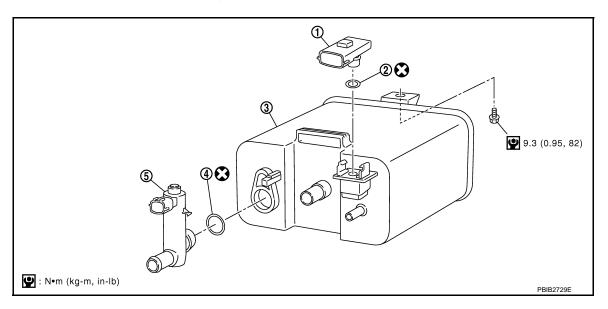

N

0

Р

< SERVICE INFORMATION >

Positive pressure is delivered to the EVAP system through the EVAP service port. If fuel vapor leakage in the EVAP system occurs, use a leak detector to locate the leak.



Removal and Installation

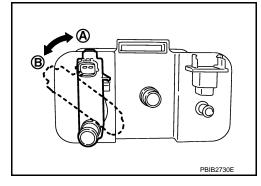
INFOID:0000000002954725

EVAP CANISTER

Tighten EVAP canister as shown in the figure.

- 1. EVAP control system pressure sensor
- O-ring

4. O-ring


- 5. EVAP canister vent control valve
- 3. EVAP canister

EVAP CANISTER VENT CONTROL VALVE

- Turn EVAP canister vent control valve counterclockwise.

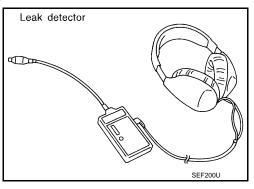
 - Unlock (B)
- Remove the EVAP canister vent control valve.

Always replace O-ring with a new one.

How to Detect Fuel Vapor Leakage

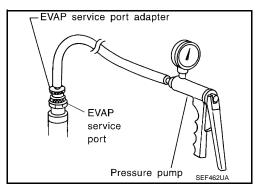
INFOID:0000000002954726

CAUTION:

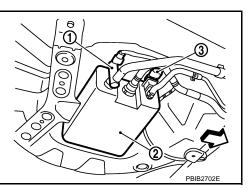

- Do not use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in EVAP system.
 NOTE:
- · Do not start engine.
- Improper installation of EVAP service port adapter to the EVAP service port may cause a leak.

EVAPORATIVE EMISSION SYSTEM

< SERVICE INFORMATION > [VK45DE]


(P) WITH CONSULT-III

- 1. Attach the EVAP service port adapter securely to the EVAP service port.
- 2. Also attach the pressure pump and hose to the EVAP service port adapter.
- 3. Turn ignition switch ON.
- 4. Select the "EVAP SYSTEM CLOSE" of "WORK SUPPORT MODE" with CONSULT-III.
- 5. Touch "START". A bar graph (Pressure indicating display) will appear on the screen.
- 6. Apply positive pressure to the EVAP system until the pressure indicator reaches the middle of the bar graph.
- 7. Remove EVAP service port adapter and hose with pressure pump.
- 8. Locate the leak using a leak detector. Refer to <u>EC-662</u>, "<u>Description"</u>.



M WITHOUT CONSULT-III

- Attach the EVAP service port adapter securely to the EVAP service port.
- Also attach the pressure pump with pressure gauge to the EVAP service port adapter.

- 3. Apply battery voltage between the terminals of EVAP canister vent control valve (1) to make a closed EVAP system.
 - Illustration shows the view from under the vehicle
 - ← : Vehicle front
 - EVAP canister (2)
 - EVAP control system pressure sensor (3)
- To locate the leak, deliver positive pressure to the EVAP system until pressure gauge points reach 1.38 to 2.76 kPa (0.014 to 0.028 kg/cm², 0.2 to 0.4 psi).
- Remove EVAP service port adapter and hose with pressure pump.
- 6. Locate the leak using a leak detector. Refer to EC-662, "Description".

EC

Α

D

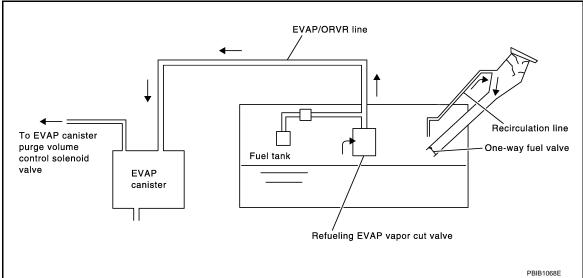
Е

Н

|

K

M


Ν

Р

ON BOARD REFUELING VAPOR RECOVERY (ORVR)

System Description

INFOID:0000000002954727

From the beginning of refueling, the air and vapor inside the fuel tank go through refueling EVAP vapor cut valve and EVAP/ORVR line to the EVAP canister. The vapor is absorbed by the EVAP canister and the air is released to the atmosphere.

When the refueling has reached the full level of the fuel tank, the refueling EVAP vapor cut valve is closed and refueling is stopped because of auto shut-off. The vapor which was absorbed by the EVAP canister is purged during driving.

WARNING:

When conducting inspections below, be sure to observe the following:

- Put a "CAUTION: FLAMMABLE" sign in workshop.
- Do not smoke while servicing fuel system. Keep open flames and sparks away from work area.
- Be sure to furnish the workshop with a CO2 fire extinguisher.

CAUTION:

- Before removing fuel line parts, carry out the following procedures:
- Put drained fuel in an explosion-proof container and put lid on securely.
- Release fuel pressure from fuel line. Refer to EC-708, "Fuel Pressure Check".
- Disconnect battery ground cable.
- Always replace O-ring when the fuel gauge retainer is removed.
- Do not kink or twist hose and tube when they are installed.
- Do not tighten hose and clamps excessively to avoid damaging hoses.
- · After installation, run engine and check for fuel leaks at connection.
- Do not attempt to top off the fuel tank after the fuel pump nozzle shuts off automatically.
 Continued refueling may cause fuel overflow, resulting in fuel spray and possibly a fire.

Diagnosis Procedure

INFOID:0000000002954728

SYMPTOM: FUEL ODOR FROM EVAP CANISTER IS STRONG.

1. CHECK EVAP CANISTER

- 1. Remove EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.
- Weigh the EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.

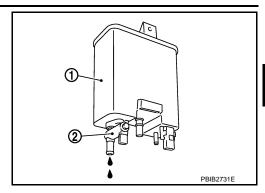
The weight should be less than 2.0 kg (4.4 lb).

OK or NG

OK >> GO TO 2. NG >> GO TO 3.

2. CHECK IF EVAP CANISTER SATURATED WITH WATER

< SERVICE INFORMATION >


[VK45DE]

Does water drain from the EVAP canister (1)?

EVAP canister vent control valve (2)

Yes or No

Yes >> GO TO 3. No >> GO TO 5.

3.REPLACE EVAP CANISTER

Replace EVAP canister with a new one.

>> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the EVAP hose between EVAP canister and vehicle frame for clogging or poor connection.

>> Repair or replace EVAP hose.

5. CHECK REFUELING EVAP VAPOR CUT VALVE

Refer to EC-670. "Component Inspection".

OK or NG

OK >> INSPECTION END

NG >> Replace refueling EVAP vapor cut valve with fuel tank.

SYMPTOM: CANNOT REFUEL/FUEL ODOR FROM THE FUEL FILLER OPENING IS STRONG WHILE REFUELING.

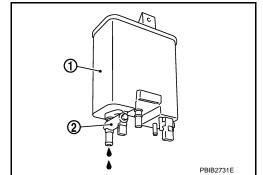
1. CHECK EVAP CANISTER

- Remove EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.
- Weigh the EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.

The weight should be less than 2.0 kg (4.4 lb).

OK or NG

OK >> GO TO 2. NG >> GO TO 3.


2.check if evap canister saturated with water

Does water drain from the EVAP canister (1)?

EVAP canister vent control valve (2)

Yes or No

Yes >> GO TO 3. No >> GO TO 5.

3. REPLACE EVAP CANISTER

Replace EVAP canister with a new one.

Α

EC

C

Е

D

_

G

Н

.

J

Κ

L

M

Ν

0

Р

Ρ

< SERVICE INFORMATION >

[VK45DE]

>> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the EVAP hose between EVAP canister and vehicle frame for clogging or poor connection.

>> Repair or replace EVAP hose.

CHECK VENT HOSES AND VENT TUBES

Check hoses and tubes between EVAP canister and refueling control valve for clogging, kink, looseness and improper connection.

OK or NG

OK >> GO TO 6.

NG >> Repair or replace hoses and tubes.

6.CHECK FILLER NECK TUBE

Check recirculation line for clogging, dents and cracks.

OK or NG

OK >> GO TO 7.

NG >> Replace filler neck tube.

7. CHECK REFUELING EVAP VAPOR CUT VALVE

Refer to EC-670, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace refueling EVAP vapor cut valve with fuel tank.

8.CHECK FUEL FILLER TUBE

Check filler neck tube and hose connected to the fuel tank for clogging, dents and cracks.

OK or NG

OK >> GO TO 9.

NG >> Replace fuel filler tube.

9. CHECK ONE-WAY FUEL VALVE-I

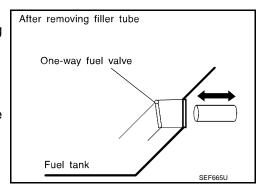
Check one-way valve for clogging.

OK or NG

OK >> GO TO 10.

NG >> Repair or replace one-way fuel valve with fuel tank.

10.CHECK ONE-WAY FUEL VALVE-II


- 1. Make sure that fuel is drained from the tank.
- Remove fuel filler tube and hose.
- Check one-way fuel valve for operation as follows.
 When a stick is inserted, the valve should open, when removing stick it should close.

Do not drop any material into the tank.

OK or NG

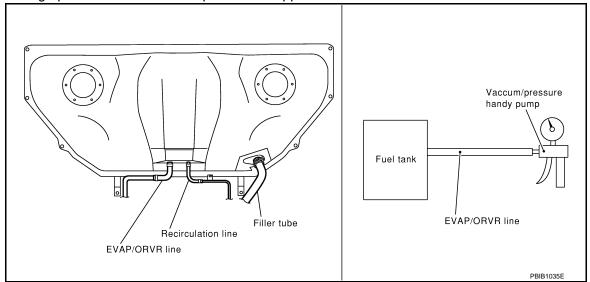
OK >> INSPECTION END

NG >> Replace fuel filler tube or replace one-way fuel valve with fuel tank.

Component Inspection

INFOID:0000000002954729

REFUELING EVAP VAPOR CUT VALVE


(II) With CONSULT-III

< SERVICE INFORMATION >

- Remove fuel tank. Refer to FL-10.
- 2. Drain fuel from the tank as follows:
- Remove fuel feed hose located on the fuel gauge retainer. a.
- Connect a spare fuel hose, one side to fuel gauge retainer where the hose was removed and the other b. side to a fuel container.
- Drain fuel using "FUEL PUMP RELAY" in "ACTIVE TEST" mode with CONSULT-III. C.
- Check refueling EVAP vapor cut valve for being stuck to close as follows. Blow air into the refueling EVAP vapor cut valve (from the end of EVAP/ORVR line hose), and check that the air flows freely into the tank.
- Check refueling EVAP vapor cut valve for being stuck to open as follows.
- Connect vacuum pump to hose end.
- Remove fuel gauge retainer with fuel gauge unit.

Always replace O-ring with new one.

- Put fuel tank upside down.
- Apply vacuum pressure to hose end [-13.3 kPa (-0.136 kg/cm², -1.93 psi)] with fuel gauge retainer remaining open and check that the pressure is applicable.

Without CONSULT-III

- 1. Remove fuel tank. Refer to FL-10.
- 2. Drain fuel from the tank as follows:
- Remove fuel gauge retainer. a.
- Drain fuel from the tank using a handy pump into a fuel container. b.
- Check refueling EVAP vapor cut valve for being stuck to close as follows. 3. Blow air into the refueling EVAP vapor cut valve (from the end of EVAP/ORVR line hose), and check that the air flows freely into the tank.
- Check refueling EVAP vapor cut valve for being stuck to open as follows.
- Connect vacuum pump to hose end. a.
- Remove fuel gauge retainer with fuel gauge unit.

Always replace O-ring with new one.

Put fuel tank upside down.

EC

Α

[VK45DE]

D

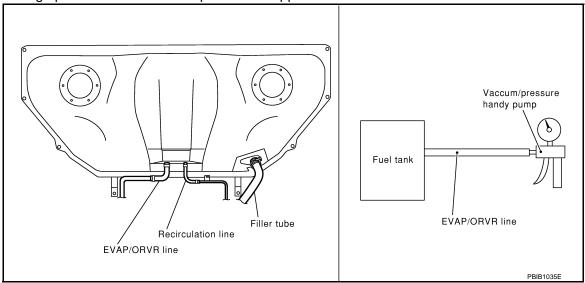
Е

F

Н

M

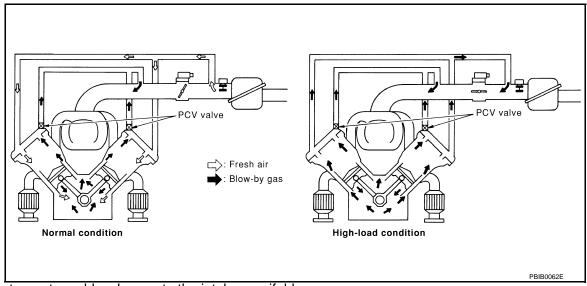
Ν


Р

EC-671

< SERVICE INFORMATION >

[VK45DE]


d. Apply vacuum pressure to hose end [-13.3 kPa (-0.136 kg/cm², -1.93 psi)] with fuel gauge retainer remaining open and check that the pressure is applicable.

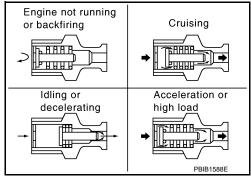
POSITIVE CRANKCASE VENTILATION

Description

SYSTEM DESCRIPTION

This system returns blow-by gas to the intake manifold.

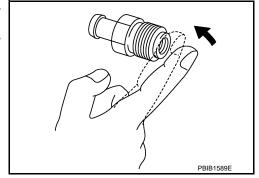
The positive crankcase ventilation (PCV) valve is provided to conductorankcase blow-by gas to the intake manifold.


During partial throttle operation of the engine, the intake manifoldsucks the blow-by gas through the PCV valve.

Normally, the capacity of the valve is sufficient to handle any blow-byand a small amount of ventilating air. The ventilating air is then drawn from the air inlet tubes into thecrankcase. In this process the air passes

through the hose connecting air inlet tubes to rocker cover.

Under full-throttle condition, the manifold vacuum is insufficient todraw the blow-by flow through the valve. The flow goes through the hose connectionin the reverse direction.


On vehicles with an excessively high blow-by, the valve does not meetthe requirement. This is because some of the flow will go through the hoseconnection to the air inlet tubes under all conditions.

Component Inspection

PCV (POSITIVE CRANKCASE VENTILATION) VALVE

With engine running at idle, remove PCV valve from rocker cover. A properly working valve makes a hissing noise as air passes through it. A strong vacuum should be felt immediately when a finger is placed over valve inlet.

EC

Α

C

D

F

G

Н

J

K

_

M

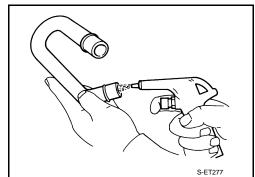
Ν

INFOID:0000000002954731

С

Р

Revision: 2009 February **EC-673** 2008 M35/M45


POSITIVE CRANKCASE VENTILATION

< SERVICE INFORMATION >

[VK45DE]

PCV VALVE VENTILATION HOSE

- 1. Check hoses and hose connections for leaks.
- 2. Disconnect all hoses and clean with compressed air. If any hosecannot be freed of obstructions, replace.

IVIS (INFINITI VEHICLE IMMOBILIZER SYSTEM-NATS)

< SERVICE INFORMATION >

[VK45DE]

IVIS (INFINITI VEHICLE IMMOBILIZER SYSTEM-NATS)

Description INFOID:0000000002954732

• If the security indicator lights up with the ignition switch ON or DTC P1610 - P1615 is displayed in "SELF DIAGNOSTIC RESULT" mode, perform the trouble diagnosis for corresponding to the detected DTC. Refer to EC-640, "U1000 - U1010".

- EC
- Check that no DTC is displayed in "SELF DIAGNOSIS RESULT" mode of "BCM" before erasing the detected DTC in "ENGINE" mode with CONSULT-III.
- When replacing ECM, refer to EC-706, "Procedure After Replacing ECM".

Α

D

C

Е

F

Н

K

L

Ν

0

Р

ON BOARD DIAGNOSTIC (OBD) SYSTEM

Introduction INFOID:000000002954733

The ECM has an on board diagnostic system, which detects malfunctions related to engine sensors or actuators. The ECM also records various emission-related diagnostic information including:

Emission-related diagnostic information	Diagnostic service		
Diagnostic Trouble Code (DTC)	Service \$03 of SAE J1979		
Freeze Frame data	Service \$02 of SAE J1979		
System Readiness Test (SRT) code	Service \$01 of SAE J1979		
1st Trip Diagnostic Trouble Code (1st Trip DTC)	Service \$07 of SAE J1979		
1st Trip Freeze Frame data			
Test values and Test limits	Service \$06 of SAE J1979		
Calibration ID	Service \$09 of SAE J1979		

The above information can be checked using procedures listed in the table below.

×: Applicable —: Not applicable

	DTC	1st trip DTC	Freeze Frame data	1st trip Freeze Frame data	SRT code	SRT status	Test value
CONSULT-III	×	×	×	×	×	×	_
GST	×	×	×	_	×	×	×
ECM	×	×*	_	_	_	×	_

^{*:} When DTC and 1st trip DTC simultaneously appear on the display, they cannot be clearly distinguished from each other.

The malfunction indicator lamp (MIL) on the instrument panel lights up when the same malfunction is detected in two consecutive trips (Two trip detection logic), or when the ECM enters fail-safe mode. (Refer to EC-715, <a href=""Fail-Safe Chart".)

Two Trip Detection Logic

INFOID:0000000002954734

When a malfunction is detected for the first time, 1st trip DTC and 1st trip Freeze Frame data are stored in the ECM memory. The MIL will not light up at this stage. <1st trip>

If the same malfunction is detected again during the next drive, the DTC and Freeze Frame data are stored in the ECM memory, and the MIL lights up. The MIL lights up at the same time when the DTC is stored. <2nd trip> The "trip" in the "Two Trip Detection Logic" means a driving mode in which self-diagnosis is performed during vehicle operation. Specific on board diagnostic items will cause the ECM to light up or blink the MIL, and store DTC and Freeze Frame data, even in the 1st trip, as shown below.

×: Applicable —: Not applicable

	MIL				DTC		1st trip DTC	
Items	1st trip		2nd trip		1st trip	2nd trip	1st trip	and trin
	Blinking	Lighting up	Blinking	Lighting up	displaying		displaying	2nd trip displaying
Misfire (Possible three way catalyst damage) — DTC: P0300 - P0308 is being detected	×	_	_	_	_	_	×	_
Misfire (Possible three way catalyst damage) — DTC: P0300 - P0308 is being detected	_	_	×	_	_	×	_	_
One trip detection diagnoses (Refer to EC-677, "Emission-Related Diagnostic Information".)	_	×	_	_	×	_	_	_
Except above	_	_	_	×	_	×	×	_

When there is an open circuit on MIL circuit, the ECM cannot warn the driver by lighting up MIL when there is malfunction on engine control system.

< SERVICE INFORMATION >

[VK45DE]

Therefore, when electrical controlled throttle and part of ECM related diagnoses are continuously detected as NG for 5 trips, ECM warns the driver that engine control system malfunctions and MIL circuit is open by means of operating fail-safe function.

The fail-safe function also operates when above diagnoses except MIL circuit are detected and demands the driver to repair the malfunction.

Engine operating condition in fail-safe mode Engine speed will not rise more than 2,500 rpm due to the fuel cut

Emission-Related Diagnostic Information

INFOID:0000000002954735

EMISSION-RELATED DIAGNOSTIC INFORMATION ITEMS

DTC	_* *1	И				D . (
CONSULT-III GST* ²	ECM*3	ltems (CONSULT-III screen terms)	SRT code	Trip	MIL	Reference page	Е
U1000	1000* ⁴	CAN COMM CIRCUIT	_	1	×	EC-770	-
U1001	1001*4	CAN COMM CIRCUIT —		1 or 2	_	EC-770	F
U1010	1010	CONTROL UNIT(CAN)	_	1	×	EC-772	-
P0000	0000	NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	_	_	Flashing* ⁸	_	G
P0011	0011	INT/V TIM CONT-B1	_	2	×	EC-773	=
P0021	0021	INT/V TIM CONT-B2	_	2	×	EC-773	H
P0031	0031	A/F SEN1 HTR (B1)	_	2	×	EC-785	-
P0032	0032	A/F SEN1 HTR (B1)	_	2	×	EC-785	
P0037	0037	HO2S2 HTR (B1)	_	2	×	EC-792	- 1
P0038	0038	HO2S2 HTR (B1)	_	2	×	EC-792	-
P0051	0051	A/F SEN1 HTR (B2)	_	2	×	EC-785	J
P0052	0052	A/F SEN1 HTR (B2)	_	2	×	EC-785	-
P0057	0057	HO2S2 HTR (B2)	_	2	×	EC-792	- 12
P0058	0058	HO2S2 HTR (B2)	_	2	×	EC-792	K
P0075	0075	INT/V TIM V/CIR-B1	_	2	×	EC-799	-
P0081	0081	INT/V TIM V/CIR-B2	_	2	×	EC-799	L
P0101	0101	MAF SEN/CIRCUIT-B1	_	2	×	EC-806	-
P0102	0102	MAF SEN/CIRCUIT-B1	_	1	×	EC-814	-
P0103	0103	MAF SEN/CIRCUIT-B1	_	1	×	EC-814	N
P0112	0112	IAT SEN/CIRCUIT-B1	_	2	×	EC-821	-
P0113	0113	IAT SEN/CIRCUIT-B1	_	2	×	EC-821	N
P0116	0116	ECT SENSOR	_	2	×	EC-825	-
P0117	0117	ECT SEN/CIRC	_	1	×	EC-828	-
P0118	0118	ECT SEN/CIRC	_	1	×	EC-828	C
P0122	0122	TP SEN 2/CIRC-B1	_	1	×	EC-833	-
P0123	0123	TP SEN 2/CIRC-B1	_	1	×	EC-833	- - F
P0125	0125	ECT SENSOR	ECT SENSOR — 2		×	EC-839	. !
P0127	0127	IAT SENSOR-B1	_	2	×	EC-842	-
P0128	0128	THERMSTAT FNCTN	_	2	×	EC-845	-
P0130	0130	A/F SENSOR1 (B1)	_	2	×	EC-848	-
P0131	0131	A/F SENSOR1 (B1)	_	2	×	EC-856	-
P0132	0132	A/F SENSOR1 (B1)	_	2	×	EC-864	=

Revision: 2009 February **EC-677** 2008 M35/M45

EC

_

F

.

<

N

0

Ρ

< SERVICE INFORMATION >

DTC	_* 1						
CONSULT-III GST* ²	ECM*3	ltems (CONSULT-III screen terms)	SRT code	Trip	MIL	Referenc page	
P0133	0133	A/F SENSOR1 (B1)	×	2	×	EC-872	
P0137	0137	HO2S2 (B1)	×	2	×	EC-881	
P0138	0138	HO2S2 (B1)	×	2	×	EC-890	
P0139	0139	HO2S2 (B1)	×	2	×	EC-902	
P0150	0150	A/F SENSOR1 (B2)	_	2	×	EC-848	
P0151	0151	A/F SENSOR1 (B2)	_	2	×	EC-856	
P0152	0152	A/F SENSOR1 (B2)	_	2	×	EC-864	
P0153	0153	A/F SENSOR1 (B2)	×	2	×	EC-872	
P0157	0157	HO2S2 (B2)	×	2	×	EC-881	
P0158	0158	HO2S2 (B2)	×	2	×	EC-890	
P0159	0159	HO2S2 (B2)	×	2	×	EC-902	
P0171	0171	FUEL SYS-LEAN-B1	_	2	×	EC-911	
P0172	0172	FUEL SYS-RICH-B1	_	2	×	EC-922	
P0174	0174	FUEL SYS-LEAN-B2	_	2	×	EC-911	
P0175	0175	FUEL SYS-RICH-B2	_	2	×	EC-922	
P0181	0181	FTT SENSOR	_	2	×	EC-933	
P0182	0182	FTT SEN/CIRCUIT	_	2	×	EC-937	
P0183	0183	FTT SEN/CIRCUIT	_	2	×	EC-937	
P0222	0222	TP SEN 1/CIRC-B1	_	1	×	EC-941	
P0223	0223	TP SEN 1/CIRC-B1	_	1	×	EC-941	
P0300	0300	MULTI CYL MISFIRE	_	2	×	EC-947	
P0301	0301	CYL 1 MISFIRE	_	2	×	EC-947	
P0302	0302	CYL 2 MISFIRE	_	2	×	EC-947	
P0303	0303	CYL 3 MISFIRE	_	2	×	EC-947	
P0304	0304	CYL 4 MISFIRE	_	2	×	EC-947	
P0305	0305	CYL 5 MISFIRE	_	2	×	EC-947	
P0306	0306	CYL 6 MISFIRE	_	2	×	EC-947	
P0307	0307	CYL 7 MISFIRE	_	2	×	EC-947	
P0308	0308	CYL 8 MISFIRE	_	2	×	EC-947	
P0327	0327	KNOCK SEN/CIRC-B1	_	2	_	EC-953	
P0328	0328	KNOCK SEN/CIRC-B1	_	2	_	EC-953	
P0332	0332	KNOCK SEN/CIRC-B2	_	2	_	EC-953	
P0333	0333	KNOCK SEN/CIRC-B2	_	2	_	EC-953	
P0335	0335	CKP SEN/CIRCUIT	_	2	×	EC-958	
P0340	0340	CMP SEN/CIRC-B1	_	2	×	EC-963	
P0420	0420	TW CATALYST SYS-B1	×	2	×	EC-969	
P0430	0430	TW CATALYST SYS-B2	×	2	×	EC-969	
P0441	0441	EVAP PURG FLOW/MON	×	2	×	EC-973	
P0442	0442	EVAP SMALL LEAK	×	2	×	EC-978	
P0443	0443	PURG VOLUME CONT/V	_	2	×	EC-985	
P0444	0444	PURG VOLUME CONT/V	_	2	×	EC-992	
P0445	0445	PURG VOLUME CONT/V	_	2	×	EC-992	

< SERVICE INFORMATION >

[VK45DE]

DTC* ¹		Items				Reference	A
CONSULT-III GST* ²	ECM*3	(CONSULT-III screen terms)	SRT code	Trip	MIL	page	-
P0447	0447	VENT CONTROL VALVE	_	2	×	EC-998	E
P0448	0448	VENT CONTROL VALVE	_	2	×	EC-1003	
P0451	0451	EVAP SYS PRES SEN	_	2	×	EC-1009	
P0452	0452	EVAP SYS PRES SEN	_	2	×	EC-1012	
P0453	0453	EVAP SYS PRES SEN	_	2	×	EC-1018	
P0455	0455	EVAP GROSS LEAK	_	2	×	EC-1025	_
P0456	0456	EVAP VERY SML LEAK	×* ⁷	2	×	EC-1031	
P0460	0460	FUEL LEV SEN SLOSH	_	2	×	EC-1038	-
P0461	0461	FUEL LEVEL SENSOR	_	2	×	EC-1040	Е
P0462	0462	FUEL LEVL SEN/CIRC	_	2	×	EC-1042	-
P0463	0463	FUEL LEVL SEN/CIRC	_	2	×	EC-1042	- F
P0500	0500	VEH SPEED SEN/CIRC*5	_	2	×	EC-1044	. г
P0506	0506	ISC SYSTEM	_	2	×	EC-1046	-
P0507	0507	ISC SYSTEM	_	2	×	EC-1048	
P0550	0550	PW ST P SEN/CIRC	_	2	_	EC-1050	-
P0603	0603	ECM BACK UP/CIRCUIT	_	2	×	EC-1055	
P0605	0605	ECM	_	1 or 2	× or —	EC-1059	_ -
P0643	0643	SENSOR POWER/CIRC	_	1	×	EC-1061	-
P0700	0700	TRANSMISSION CONT	_	1	×	AT-102	.
P0705	0705	T/M RANGE SENSOR A	_	2	×	AT-103	-
P0710	0710	ATF TEMP SEN/CIRC	_	2	×	AT-133	-
P0717	0717	INPUT SPEED SENSOR A	_	2	×	AT-106	-
P0720	0720	OUTPUT SPEED SENSOR*5	_	2	×	AT-108	-
P0731	0720	1GR INCORRECT RATIO		2	×	AT-115	- k
P0732	0731	2GR INCORRECT RATIO	_	2	×	AT-113 AT-117	-
P0733	0732	3GR INCORRECT RATIO	_	2	×	AT-117 AT-119	-
P0734	0733	4GR INCORRECT RATIO	_	2	×	AT-119 AT-121	
P0735	0735	5GR INCORRECT RATIO	_	2	×	AT-121 AT-123	=
P0740	0733	TORQUE CONVERTER	_	2	×	AT-125 AT-125	- 1
P0744	0744	TORQUE CONVERTER	_	2	×	AT-127	-
P0745	0745	PC SOLENOID A	_	2	×	AT-129	-
P0850	0850	P-N POS SW/CIRCUIT	_	2	×	EC-1066	-
P1140	1140	INTK TIM S/CIRC-B1	_	2	×	EC-1071	-
P1145	1145	INTK TIM S/CIRC-B2	_	2	×	EC-1071	
P1148	1148	CLOSED LOOP-B1	_	1	×	EC-1079	_
P1168	1168	CLOSED LOOP-B2	_	<u>'</u> 1	×	EC-1079	-
P1211	1211	TCS C/U FUNCTN	_	2	_	EC-1080	- F
P1212	1212	TCS/CIRC	_	2	_	EC-1081	-
P1217	1217	ENG OVER TEMP		1		EC-1082	-
P1217 P1220	1217	FPCM/CIRCUIT	_	2	×		-
P1220	1225	CTP LEARNING-B1		2	×	EC-1092 EC-1099	-
P1225	1225	CTP LEARNING-B1	_	2	_	EC-1099 EC-1101	-

< SERVICE INFORMATION >

[VK45DE]

DTC	·*1	Items				Reference	
CONSULT-III GST* ²	ECM* ³	(CONSULT-III screen terms)	SRT code	Trip	MIL	page	
P1421	1421	COLD START CONTROL	_	2	_	EC-1103	
P1550	1550	BAT CURRENT SENSOR	_	2	_	EC-1105	
P1551	1551	BAT CURRENT SENSOR	_	2	_	EC-1110	
P1552	1552	BAT CURRENT SENSOR		2	_	EC-1110	
P1553	1553	BAT CURRENT SENSOR	BAT CURRENT SENSOR —				
P1554	1554	BAT CURRENT SENSOR	_	2	_	EC-1120	
P1564	1564	ASCD SW		1	_	EC-1126 (Models with ICC) EC-1132 (Models with ASCD)	
P1568	1568	ICC COMMAND VALUE*6	_	1	_	EC-1138	
P1572	1572	ASCD BRAKE SW	_	1	_	EC-1139 (Models with ICC) EC-1147 (Models with ASCD)	
P1574	1574	ASCD VHL SPD SEN	_	1	_	EC-1154 (Models with ICC) EC-1156 (Models with ASCD)	
P1610	1610	LOCK MODE	_	2	_	<u>BL-5</u>	
P1611	1611	ID DISCORD, IMMU-ECM	_	2	_	<u>BL-5</u>	
P1612	1612	CHAIN OF ECM-IMMU	_	2	_	<u>BL-5</u>	
P1614	1614	CHAIN OF IMMU-KEY	_	2	_	<u>BL-5</u>	
P1715	1715	IN PULY SPEED	_	2	_	EC-1158	
P1730	1730	INTERLOCK	_	1	×	<u>AT-140</u>	
P1752	1752	INPUT CLUTCH SOL	_	1	×	<u>AT-144</u>	
P1757	1757	FR BRAKE SOLENOID	_	1	×	<u>AT-146</u>	
P1762	1762	DRCT CLUTCH SOL	_	1	×	<u>AT-148</u>	
P1767	1767	HLR CLUTCH SOLENOID	_	1	×	<u>AT-150</u>	
P1772	1772	L C BRAKE SOLENOID	_	1	×	<u>AT-152</u>	
P1774	1774	L C BRAKE SOLENOID	_	1	×	<u>AT-154</u>	
P1800	1800	VIAS S/V-1	_	2	_	EC-1159	
P1805	1805	BRAKE SW/CIRCUIT	_	2	_	EC-1164	
P2100	2100	ETC MOT PWR-B1	_	1	×	EC-1171	
P2101	2101	ETC FNCTN/CIRC-B1	_	1	×	EC-1175	
P2103	2103	ETC MOT PWR	_	1	×	EC-1171	
P2118	2118	ETC MOT-B1	_	1	×	EC-1181	
P2119	2119	ETC ACTR-B1		1	×	EC-1186	
P2122	2122	APP SEN 1/CIRC	_	1	×	EC-1188	
P2123	2123	APP SEN 1/CIRC	_	1	×	EC-1188	
P2127	2127	APP SEN 2/CIRC		1	×	EC-1193	

< SERVICE INFORMATION >

[VK45DE]

DT	C* ¹	Items				Reference
CONSULT-III GST* ²	ECM* ³	(CONSULT-III screen terms)	SRT code	Trip	MIL	page
P2128	2128	APP SEN 2/CIRC —		1	×	EC-1193
P2135	2135	TP SENSOR-B1	_	1	×	EC-1199
P2138	2138	APP SENSOR	_	1	×	EC-1205
P2A00	2A00	A/F SENSOR1 (B1)	_	2	×	EC-1212
P2A03	2A03	A/F SENSOR1 (B2)	_	2	×	EC-1212

^{*1: 1}st trip DTC No. is the same as DTC No.

DTC AND 1ST TRIP DTC

The 1st trip DTC (whose number is the same as the DTC number) is displayed for the latest self-diagnostic result obtained. If the ECM memory was cleared previously, and the 1st trip DTC did not recur, the 1st trip DTC will not be displayed.

If a malfunction is detected during the 1st trip, the 1st trip DTC is stored in the ECM memory. The MIL will not light up (two trip detection logic). If the same malfunction is not detected in the 2nd trip (meeting the required driving pattern), the 1st trip DTC is cleared from the ECM memory. If the same malfunction is detected in the 2nd trip, both the 1st trip DTC and DTC are stored in the ECM memory and the MIL lights up. In other words, the DTC is stored in the ECM memory and the MIL lights up when the same malfunction occurs in two consecutive trips. If a 1st trip DTC is stored and a non-diagnostic operation is performed between the 1st and 2nd trips, only the 1st trip DTC will continue to be stored. For malfunctions that blink or light up the MIL during the 1st trip, the DTC and 1st trip DTC are stored in the ECM memory.

Procedures for clearing the DTC and the 1st trip DTC from the ECM memory are described in "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION".

For malfunctions in which 1st trip DTCs are displayed, refer to "EMISSION-RELATED DIAGNOSTIC INFOR-MATION ITEMS". These items are required by legal regulations to continuously monitor the system/component. In addition, the items monitored non-continuously are also displayed on CONSULT-III.

1st trip DTC is specified in Service \$07 of SAE J1979. 1st trip DTC detection occurs without lighting up the MIL and therefore does not warn the driver of a malfunction. However, 1st trip DTC detection will not prevent the vehicle from being tested, for example during Inspection/Maintenance (I/M) tests.

When a 1st trip DTC is detected, check, print out or write down and erase (1st trip) DTC and Freeze Frame data as specified in Work Flow procedure Step 2, refer to EC-710, "Trouble Diagnosis Introduction". Then perform DTC Confirmation Procedure or Overall Function Check to try to duplicate the malfunction. If the malfunction is duplicated, the item requires repair.

How to Read DTC and 1st Trip DTC

DTC and 1st trip DTC can be read by the following methods.

(P) With CONSULT-III

CONSULT-III displays the DTC in "SELF DIAGNOSTIC RESULT" mode. Examples: P0340, P0850, P1148,

These DTCs are prescribed by SAE J2012.

(CONSULT-III also displays the malfunctioning component or system.)

GST (Generic Scan Tool) displays the DTC in Diagnostic Service \$03. Examples: P0340, P0850, P1148, etc. These DTCs are prescribed by SAE J2012.

No Tools

The number of blinks of the MIL in the Diagnostic Test Mode II (Self-Diagnostic Results) indicates the DTC. Example: 0340, 0850, 1148, etc.

These DTCs are controlled by NISSAN.

1st trip DTC No. is the same as DTC No.

EC-681 2008 M35/M45 Revision: 2009 February

EC

Α

D

Е

N

^{*2:} This number is prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.

^{*4:} The troubleshooting for this DTC needs CONSULT-III.

^{*5:} When the fail-safe operations for both self-diagnoses occur, the MIL illuminates.

^{*6.} Models with ICC

^{*7:} SRT code will not be set if the self-diagnostic result is NG.

^{*8:} When the ECM is in the mode of displaying SRT status, MIL may flash. For the details, refer to "How to Display SRT Status".

Output of a DTC indicates a malfunction. However, GST or the Diagnostic Test Mode II do not indicate whether the malfunction is still occurring or has occurred in the past and has returned to normal. CONSULT-III can identify malfunction status as shown below. Therefore, using CONSULT-III (if available) is recommended.

Time data indicates how many times the vehicle was driven after the last detection of a DTC.

If the DTC is being detected currently, the time data will be [0].

If a 1st trip DTC is stored in the ECM, the time data will be [1t].

FREEZE FRAME DATA AND 1ST TRIP FREEZE FRAME DATA

The ECM records the driving conditions such as fuel system status, calculated load value, engine coolant temperature, short term fuel trim, long term fuel trim, engine speed, vehicle speed, absolute throttle position, base fuel schedule and intake air temperature at the moment a malfunction is detected.

Data which are stored in the ECM memory, along with the 1st trip DTC, are called 1st trip freeze frame data. The data, stored together with the DTC data, are called freeze frame data and displayed on CONSULT-III or GST. The 1st trip freeze frame data can only be displayed on the CONSULT-III screen, not on the GST. For details, see EC-741, "CONSULT-III Function".

Only one set of freeze frame data (either 1st trip freeze frame data or freeze frame data) can be stored in the ECM. 1st trip freeze frame data is stored in the ECM memory along with the 1st trip DTC. There is no priority for 1st trip freeze frame data and it is updated each time a different 1st trip DTC is detected. However, once freeze frame data (2nd trip detection/MIL on) is stored in the ECM memory, 1st trip freeze frame data is no longer stored. Remember, only one set of freeze frame data can be stored in the ECM. The ECM has the following priorities to update the data.

Priority	Items					
1	Freeze frame data	Misfire — DTC: P0300 - P0308 Fuel Injection System Function — DTC: P0171, P0172, P0174, P0175				
2	Except the above items (Includes A/T related items)					
3	1st trip freeze frame data					

For example, the EGR malfunction (Priority: 2) was detected and the freeze frame data was stored in the 2nd trip. After that when the misfire (Priority: 1) is detected in another trip, the freeze frame data will be updated from the EGR malfunction to the misfire. The 1st trip freeze frame data is updated each time a different malfunction is detected. There is no priority for 1st trip freeze frame data. However, once freeze frame data is stored in the ECM memory, 1st trip freeze data is no longer stored (because only one freeze frame data or 1st trip freeze frame data can be stored in the ECM). If freeze frame data is stored in the ECM memory and freeze frame data with the same priority occurs later, the first (original) freeze frame data remains unchanged in the ECM memory.

Both 1st trip freeze frame data and freeze frame data (along with the DTCs) are cleared when the ECM memory is erased. Procedures for clearing the ECM memory are described in "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION".

SYSTEM READINESS TEST (SRT) CODE

System Readiness Test (SRT) code is specified in Service \$01 of SAE J1979.

As part of an enhanced emissions test for Inspection & Maintenance (I/M), certain states require the status of SRT be used to indicate whether the ECM has completed self-diagnosis of major emission systems and components. Completion must be verified in order for the emissions inspection to proceed.

If a vehicle is rejected for a State emissions inspection due to one or more SRT items indicating "INCMP", use the information in this Service Manual to set the SRT to "CMPLT".

In most cases the ECM will automatically complete its self-diagnosis cycle during normal usage, and the SRT status will indicate "CMPLT" for each application system. Once set as "CMPLT", the SRT status remains "CMPLT" until the self-diagnosis memory is erased.

Occasionally, certain portions of the self-diagnostic test may not be completed as a result of the customer's normal driving pattern; the SRT will indicate "INCMP" for these items.

NOTE:

The SRT will also indicate "INCMP" if the self-diagnosis memory is erased for any reason or if the ECM memory power supply is interrupted for several hours.

If, during the state emissions inspection, the SRT indicates "CMPLT" for all test items, the inspector will continue with the emissions test. However, if the SRT indicates "INCMP" for one or more of the SRT items the vehicle is returned to the customer untested.

NOTE:

< SERVICE INFORMATION >

[VK45DE]

If MIL is ON during the state emissions inspection, the vehicle is also returned to the customer untested even though the SRT indicates "CMPLT" for all test items. Therefore, it is important to check SRT ("CMPLT") and DTC (No DTCs) before the inspection.

SRT Item

The table below shows required self-diagnostic items to set the SRT to "CMPLT".

SRT item (CONSULT-III indication)	Performance Priority*	Required self-diagnostic items to set the SRT to "CMPLT"	Corresponding DTC No.
CATALYST	2	Three way catalyst function	P0420, P0430
EVAP SYSTEM	2	EVAP control system purge flow monitoring	P0441
	1	EVAP control system	P0442
	2	EVAP control system	P0456
HO2S	2	Air fuel ratio (A/F) sensor 1	P0133, P0153
		Heated oxygen sensor 2	P0137, P0157
		Heated oxygen sensor 2	P0138, P0158
		Heated oxygen sensor 2	P0139, P0159

^{*:} If completion of several SRTs is required, perform driving patterns (DTC confirmation procedure), one by one based on the priority for models with CONSULT-III.

SRT Set Timing

SRT is set as "CMPLT" after self-diagnosis has been performed one or more times. Completion of SRT is done regardless of whether the result is OK or NG. The set timing is different between OK and NG results and is shown in the table below.

		Example						
Self-diagn	Self-diagnosis result		\leftarrow ON \rightarrow OF		ion cycle $OFF \ \leftarrow ON o C$	DFF ← ON →		
All OK	Case 1	P0400	OK (1)	— (1)	OK (2)	— (2)		
		P0402	OK (1)	— (1)	— (1)	OK (2)		
		P1402	OK (1)	OK (2)	— (2)	— (2)		
		SRT of EGR	"CMPLT"	"CMPLT"	"CMPLT"	"CMPLT"		
	Case 2	P0400	OK (1)	— (1)	— (1)	— (1)		
		P0402	— (0)	— (0)	OK (1)	— (1)		
		P1402	OK (1)	OK (2)	— (2)	— (2)		
		SRT of EGR	"INCMP"	"INCMP"	"CMPLT"	"CMPLT"		
NG exists	Case 3	P0400	OK	OK	_	_		
		P0402	_	_	_	_		
		P1402	NG	_	NG	NG (Consecutive NG)		
		(1st trip) DTC	1st trip DTC	_	1st trip DTC	DTC (= MIL ON)		
		SRT of EGR	"INCMP"	"INCMP"	"INCMP"	"CMPLT"		

OK: Self-diagnosis is carried out and the result is OK.

NG: Self-diagnosis is carried out and the result is NG.

When all SRT related self-diagnoses showed OK results in a single cycle (Ignition OFF-ON-OFF), the SRT will indicate "CMPLT". → Case 1 above

When all SRT related self-diagnoses showed OK results through several different cycles, the SRT will indicate "CMPLT" at the time the respective self-diagnoses have at least one OK result. \rightarrow Case 2 above

If one or more SRT related self-diagnoses showed NG results in 2 consecutive cycles, the SRT will also indicate "CMPLT". → Case 3 above

EC

D

F

Е

G

Н

J

N/I

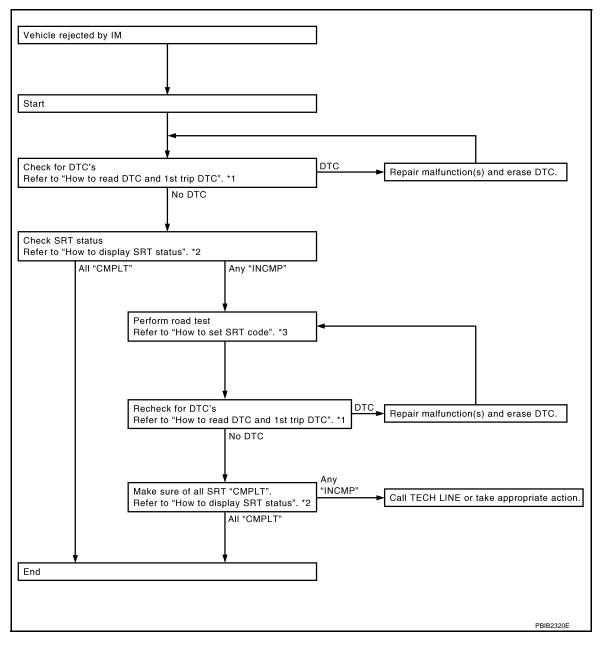
Ν

. .

Р

^{—:} Self-diagnosis is not carried out.

The table above shows that the minimum number of cycles for setting SRT as "INCMP" is one (1) for each self-diagnosis (Case 1 & 2) or two (2) for one of self-diagnoses (Case 3). However, in preparation for the state emissions inspection, it is unnecessary for each self-diagnosis to be executed twice (Case 3) for the following reasons:


- The SRT will indicate "CMPLT" at the time the respective self-diagnoses have one (1) OK result.
- The emissions inspection requires "CMPLT" of the SRT only with OK self-diagnosis results.
- When, during SRT driving pattern, 1st trip DTC (NG) is detected prior to "CMPLT" of SRT, the self-diagnosis memory must be erased from ECM after repair.
- If the 1st trip DTC is erased, all the SRT will indicate "INCMP".

NOTF.

SRT can be set as "CMPLT" together with the DTC(s). Therefore, DTC check must always be carried out prior to the state emission inspection even though the SRT indicates "CMPLT".

SRT Service Procedure

If a vehicle has failed the state emissions inspection due to one or more SRT items indicating "INCMP", review the flowchart diagnostic sequence on the next page.

^{*1 &}quot;How to Read DTC and 1st Trip DTC" *2 "How to Display SRT Status"

^{*3 &}quot;How to Set SRT Code"

(P) WITH CONSULT-III

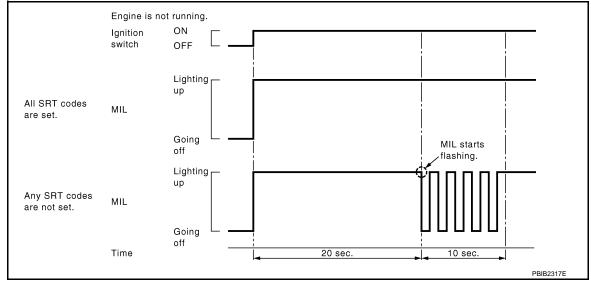
Selecting "SRT STATUS" in "DTC CONFIRMATION" mode with CONSULT-III.

For items whose SRT codes are set, a "CMPLT" is displayed on the CONSULT-III screen; for items whose SRT codes are not set, "INCMP" is displayed.

"INCMP" means the self-diagnosis is incomplete and SRT is not set. "CMPLT" means the self-diagnosis is complete and SRT is set.

NOTE:

Though displayed on the CONSULT-III screen, "HO2S HTR" is not SRT item.


WITH GST

Selecting Service \$01 with GST (Generic Scan Tool)

NO TOOLS

A SRT code itself can not be displayed while only SRT status can be.

- 1. Turn ignition switch ON and wait 20 seconds.
- SRT status is indicated as shown below.
 - When all SRT codes are set, MIL lights up continuously.
 - When any SRT codes are not set, MIL will flash periodically for 10 seconds.

How to Set SRT Code

To set all SRT codes, self-diagnosis for the items indicated above must be performed one or more times. Each diagnosis may require a long period of actual driving under various conditions.

(P) WITH CONSULT-III

Perform corresponding DTC Confirmation Procedure one by one based on Performance Priority in the table on "SRT Item".

W WITHOUT CONSULT-III

The most efficient driving pattern in which SRT codes can be properly set is explained on the next page. The driving pattern should be performed one or more times to set all SRT codes.

EC

Α

D

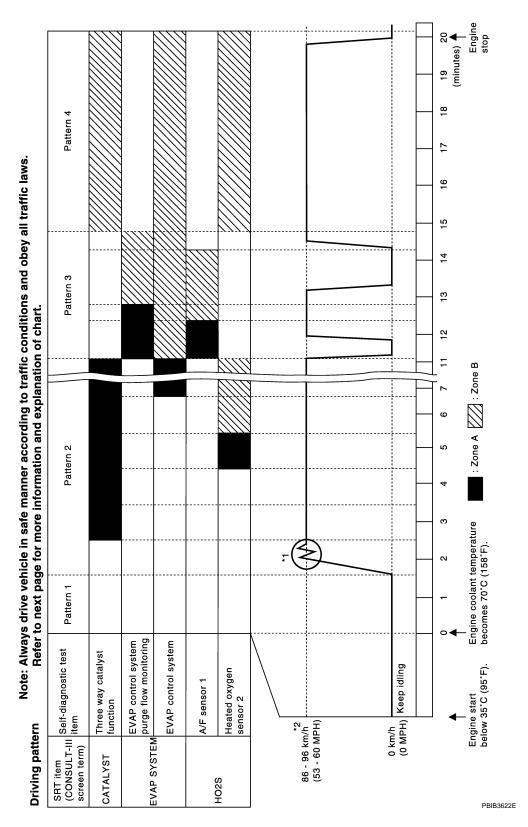
Е

F

G

Н

L


K

Ν

M

0

Driving Pattern

- The time required for each diagnosis varies with road surface conditions, weather, altitude, individual driving habits, etc.
 - Zone A refers to the range where the time, required for the diagnosis under normal conditions*, is the shortest.
 - Zone B refers to the range where the diagnosis can still be performed if the diagnosis is not completed within zone A.
- *: Normal conditions refer to the following:

< SERVICE INFORMATION >

- Sea level
- Flat road
- Ambient air temperature: 20 30°C (68 86°F)
- Diagnosis is performed as quickly as possible under normal conditions.
 Under different conditions [For example: ambient air temperature other than 20 30°C (68 86°F)], diagnosis may also be performed.

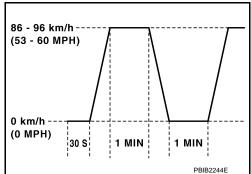
Pattern 1:

- The engine is started at the engine coolant temperature of -10 to 35°C (14 to 95°F) (where the voltage between the ECM terminal 73 and ground is 3.0 - 4.3V).
- The engine must be operated at idle speed until the engine coolant temperature is greater than 70°C (158°F) (where the voltage between the ECM terminal 73 and ground is lower than 1.4V).
- The engine is started at the fuel tank temperature of warmer than 0°C (32°F) (where the voltage between the ECM terminal 107 and ground is less than 4.1V).

Pattern 2:

When steady-state driving is performed again even after it is interrupted, each diagnosis can be conducted.
 In this case, the time required for diagnosis may be extended.
 Pattern 3:

• Operate vehicle following the driving pattern shown in the figure.


 Release the accelerator pedal during decelerating vehicle speed from 90 km/h (56 MPH) to 0 km/h (0 MPH).

Pattern 4:

- The accelerator pedal must be held very steady during steadystate driving.
- If the accelerator pedal is moved, the test must be conducted all over again.

*1: Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH), then release the accelerator pedal and keep it released for more than 10 seconds. Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH) again.

Suggested Transmission Gear Position

Set the selector lever in the D position with the overdrive switch turned ON.

TEST VALUE AND TEST LIMIT (GST ONLY — NOT APPLICABLE TO CONSULT-III)

The following is the information specified in Service \$06 of SAE J1979.

The test value is a parameter used to determine whether a system/circuit diagnostic test is OK or NG while being monitored by the ECM during self-diagnosis. The test limit is a reference value which is specified as the maximum or minimum value and is compared with the test value being monitored.

These data (test value and test limit) are specified by On Board Monitor ID(OBDMID), Test ID (TID), Unit and Scaling ID and can be displayed on the GST screen.

The items of the test value and test limit will be displayed with GST screen which items are provided by the ECM. (eq., if the bank 2 is not applied on this vehicle, only the items of the bank 1 is displayed)

EC

Α

[VK45DE]

D

Е

F

G

Н

L

M

N

0

Item	OBD-	Colf diagnostic test item	DTC	li	e and Test mit display)	Depariation
пеш	MID	Self-diagnostic test item		TID	Unit and Scaling ID	Description
			P0131	83H	0BH	Minimum sensor output voltage for test cycle
			P0131	84H	0BH	Maximum sensor output voltage for tes cycle
			P0130	85H	0BH	Minimum sensor output voltage for test cycle
		Air fuel ratio (A/F) sensor 1 (Bank 1)	P0130	86H	0BH	Maximum sensor output voltage for test cycle
	01H		P0133	87H	04H	Response rate: Response ratio (Lean to Rich)
			P0133	88H	04H	Response rate: Response ratio (Rich to Lean)
			P2A00	89H	84H	The amount of shift in air fuel ratio
			P2A00	8AH	84H	The amount of shift in air fuel ratio
HO2S			P0130	8BH	0BH	Difference in sensor output voltage
			P0133	8CH	83H	Response gain at the limited frequency
		Heated oxygen sensor 2 (Bank 1)	P0138	07H	0CH	Minimum sensor output voltage for tes cycle
	02H		P0137	08H	0CH	Maximum sensor output voltage for tes cycle
			P0138	80H	0CH	Sensor output voltage
			P0139	81H	0CH	Difference in sensor output voltage
+			P0143	07H	0CH	Minimum sensor output voltage for tes cycle
	03H	Heated oxygen sensor 3 (Bank 1)	P0144	08H	0CH	Maximum sensor output voltage for tes cycle
			P0146	80H	0CH	Sensor output voltage
			P0145	81H	0CH	Difference in sensor output voltage

< SERVICE INFORMATION >

[VK45DE]

H	OBD-	0.16.15	DTO	li	e and Test mit display)	
Item MID	Self-diadnostic test item	DTC	TID	Unitand Scaling ID	Description	
			P0151	83H	0BH	Minimum sensor output voltage for test cycle
			P0151	84H	0BH	Maximum sensor output voltage for test cycle
			P0150	85H	0BH	Minimum sensor output voltage for test cycle
		Air fuel ratio (A/E) concer 1	P0150	86H	0BH	Maximum sensor output voltage for test cycle
	05H	Air fuel ratio (A/F) sensor 1 (Bank 2)	P0153	87H	04H	Response rate: Response ratio (Lean to Rich)
			P0153	88H	04H	Response rate: Response ratio (Rich to Lean)
			P2A03	89H	84H	The amount of shift in air fuel ratio
			P2A03	8AH	84H	The amount of shift in air fuel ratio
O2S	D2S		P0150	8BH	0BH	Difference in sensor output voltage
			P0153	8CH	83H	Response gain at the limited frequency
		Heated oxygen sensor 2 (Bank 2)	P0158	07H	0CH	Minimum sensor output voltage for test cycle
	06H		P0157	08H	0CH	Maximum sensor output voltage for test cycle
			P0158	80H	0CH	Sensor output voltage
			P0159	81H	0CH	Difference in sensor output voltage
		Heated oxygen sensor 3 (Bank2)	P0163	07H	0CH	Minimum sensor output voltage for test cycle
	07H		P0164	08H	0CH	Maximum sensor output voltage for test cycle
			P0166	80H	0CH	Sensor output voltage
			P0165	81H	0CH	Difference in sensor output voltage
			P0420	80H	01H	O2 storage index
	2411	Three way catalyst function	P0420	82H	01H	Switching time lag engine exhaust index value
CATA-	∠1H	(Bank1)	P2423	83H	0CH	Difference in 3rd O2 sensor output volt age
			P2423	84H	84H	O2 storage index in HC trap catalyst
YST			P0430	80H	01H	O2 storage index
	0011	Three way catalyst function	P0430	82H	01H	Switching time lag engine exhaust index value
221	22H	(Bank2)	P2424	83H	0CH	Difference in 3rd O2 sensor output volt age
			P2424	84H	84H	O2 storage index in HC trap catalyst

					e and Test mit	
Item	OBD-	Self-diagnostic test item	DTC	(GST	display)	Description
	MID	Con diagnostic tost kom		TID	Unit and Scaling ID	Decomption
			P0400	80H	96H	Low Flow Faults: EGR temp change rate (short term)
			P0400	81H	96H	Low Flow Faults: EGR temp change rate (long term)
EGR SYSTEM	31H	EGR function	P0400	82H	96H	Low Flow Faults: Difference between max EGR temp and EGR temp under idling condition
			P0400	83H	96H	Low Flow Faults: Max EGR temp
			P1402	84H	96H	High Flow Faults: EGR temp increase rate
	39H	EVAP control system leak (Cap Off)	P0455	80H	0CH	Difference in pressure sensor output voltage before and after pull down
	3ВН	EVAP control system leak (Small leak)	P0442	80H	05H	Leak area index (for more than 0.04inch)
EVAP SYSTEM	3СН	EVAP control system	P0456	80H	05H	Leak area index (for more than 0.02inch)
	3011	(Very small leak)	P0456	81H	FDH	Maximum internal pressure of EVAP system during monitoring
	3DH	Purge flow system	P0441	83H	0CH	Difference in pressure sensor output voltage before and after vent control value close
	41H	A/F sensor 1 heater (Bank 1)	Low Input:P0031 High Input:P0032	81H	0BH	Converted value of Heater electric current to voltage
	42H	Heated oxygen sensor 2 (Bank 1)	Low Input:P0037 High Input:P0038	80H	0CH	Converted value of Heater electric cur- rent to voltage
O2 SEN- SOR	43H	Heated oxygen sensor 3 (Bank 1)	P0043	80H	0CH	Converted value of Heater electric current to voltage
HEATER	45H	A/F sensor 1 heater (Bank 2)	Low Input:P0051 High Input:P0052	81H	0BH	Converted value of Heater electric current to voltage
•	46H	Heated oxygen sensor 2 (Bank 2)	Low Input:P0057 High Input:P0058	80H	0CH	Converted value of Heater electric current to voltage
•	47H	Heated oxygen sensor 3 (Bank 2)	P0063	80H	0CH	Converted value of Heater electric current to voltage
			P0411	80H	01H	Secondary Air Injection System Incor- rect Flow Detected
			Bank1: P0491 Bank2: P0492	81H	01H	Secondary Air Injection System Insufficient Flow
			P2445	82H	01H	Secondary Air Injection System Pump Stuck Off
SEC- OND- ARY AIR	71H	1H Secondary Air system	P2448	83H	01H	Secondary Air Injection System High Airflow
			Bank1: P2440 Bank2: P2442	84H	01H	Secondary Air Injection System Switching Valve Stuck Open
			P2440	85H	01H	Secondary Air Injection System Switching Valve Stuck Open
			P2444	86H	01H	Secondary Air Injection System Pump Stuck On

< SERVICE INFORMATION >

[VK45DE]

1	OBD-	0.16.15	DTO	li	e and Test mit display)	D
Item	MID	Self-diagnostic test item	DTC	TID	Unitand Scaling ID	- Description
	81H	Fuel injection system function	P0171 or P0172	80H	2FH	Long term fuel trim
FUEL	ОІП	(Bank 1)	P0171 or P0172	81H	24H	The number of lambda control clamped
SYSTEM	82H	Fuel injection system function	P0174 or P0175	80H	2FH	Long term fuel trim
	OZII	(Bank 2)	P0174 or P0175	81H	24H	The number of lambda control clamped
			P0301	80H	24H	Misfiring counter at 1000rev of the first cylinder
			P0302	81H	24H	Misfiring counter at 1000rev of the second cylinder
			P0303	82H	24H	Misfiring counter at 1000rev of the third cylinder
			P0304	83H	24H	Misfiring counter at 1000rev of the fourth cylinder
			P0305	84H	24H	Misfiring counter at 1000rev of the fifth cylinder
		1H Multiple Cylinder Misfire	P0306	85H	24H	Misfiring counter at 1000rev of the sixth cylinder
			P0307	86H	24H	Misfiring counter at 1000rev of the seventh cylinder
			P0308	87H	24H	Misfiring counter at 1000rev of the eighth cylinder
			P0300	88H	24H	Misfiring counter at 1000rev of the multiple cylinders
MISFIRE	A1H		P0301	89H	24H	Misfiring counter at 200rev of the first cylinder
MISFIRE	AIII		P0302	8AH	24H	Misfiring counter at 200rev of the second cylinder
			P0303	8BH	24H	Misfiring counter at 200rev of the third cylinder
			P0304	8CH	24H	Misfiring counter at 200rev of the fourth cylinder
			P0305	8DH	24H	Misfiring counter at 200rev of the fifth cylinder
			P0306	8EH	24H	Misfiring counter at 200rev of the fifth cylinder
			P0307	8FH	24H	Misfiring counter at 200rev of the fifth cylinder
			P0308	90H	24H	Misfiring counter at 200rev of the fifth cylinder
			P0300	91H	24H	Misfiring counter at 1000rev of the single cylinder
			P0300	92H	24H	Misfiring counter at 200rev of the single cylinder
			P0300	93H	24H	Misfiring counter at 200rev of the multi- ple cylinders

		Self-diagnostic test item			e and Test mit	
Item	OBD-		DTC		display)	Description
Rom	MID		510	TID	Unit and Scaling ID	Decempater
	A2H	No.1 Cylinder Misfire	P0301	овн	24H	EWMA (Exponential Weighted Moving Average) misfire counts for last 10 driving cycles
			P0301	0CH	24H	Misfire counts for last/current driving cycles
	АЗН	No.2 Cylinder Misfire	P0302	овн	24H	EWMA (Exponential Weighted Moving Average) misfire counts for last 10 driving cycles
			P0302	0CH	24H	Misfire counts for last/current driving cycles
	A4H	No.3 Cylinder Misfire	P0303	овн	24H	EWMA (Exponential Weighted Moving Average) misfire counts for last 10 driving cycles
			P0303	0CH	24H	Misfire counts for last/current driving cycles
	А5Н	No.4 Cylinder Misfire	P0304	овн	24H	EWMA (Exponential Weighted Moving Average) misfire counts for last 10 driving cycles
MISFIRE			P0304	0CH	24H	Misfire counts for last/current driving cycles
WIGFIRE	A6H	No.5 Cylinder Misfire	P0305	овн	24H	EWMA (Exponential Weighted Moving Average) misfire counts for last 10 driving cycles
			P0305	0CH	24H	Misfire counts for last/current driving cycles
	А7Н	,	P0306	овн	24H	EWMA (Exponential Weighted Moving Average) misfire counts for last 10 driving cycles
			P0306	0CH	24H	Misfire counts for last/current driving cycles
	A8H		P0307	овн	24H	EWMA (Exponential Weighted Moving Average) misfire counts for last 10 driving cycles
			P0307	0CH	24H	Misfire counts for last/current driving cycles
	А9Н	No.8 Cylinder Misfire	P0308	овн	24H	EWMA (Exponential Weighted Moving Average) misfire counts for last 10 driving cycles
		Symias. Mismo	P0308	0CH	24H	Misfire counts for last/current driving cycles

HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION

How to Erase DTC

(P) WITH CONSULT-III

NOTE:

- If the ignition switch stays ON after repair work, be sure to turn ignition switch OFF once. Wait at least 10 seconds and then turn it ON (engine stopped) again.
- If the DTC is not for A/T related items (see EC-640, "U1000 U1010"), skip step 1.
- 1. Perform "HOW TO ERASE DTC" in AT-40, "OBD-II Diagnostic Trouble Code (DTC)". (The DTC in TCM will be erased)
- 2. Select "ENGINE" with CONSUILT-III.

Revision: 2009 February E C -6 9 2 2008 M35/M45

< SERVICE INFORMATION >

- 3. Select "SELF DIAGNOSTIC RESULT".
- 4. Touch "ERASE". (DTC in ECM will be erased.)

WITH GST

NOTE:

- If the ignition switch stays ON after repair work, be sure to turn ignition switch OFF once. Wait at least 10 seconds and then turn it ON (engine stopped) again.
- If the DTC is not for A/T related items (see EC-640, "U1000 U1010"), skip step 1.
- 1. Perform "HOW TO ERASE DTC" in AT-40, "OBD-II Diagnostic Trouble Code (DTC)". (The DTC in TCM will be erased)
- 2. Select Service \$04 with GST (Generic Scan Tool).

No Tools

NOTE:

- If the ignition switch stays ON after repair work, be sure to turn ignition switch OFF once. Wait at least 10 seconds and then turn it ON (engine stopped) again.
- If the DTC is not for A/T related items (see EC-640, "U1000 U1010"), skip step 1.
- 1. Perform "HOW TO ERASE DTC" in AT-40, "OBD-II Diagnostic Trouble Code (DTC)". (The DTC in TCM will be erased)
- Erase DTC in ECM. Refer to "How to Erase Diagnostic Test Mode II (Self-Diagnostic Results)" in <u>EC-693</u>. "<u>Malfunction Indicator Lamp (MIL)</u>".
- If the battery is disconnected, the emission-related diagnostic information will be lost within 24 hours.
- The following data are cleared when the ECM memory is erased.
- Diagnostic trouble codes
- 1st trip diagnostic trouble codes
- Freeze frame data
- 1st trip freeze frame data
- System readiness test (SRT) codes
- Test values

Actual work procedures are explained using a DTC as an example. Be careful so that not only the DTC, but all of the data listed above, are cleared from the ECM memory during work procedures.

Malfunction Indicator Lamp (MIL)

INFOID:0000000002954736

DESCRIPTION

The MIL is located on the instrument panel.

- The MIL will light up when the ignition switch is turned ON without the engine running. This is a bulb check.
 If the MIL does not light up, check MIL circuit. Refer to <u>EC-1276</u>. "Wiring Diagram".
- When the engine is started, the MIL should go off.If the MIL remains on, the on board diagnostic system has detected an engine system malfunction.

SERVICE - ENGINE - SOON

ON BOARD DIAGNOSTIC SYSTEM FUNCTION

The on board diagnostic system has the following three functions.

EC

Α

[VK45DE]

D

Е

F

G

Н

Κ

L

M

Ν

Diagnostic Test Mode	KEY and ENG. Status	Function	Explanation of Function
Mode I	Ignition switch in ON position Engine stopped	BULB CHECK	This function checks the MIL bulb for damage (blown, open circuit, etc.). If the MIL does not come on, check MIL circuit.
	Engine running	MALFUNCTION WARNING	This is a usual driving condition. When a malfunction is detected twice in two consecutive driving cycles (two trip detection logic), the MIL will light up to inform the driver that a malfunction has been detected. The following malfunctions will light up or blink the MIL in the 1st trip. • Misfire (Possible three way catalyst damage) • One trip detection diagnoses
Mode II	Ignition switch in ON position Engine stopped	SELF-DIAGNOSTIC RESULTS	This function allows DTCs and 1st trip DTCs to be read.

When there is an open circuit on MIL circuit, the ECM cannot warn the driver by lighting up MIL when there is malfunction on engine control system.

Therefore, when electrical controlled throttle and part of ECM related diagnoses are continuously detected as NG for 5 trips, ECM warns the driver that engine control system malfunctions and MIL circuit is open by means of operating fail-safe function.

The fail-safe function also operates when above diagnoses except MIL circuit are detected and demands the driver to repair the malfunction.

Engine operating condition in fail-safe mode	Engine speed will not rise more than 2,500 rpm due to the fuel cut

MIL Flashing Without DTC

When any SRT codes are not set, MIL may flash without DTC. For the details, refer to <u>EC-677</u>, "Emission-Related Diagnostic Information".

HOW TO SWITCH DIAGNOSTIC TEST MODE

NOTE:

- It is better to count the time accurately with a clock.
- It is impossible to switch the diagnostic mode when an accelerator pedal position sensor circuit has a malfunction.
- Always ECM returns to Diagnostic Test Mode I after ignition switch is turned OFF.

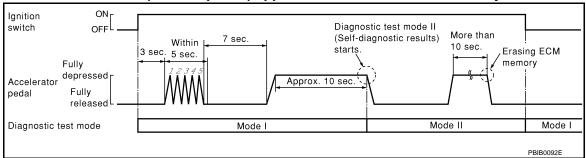
How to Set Diagnostic Test Mode II (Self-diagnostic Results)

- 1. Confirm that accelerator pedal is fully released, turn ignition switch ON and wait 3 seconds.
- 2. Repeat the following procedure quickly five times within 5 seconds.
- a. Fully depress the accelerator pedal.
- b. Fully release the accelerator pedal.
- Wait 7 seconds, fully depress the accelerator pedal and keep it for approx. 10 seconds until the MIL starts blinking.

NOTE:

< SERVICE INFORMATION >

[VK45DE]


Do not release the accelerator pedal for 10 seconds if MIL may start blinking on the halfway of this 10 seconds. This blinking is displaying SRT status and is continued for another 10 seconds. For the details, refer to <u>EC-677, "Emission-Related Diagnostic Information".</u>

Fully release the accelerator pedal.

ECM has entered to Diagnostic Test Mode II (Self-diagnostic results).

NOTE:

Wait until the same DTC (or 1st trip DTC) appears to confirm all DTCs certainly.

How to Erase Diagnostic Test Mode II (Self-diagnostic Results)

- Set ECM in Diagnostic Test Mode II (Self-diagnostic results). Refer to "How to Set Diagnostic Test Mode II (Self-diagnostic Results)".
- Fully depress the accelerator pedal and keep it for more than 10 seconds.The emission-related diagnostic information has been erased from the backup memory in the ECM.
- 3. Fully release the accelerator pedal, and confirm the DTC 0000 is displayed.

DIAGNOSTIC TEST MODE I — BULB CHECK

In this mode, the MIL on the instrument panel should stay ON. If it remains OFF, check MIL circuit. Refer to EC-1276, "Wiring Diagram".

DIAGNOSTIC TEST MODE I — MALFUNCTION WARNING

MIL	Condition
ON	When the malfunction is detected.
OFF	No malfunction.

This DTC number is clarified in Diagnostic Test Mode II (SELF-DIAGNOSTIC RESULTS)

DIAGNOSTIC TEST MODE II — SELF-DIAGNOSTIC RESULTS

In this mode, the DTC and 1st trip DTC are indicated by the number of blinks of the MIL as shown below. The DTC and 1st trip DTC are displayed at the same time. If the MIL does not illuminate in diagnostic test mode I (Malfunction warning), all displayed items are 1st trip DTCs. If only one code is displayed when the MIL illuminates in diagnostic test mode II (SELF-DIAGNOSTIC RESULTS), it is a DTC; if two or more codes are displayed, they may be either DTCs or 1st trip DTCs. DTC No. is same as that of 1st trip DTC. These uniden-

EC

D

Е

F

Н

J

K

L

M

Ν

tified codes can be identified by using the CONSULT-III or GST. A DTC will be used as an example for how to read a code.

A particular trouble code can be identified by the number of four-digit numeral flashes. The "zero" is indicated by the number of ten flashes. The "A" is indicated by the number of eleven flash. The length of time the 1,000th-digit numeral flashes on and off is 1.2 seconds consisting of an ON (0.6-second) - OFF (0.6-second) cycle.

The 100th-digit numeral and lower digit numerals consist of a 0.3-second ON and 0.3-second OFF cycle.

A change from one digit numeral to another occurs at an interval of 1.0-second OFF. In other words, the later numeral appears on the display 1.3 seconds after the former numeral has disappeared.

A change from one trouble code to another occurs at an interval of 1.8-second OFF.

In this way, all the detected malfunctions are classified by their DTC numbers. The DTC 0000 refers to no malfunction. (See EC-640, "U1000 - U1010")

How to Erase Diagnostic Test Mode II (Self-diagnostic Results)

The DTC can be erased from the back up memory in the ECM by depressing accelerator pedal. Refer to "How to Erase Diagnostic Test Mode II (Self-diagnostic Results)".

- If the battery is disconnected, the DTC will be lost from the backup memory within 24 hours.
- Be careful not to erase the stored memory before starting trouble diagnoses.

OBD System Operation Chart

INFOID:0000000002954737

RELATIONSHIP BETWEEN MIL, 1ST TRIP DTC, DTC, AND DETECTABLE ITEMS

- When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data are stored in the ECM memory.
- When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data are stored in the ECM memory, and the MIL will come on. For details, refer to EC-676. "Two Trip Detection Logic".
- The MIL will go off after the vehicle is driven 3 times (driving pattern B) with no malfunction. The drive is counted only when the recorded driving pattern is met (as stored in the ECM). If another malfunction occurs while counting, the counter will reset.
- The DTC and the freeze frame data will be stored until the vehicle is driven 40 times (driving pattern A) without the same malfunction recurring (except for Misfire and Fuel Injection System). For Misfire and Fuel Injection

< SERVICE INFORMATION >

[VK45DE]

tion System, the DTC and freeze frame data will be stored until the vehicle is driven 80 times (driving pattern C) without the same malfunction recurring. The "TIME" in "SELF DIAGNOSTIC RESULT" mode of CONSULT-III will count the number of times the vehicle is driven.

• The 1st trip DTC is not displayed when the self-diagnosis results in OK for the 2nd trip.

SUMMARY CHART

Items	Fuel Injection System	Misfire	Other
MIL (goes off)	3 (pattern B)	3 (pattern B)	3 (pattern B)
DTC, Freeze Frame Data (no display)	80 (pattern C)	80 (pattern C)	40 (pattern A)
1st Trip DTC (clear)	1 (pattern C), *1	1 (pattern C), *1	1 (pattern B)
1st Trip Freeze Frame Data (clear)	*1, *2	*1, *2	1 (pattern B)

For details about patterns B and C under "Fuel Injection System" and "Misfire", see "EXPLANATION FOR DRIVING PATTERNS FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"".

For details about patterns A and B under Other, see "EXPLANATION FOR DRIVING PATTERNS FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"".

RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS FOR "MISFIRE" <EXHAUST QUALITY DETERIORATION>, "FUEL INJECTION SYSTEM"

EC

C

C

Е

D

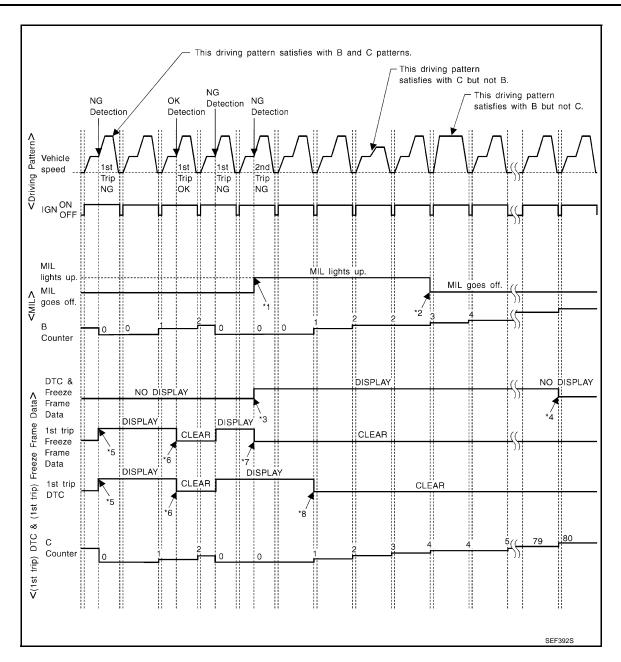
F

G

Н

,

L


M

Ν

U

^{*1:} Clear timing is at the moment OK is detected.

^{*2:} Clear timing is when the same malfunction is detected in the 2nd trip.

- *1: When the same malfunction is detected in two consecutive trips, MIL will light up.
- *4: The DTC and the freeze frame data will not be displayed any longer after vehicle is driven 80 times (pattern C) without the same malfunction. (The DTC and the freeze frame data still remain in ECM.)
- *7: When the same malfunction is detected in the 2nd trip, the 1st trip freeze frame data will be cleared.

- *2: MIL will go off after vehicle is driven 3 times (pattern B) without any malfunctions.
- *5: When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data will be stored in ECM.
- *8: 1st trip DTC will be cleared when vehicle is driven once (pattern C) without the same malfunction after DTC is stored in ECM.
- *3: When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data will be stored in ECM.
- *6: The 1st trip DTC and the 1st trip freeze frame data will be cleared at the moment OK is detected.

EXPLANATION FOR DRIVING PATTERNS FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

<Driving Pattern B>

Driving pattern B means the vehicle operation as follows:

[VK45DE] < SERVICE INFORMATION >

All components and systems should be monitored at least once by the OBD system.

- The B counter will be cleared when the malfunction is detected once regardless of the driving pattern.
- The B counter will be counted up when driving pattern B is satisfied without any malfunction.
- The MIL will go off when the B counter reaches 3. (*2 in "OBD SYSTEM OPERATION CHART")

<Driving Pattern C>

Driving pattern C means the vehicle operation as follows:

The following conditions should be satisfied at the same time:

Engine speed: (Engine speed in the freeze frame data) ±375 rpm

Calculated load value: (Calculated load value in the freeze frame data) x (1±0.1) [%]

Engine coolant temperature (T) condition:

- When the freeze frame data shows lower than 70°C (158°F), T should be lower than 70°C (158°F).
- When the freeze frame data shows higher than or equal to 70°C (158°F), T should be higher than or equal to 70°C (158°F).

Example:

If the stored freeze frame data is as follows:

Engine speed: 850 rpm, Calculated load value: 30%, Engine coolant temperature: 80°C (176°F)

To be satisfied with driving pattern C, the vehicle should run under the following conditions:

Engine speed: 475 - 1,225 rpm, Calculated load value: 27 - 33%, Engine coolant temperature: more than 70°C (158°F)

- The C counter will be cleared when the malfunction is detected regardless of vehicle conditions above.
- The C counter will be counted up when vehicle conditions above is satisfied without the same malfunction.
- The DTC will not be displayed after C counter reaches 80.
- The 1st trip DTC will be cleared when C counter is counted once without the same malfunction after DTC is stored in ECM.

RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS <u>EXCEPT</u> FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

EC

Α

D

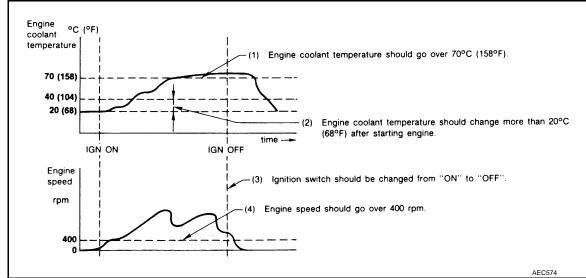

Е

F

K

L

N


- *1: When the same malfunction is detected in two consecutive trips, MIL will light up.
- *4: The DTC and the freeze frame data will not be displayed any longer after vehicle is driven 40 times (pattern A) without the same malfunction. (The DTC and the freeze frame data still remain in ECM.)
- *7: When the same malfunction is detected in the 2nd trip, the 1st trip freeze frame data will be cleared.

- *2: MIL will go off after vehicle is driven 3 times (pattern B) without any malfunctions.
- *5: When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data will be stored in ECM.
- *3: When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data will be stored in ECM.
- *6: 1st trip DTC will be cleared after vehicle is driven once (pattern B) without the same malfunction.

EXPLANATION FOR DRIVING PATTERNS <u>EXCEPT</u> FOR "MISFIRE <EXHAUST QUALITY DETE-RIORATION>", "FUEL INJECTION SYSTEM"

[VK45DE]

<Driving Pattern A>

- The A counter will be cleared when the malfunction is detected regardless of (1) (4).
- The A counter will be counted up when (1) (4) are satisfied without the same malfunction.
- The DTC will not be displayed after the A counter reaches 40.

<Driving Pattern B>

Driving pattern B means the vehicle operation as follows:

All components and systems should be monitored at least once by the OBD system.

- The B counter will be cleared when the malfunction is detected once regardless of the driving pattern.
- The B counter will be counted up when driving pattern B is satisfied without any malfunctions.
- The MIL will go off when the B counter reaches 3 (*2 in OBD SYSTEM OPERATION CHART).

Α

EC

Е

D

F

G

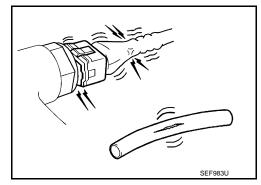
Н

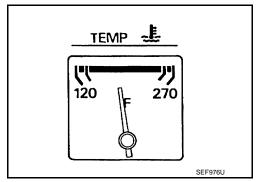
K

L

M

Ν

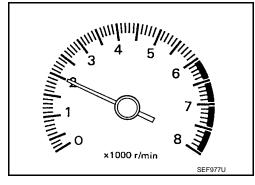

0


BASIC SERVICE PROCEDURE

Basic Inspection

1. INSPECTION START

- 1. Check service records for any recent repairs that may indicate a related malfunction, or a current need for scheduled maintenance.
- 2. Open engine hood and check the following:
- Harness connectors for improper connections
- Wiring harness for improper connections, pinches and cut
- Vacuum hoses for splits, kinks and improper connections
- Hoses and ducts for leaks
- Air cleaner clogging
- Gasket
- 3. Confirm that electrical or mechanical loads are not applied.
- Headlamp switch is OFF.
- Air conditioner switch is OFF.
- Rear window defogger switch is OFF.
- Steering wheel is in the straight-ahead position, etc.
- Start engine and warm it up until engine coolant temperature indicator points the middle of gauge. Ensure engine stays below 1,000 rpm.



- 5. Run engine at about 2,000 rpm for about 2 minutes under no load.
- 6. Make sure that no DTC is displayed with CONSULT-III or GST.

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. REPAIR OR REPLACE

Repair or replace components as necessary according to corresponding Diagnostic Procedure.

>> GO TO 3

3. CHECK TARGET IDLE SPEED

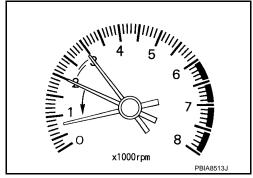
1. Run engine at about 2,000 rpm for about 2 minutes under no load.

BASIC SERVICE PROCEDURE

< SERVICE INFORMATION >

[VK45DE]

Rev engine (2,000 to 3,000 rpm) two or three times under no load, then run engine at idle speed for about 1 minute.


Check idle speed.

Refer to EC-705, "Idle Speed and Ignition Timing Check".

650 ± 50 rpm (in P or N position)

OK or NG

OK >> GO TO 10. NG >> GO TO 4.

f 4.PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING

- Stop engine.
- Perform EC-706, "Accelerator Pedal Released Position Learning".

>> GO TO 5.

5.PERFORM THROTTLE VALVE CLOSED POSITION LEARNING

Perform EC-706, "Throttle Valve Closed Position Learning".

>> GO TO 6.

6. PERFORM IDLE AIR VOLUME LEARNING

Refer to EC-707, "Idle Air Volume Learning".

Is Idle Air Volume Learning carried out successfully?

Yes or No

>> GO TO 7. Yes

Nο >> 1. Follow the instruction of Idle Air Volume Learning.

GO TO 4.

.CHECK TARGET IDLE SPEED AGAIN

- Start engine and warm it up to normal operating temperature.
- Check idle speed.

Refer to EC-705, "Idle Speed and Ignition Timing Check".

650 ± 50 rpm (in P or N position)

OK or NG

OK >> GO TO 10.

NG >> GO TO 8.

8. DETECT MALFUNCTIONING PART

Check the Following.

- Check camshaft position sensor (PHASE) and circuit. Refer to <u>EC-963</u>.
- Check crankshaft position sensor (POS) and circuit. Refer to EC-958.

OK or NG

OK >> GO TO 9.

NG >> 1. Repair or replace.

2. GO TO 4.

9. CHECK ECM FUNCTION

- Substitute another known-good ECM to check ECM function. (ECM may be the cause of an incident, but this is a rare case.)
- 2. Perform initialization of IVIS (NATS) system and registration of all IVIS (NATS) ignition key IDs. Refer to BL-221, "ECM Re-Communicating Function".

>> GO TO 4.

EC

Α

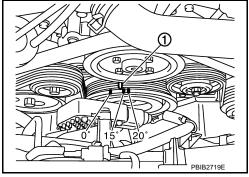
D

Е

F

M

N


10. CHECK IGNITION TIMING

- 1. Run engine at idle.
- Check ignition timing with a timing light.
 Refer to <u>EC-705</u>, "Idle Speed and Ignition Timing Check".
- Timing indicator (1)

$12 \pm 5^{\circ}$ BTDC (in P or N position)

OK or NG

OK >> GO TO 19. NG >> GO TO 11.

11. PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING

- 1. Stop engine.
- 2. Perform EC-706, "Accelerator Pedal Released Position Learning".

>> GO TO 12.

12. PERFORM THROTTLE VALVE CLOSED POSITION LEARNING

Perform EC-706, "Throttle Valve Closed Position Learning".

>> GO TO 13.

13. PERFORM IDLE AIR VOLUME LEARNING

Refer to EC-707, "Idle Air Volume Learning".

Is Idle Air Volume Learning carried out successfully?

Yes or No

Yes >> GO TO 14.

No >> 1. Follow the instruction of Idle Air Volume Learning.

2. GO TO 4.

14. CHECK TARGET IDLE SPEED AGAIN

- 1. Start engine and warm it up to normal operating temperature.
- 2. Check idle speed.

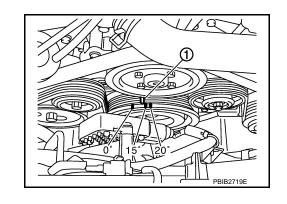
Refer to EC-705, "Idle Speed and Ignition Timing Check".

650 ± 50 rpm (in P or N position)

OK or NG

OK >> GO TO 15.

NG >> GO TO 17.


15. CHECK IGNITION TIMING AGAIN

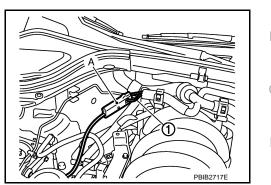
- 1. Run engine at idle.
- Check ignition timing with a timing light.
 Refer to EC-705, "Idle Speed and Ignition Timing Check".
- Timing indicator (1)

$12 \pm 5^{\circ}$ BTDC (in P or N position)

OK or NG

OK >> GO TO 19. NG >> GO TO 16.

BASIC SERVICE PROCEDURE [VK45DE] < SERVICE INFORMATION > 16. CHECK TIMING CHAIN INSTALLATION Check timing chain installation. Refer to EM-202. OK or NG OK >> GO TO 17. EC NG >> 1. Repair the timing chain installation. GO TO 4. 17. DETECT MALFUNCTIONING PART Check the following. Check camshaft position sensor (PHASE) and circuit. Refer to <u>EC-963</u>. Check crankshaft position sensor (POS) and circuit. Refer to EC-958. D OK or NG OK >> GO TO 18. Е NG >> 1. Repair or replace. 2. GO TO 4. 18. CHECK ECM FUNCTION Substitute another known-good ECM to check ECM function. (ECM may be the cause of an incident, but this is a rare case.) 2. Perform initialization of IVIS (NATS) system and registration of all IVIS (NATS) ignition key IDs. Refer to BL-221, "ECM Re-Communicating Function". >> GO TO 4. Н 19. INSPECTION END Did you replace ECM, referring this Basic Inspection procedure? Yes or No Perform EC-706, "VIN Registration". Yes >> 1. **INSPECTION END** >> INSPECTION END Nο Idle Speed and Ignition Timing Check INFOID:0000000002954739 **IDLE SPEED** (II) With CONSULT-III

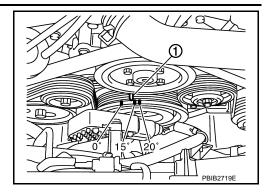

Check idle speed in "DATA MONITOR" mode with CONSULT-III.

With GST

Check idle speed with GST.

IGNITION TIMING

Attach timing light A to loop wire (1) as shown.



EC-705 Revision: 2009 February 2008 M35/M45

M

Ν

- 2. Check ignition timing.
 - Timing indicator (1)

Procedure After Replacing ECM

INFOID:0000000002954740

When replacing ECM, the following procedure must be performed.

- Perform initialization of IVIS (NATS) system and registration of all IVIS (NATS) ignition key IDs. Refer to <u>BL-221</u>, "<u>ECM Re-Communicating Function</u>".
- Perform <u>EC-706</u>, "VIN Registration".
- Perform <u>EC-706</u>, "Accelerator Pedal Released Position Learning".
- 4. Perform EC-706, "Throttle Valve Closed Position Learning".
- 5. Perform EC-707, "Idle Air Volume Learning".

VIN Registration

INFOID:0000000002954741

DESCRIPTION

VIN Registration is an operation to registering VIN in ECM. It must be performed each time ECM is replaced.

Accurate VIN which is registered in ECM may be required for Inspection & Maintenance (I/M).

OPERATION PROCEDURE

(P) With CONSULT-III

- Check the VIN of the vehicle and note it. Refer to <u>EM-192, "Component"</u>.
- 2. Turn ignition switch ON and engine stopped.
- Select "VIN REGISTRATION" in "WORK SUPPORT" mode.
- Follow the instruction of CONSULT-III display.

Accelerator Pedal Released Position Learning

INFOID:0000000002954742

DESCRIPTION

Accelerator Pedal Released Position Learning is an operation to learn the fully released position of the accelerator pedal by monitoring the accelerator pedal position sensor output signal. It must be performed each time harness connector of accelerator pedal position sensor or ECM is disconnected.

OPERATION PROCEDURE

- Make sure that accelerator pedal is fully released.
- Turn ignition switch ON and wait at least 2 seconds.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Repeat steps 2 and 3 four times.

Throttle Valve Closed Position Learning

INEOID:00000000002954743

DESCRIPTION

Throttle Valve Closed Position Learning is an operation to learn the fully closed position of the throttle valve by monitoring the throttle position sensor output signal. It must be performed each time harness connector of electric throttle control actuator or ECM is disconnected.

OPERATION PROCEDURE

BASIC SERVICE PROCEDURE

[VK45DE] < SERVICE INFORMATION >

- Make sure that accelerator pedal is fully released.
- 2. Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds. Make sure that throttle valve moves during above 10 seconds by confirming the operating sound.

Idle Air Volume Learning

INFOID:000000000295474

DESCRIPTION

Idle Air Volume Learning is an operation to learn the idle air volume that keeps each engine within the specific range. It must be performed under any of the following conditions:

- Each time electric throttle control actuator or ECM is replaced.
- Idle speed or ignition timing is out of specification.

PREPARATION

Before performing Idle Air Volume Learning, make sure that all of the following conditions are satisfied. Learning will be cancelled if any of the following conditions are missed for even a moment.

- Battery voltage: More than 12.9V (At idle)
- Engine coolant temperature: 70 105°C (158 221°F)
- Transmission range switch: ON
- Electric load switch: OFF

(Air conditioner, headlamp, rear window defogger)

On vehicles equipped with daytime light systems, if the parking brake is applied before the engine is started the headlamp will not be illuminated.

- Steering wheel: Neutral (Straight-ahead position)
- Vehicle speed: Stopped
- Transmission: Warmed-up
- With CONSULT-III: Drive vehicle until "ATF TEMP SE 1" in "DATA MONITOR" mode of "TRANSMISSION" system indicates less than 0.9V.
- Without CONSULT-III: Drive vehicle for 10 minutes.

OPERATION PROCEDURE

(P) With CONSULT-III

- 1. Perform EC-706, "Accelerator Pedal Released Position Learning".
- Perform EC-706, "Throttle Valve Closed Position Learning".
- 3. Start engine and warm it up to normal operating temperature.
- Check that all items listed under the topic PREPARATION (previously mentioned) are in good order.
- Select "IDLE AIR VOL LEARN" in "WORK SUPPORT" mode. 5.
- Touch "START" and wait 20 seconds.
- 7. Make sure that "CMPLT" is displayed on CONSULT-III screen. If "CMPLT" is not displayed, Idle Air Volume Learning will not be carried out successfully. In this case, find the cause of the incident by referring to the DIAGNOSTIC PROCEDURE below.
- Rev up the engine two or three times and make sure that idle speed and ignition timing are within the specifications.

ITEM	SPECIFICATION
Idle speed	650 ± 50 rpm (in P or N position)
Ignition timing	12 ± 5° BTDC (in P or N position)

- It is better to count the time accurately with a clock.
- It is impossible to switch the diagnostic mode when an accelerator pedal position sensor circuit has a malfunction.
- Perform EC-706, "Accelerator Pedal Released Position Learning". 1.
- Perform EC-706, "Throttle Valve Closed Position Learning". 2.
- Start engine and warm it up to normal operating temperature.

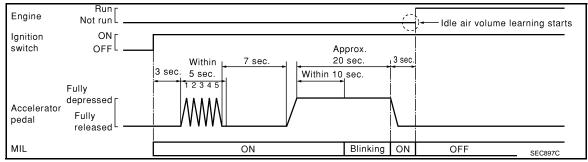
EC

Α

D

Е

F


Н

M

Ν

< SERVICE INFORMATION >

- Check that all items listed under the topic PREPARATION (previously mentioned) are in good order.
- 5. Turn ignition switch OFF and wait at least 10 seconds.
- 6. Confirm that accelerator pedal is fully released, turn ignition switch ON and wait 3 seconds.
- 7. Repeat the following procedure quickly five times within 5 seconds.
- a. Fully depress the accelerator pedal.
- b. Fully release the accelerator pedal.
- Wait 7 seconds, fully depress the accelerator pedal and keep it for approx. 20 seconds until the MIL stops blinking and turned ON.
- 9. Fully release the accelerator pedal within 3 seconds after the MIL turned ON.
- 10. Start engine and let it idle.
- 11. Wait 20 seconds.

12. Rev up the engine two or three times and make sure that idle speed and ignition timing are within the specifications.

ITEM	SPECIFICATION
Idle speed	650 ± 50 rpm (in P or N position)
Ignition timing	12 ± 5° BTDC (in P or N position)

13. If idle speed and ignition timing are not within the specification, Idle Air Volume Learning will not be carried out successfully. In this case, find the cause of the incident by referring to the Diagnostic Procedure below.

DIAGNOSTIC PROCEDURE

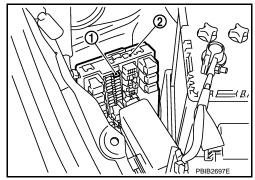
If idle air volume learning cannot be performed successfully, proceed as follows:

- 1. Check that throttle valve is fully closed.
- 2. Check PCV valve operation.
- 3. Check that downstream of throttle valve is free from air leakage.
- 4. When the above three items check out OK, engine component parts and their installation condition are questionable. Check and eliminate the cause of the incident. It is useful to perform <u>EC-755</u>, "Inspection Procedure".
- 5. If any of the following conditions occur after the engine has started, eliminate the cause of the incident and perform Idle Air Volume Learning all over again:
- Engine stalls.
- Erroneous idle.

Fuel Pressure Check

INFOID:0000000002954745

FUEL PRESSURE RELEASE


- (P) With CONSULT-III
- 1. Turn ignition switch ON.
- Perform "FUEL PRESSURE RELEASE" in "WORK SUPPORT" mode with CONSULT-III.
- Start engine.
- 4. After engine stalls, crank it two or three times to release all fuel pressure.
- Turn ignition switch OFF.
- Without CONSULT-III

BASIC SERVICE PROCEDURE

< SERVICE INFORMATION >

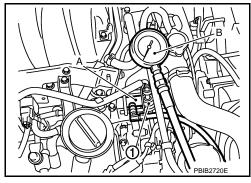
[VK45DE]

- Remove fuel pump fuse (1) located in IPDM E/R (2).
- 2. Start engine.
- After engine stalls, crank it 2 or 3 times to release all fuel pressure.
- 4. Turn ignition switch OFF.
- Reinstall fuel pump fuse after servicing fuel system.

FUEL PRESSURE CHECK

CAUTION:

Before disconnecting fuel line, release fuel pressure from fuel line to eliminate danger. NOTE:


- Prepare pans or saucers under the disconnected fuel line because the fuel may spill out. The fuel pressure cannot be completely released because Y50 models do not have fuel return system.
- Use Fuel Pressure Gauge Kit (J-44321) to check fuel pressure.
- 1. Release fuel pressure to zero. Refer to "FUEL PRESSURE RELEASE".
- Install the inline fuel quick disconnect fitting A between fuel damper (1) and fuel tube.
- 3. Connect the fuel pressure gauge B (quick connect adapter hose) to the inline fuel quick disconnect fitting.
- 4. Turn ignition switch ON and check for fuel leakage.
- Start engine and check for fuel leakage.
- 6. Read the indication of fuel pressure gauge.

At idling: Approximately 350 kPa (3.57 kg/cm², 51 psi)

- 7. If result is unsatisfactory, go to next step.
- 8. Check the following.
 - Fuel hoses and fuel tubes for clogging
 - Fuel filter for clogging
 - Fuel pump
 - Fuel pressure regulator for clogging

If OK, replace fuel level sensor unit, fuel filter and fuel pump assembly.

If NG, repair or replace.

EC

Α

Ε

D

F

G

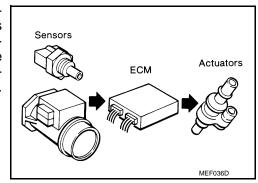
Н

K

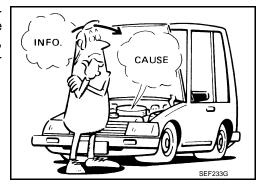
L

Ν

0

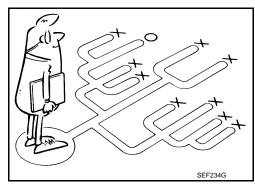

TROUBLE DIAGNOSIS

Trouble Diagnosis Introduction

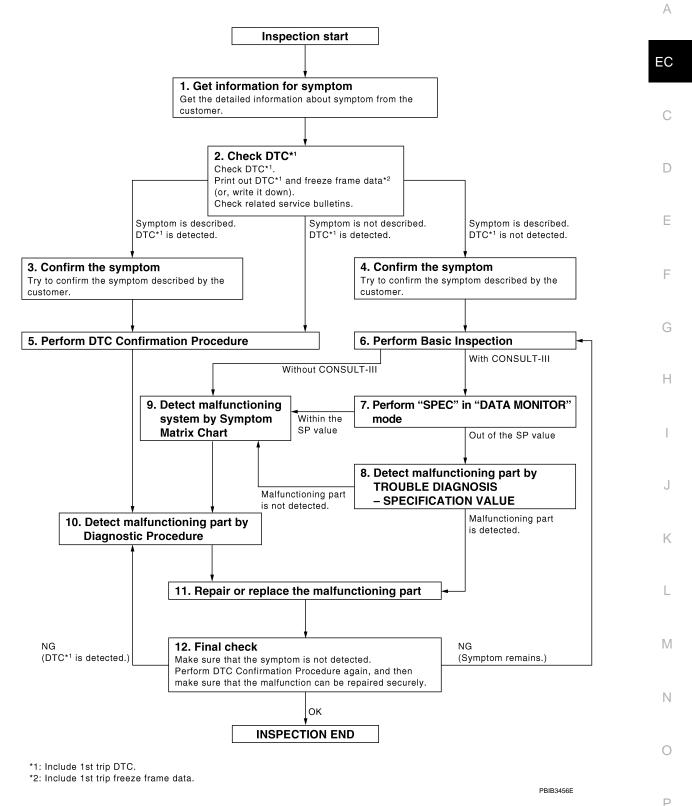

INFOID:0000000002954746

INTRODUCTION

The engine has an ECM to control major systems such as fuel control, ignition control, idle air control system, etc. The ECM accepts input signals from sensors and instantly drives actuators. It is essential that both input and output signals are proper and stable. At the same time, it is important that there are no malfunctions such as vacuum leaks, fouled spark plugs, or other malfunctions with the engine.


It is much more difficult to diagnose an incident that occurs intermittently rather than continuously. Most intermittent incidents are caused by poor electric connections or improper wiring. In this case, careful checking of suspected circuits may help prevent the replacement of good parts.

A visual check only may not find the cause of the incidents. A road test with CONSULT-III (or GST) or a circuit tester connected should be performed. Follow the Work Flow below.


Before undertaking actual checks, take a few minutes to talk with a customer who approaches with a driveability complaint. The customer can supply good information about such incidents, especially intermittent ones. Find out what symptoms are present and under what conditions they occur. A Diagnostic Worksheet like the example on "Worksheet Sample" should be used.

Start your diagnosis by looking for conventional malfunctions first. This will help troubleshoot driveability malfunctions on an electronically controlled engine vehicle.

WORK FLOW

Overall Sequence

Detailed Flow

1.GET INFORMATION FOR SYMPTOM

Get the detailed information from the customer about the symptom (the condition and the environment when the incident/malfunction occurred) using the "DIAGNOSTIC WORKSHEET".

>> GO TO 2.

2.CHECK DTC *1

- 1. Check DTC*1.
- 2. Perform the following procedure if DTC*1 is displayed.
- Record DTC*1 and freeze frame data*2. (Print them out with CONSULT-III or GST.)
- Erase DTC*1. (Refer to "How to Erase DTC" in EC-677, "Emission-Related Diagnostic Information".)
- Study the relationship between the cause detected by DTC*¹ and the symptom described by the customer. (Symptom Matrix Chart is useful. Refer to <u>EC-717</u>, "Symptom Matrix Chart".)
- 3. Check related service bulletins for information.

Is any symptom described and any DTC detected?

Symptom is described, DTC*1 is displayed>>GO TO 3.

Symptom is described, DTC*1 is not displayed>>GO TO 4.

Symptom is not described, DTC*1 is displayed>>GO TO 5.

${f 3.}$ CONFIRM THE SYMPTOM

Try to confirm the symptom described by the customer (except MIL ON).

DIAGNOSIS WORKSHEET is useful to verify the incident.

Verify relation between the symptom and the condition when the symptom is detected.

>> GO TO 5.

4. CONFIRM THE SYMPTOM

Try to confirm the symptom described by the customer.

DIAGNOSIS WORKSHEET is useful to verify the incident.

Verify relation between the symptom and the condition when the symptom is detected.

>> GO TO 6.

5. PERFORM DTC CONFIRMATION PROCEDURE

Perform DTC Confirmation Procedure for the displayed DTC*¹, and then check that DTC*¹ is detected again. If two or more DTCs*¹ are detected, refer to <u>EC-714, "DTC Inspection Priority Chart"</u> and determine trouble diagnosis order.

NOTE:

- Freeze frame data*2 is useful if the DTC*1 is not detected.
- Perform Overall Function Check if DTC Confirmation Procedure is not included on Service Manual. This simplified check procedure is an effective alternative though DTC*1 cannot be detected during this check.
 If the result of Overall Function Check is NG, it is the same as the detection of DTC*1 by DTC Confirmation Procedure.

Is DTC*1 detected?

Yes >> GO TO 10.

No >> Check according to EC-763, "Diagnosis Procedure".

O. PERFORM BASIC INSPECTION

Perform EC-702, "Basic Inspection".

With CONSULT-III>>GO TO 7. Without CONSULT-III>>GO TO 9.

7. PERFORM SPEC IN DATA MONITOR MODE

(II) With CONSULT-III

Make sure that "MAS A/F SE-B1", "B/FUEL SCHDL", "A/F ALPHA-B1" and "A/F ALPHA-B2" are within the SP value using "SPEC" in "DATA MONITOR" mode with CONSULT-III. Refer to EC-755, "Inspection Procedure".

Are they within the SP value?

Yes >> GO TO 9. No >> GO TO 8.

Revision: 2009 February **EC-712** 2008 M35/M45

TROUBLE DIAGNOSIS

[VK45DE] < SERVICE INFORMATION >

$8.\mathsf{DETECT}$ MALFUNCTIONING PART BY TROUBLE DIAGNOSIS - SPECIFICATION VALUE

Detect malfunctioning part according to EC-756, "Diagnosis Procedure".

Is malfunctioning part detected?

Yes >> GO TO 11.

No >> GO TO 9.

 ${f 9.}$ DETECT MALFUNCTIONING SYSTEM BY SYMPTOM MATRIX CHART

Detect malfunctioning system according to EC-717, "Symptom Matrix Chart" based on the confirmed symptom in step 4, and determine the trouble diagnosis order based on possible causes and symptom.

>> GO TO 10.

10.DETECT MALFUNCTIONING PART BY DIAGNOSTIC PROCEDURE

Inspect according to Diagnostic Procedure of the system.

NOTE:

The Diagnostic Procedure in EC section described based on open circuit inspection. A short circuit inspection is also required for the circuit check in the Diagnostic Procedure. For details, refer to Circuit Inspection in GI-26, "How to Perform Efficient Diagnosis for an Electrical Incident".

Is malfunctioning part detected?

Yes >> GO TO 11.

>> Monitor input data from related sensors or check voltage of related ECM terminals using CON-No SULT-III. Refer to EC-751, "CONSULT-III Reference Value in Data Monitor Mode", EC-733, "ECM Terminal and Reference Value".

11. REPAIR OR REPLACE THE MALFUNCTIONING PART

- Repair or replace the malfunctioning part.
- Reconnect parts or connectors disconnected during Diagnostic Procedure again after repair and replace-
- 3. Check DTC. If DTC is displayed, erase it, refer to "How to Erase DTC" in EC-677, "Emission-Related Diagnostic Information".

>> GO TO 12.

12. FINAL CHECK

When DTC was detected in step 2, perform DTC Confirmation Procedure or Overall Function Check again, and then make sure that the malfunction have been repaired securely.

When symptom was described from the customer, refer to confirmed symptom in step 3 or 4, and make sure that the symptom is not detected.

EC-713

OK or NG

NG (DTC*1 is detected)>>GO TO 10.

NG (Symptom remains)>>GO TO 6. OK

>> 1. Before returning the vehicle to the customer, make sure to erase unnecessary DTC*1 in TCM (Transmission Control Module) and ECM. (Refer to "HOW TO ERASE DTC" in AT-40, "OBD-Il Diagnostic Trouble Code (DTC)" and "How to Erase DTC" in EC-677, "Emission-Related Diagnostic Information".)

- 2. If the completion of SRT is needed, drive vehicle under the specific driving pattern. Refer to "How to Set SRT Code" in EC-677, "Emission-Related Diagnostic Information".
- **INSPECTION END**
- *1: Include 1st trip DTC.
- *2: Include 1st trip freeze frame data.

DIAGNOSTIC WORKSHEET

Description

EC

D

Е

Н

K

M

< SERVICE INFORMATION >

There are many operating conditions that lead to the malfunction of engine components. A good grasp of such conditions can make troubleshooting faster and more accurate.

In general, each customer feels differently about an incident. It is important to fully understand the symptoms or conditions for a customer complaint.

Utilize a diagnostic worksheet like the Worksheet Sample below in order to organize all the information for troubleshooting.

Some conditions may cause the MIL to come on steady or blink and DTC to be detected. Examples:

- Vehicle ran out of fuel, which caused the engine to misfire.
- Fuel filler cap was left off or incorrectly screwed on, allowing fuel to evaporate into the atmosphere.

KEY POINTS

WHAT Vehicle & engine model
WHEN Date, Frequencies
WHERE..... Road conditions
HOW Operating conditions,
Weather conditions,
Symptoms

SEF907L

Worksheet Sample

Customer nar	ne MR/MS	Model & Year	VIN			
Engine #		Trans.	Mileage			
Incident Date		Manuf. Date	In Service Date			
Fuel and fuel	filler cap	☐ Vehicle ran out of fuel causing misfire ☐ Fuel filler cap was left off or incorrectly screwed on.				
	☐ Startability	☐ Impossible to start ☐ No combus ☐ Partial combustion affected by th ☐ Partial combustion NOT affected ☐ Possible but hard to start ☐ Other	nrottle position d by throttle position			
Symptoms	□ Idling	☐ No fast idle ☐ Unstable ☐ H☐ Others [High idle ☐ Low idle			
,	☐ Driveability	☐ Stumble ☐ Surge ☐ Knock☐ Intake backfire ☐ Exhaust backfi☐ Others [☐ Intake backfire ☐ Exhaust backfire			
	☐ Engine stall	☐ At the time of start ☐ While idling ☐ While accelerating ☐ While dece ☐ Just after stopping ☐ While loadi	lerating			
Incident occur	rrence	☐ Just after delivery ☐ Recently ☐ In the morning ☐ At night ☐ In the daytime				
Frequency		☐ All the time ☐ Under certain conditions ☐ Sometimes				
Weather cond	litions	☐ Not affected				
	Weather	☐ Fine ☐ Raining ☐ Snowing	ning Snowing Others []			
	Temperature	☐ Hot ☐ Warm ☐ Cool ☐ Cold ☐ Humid °F				
		☐ Cold ☐ During warm-up ☐ After warm-up				
Engine conditions		Engine speed0 2,000	4,000 6,000 8,000 rpm			
Road conditions		☐ In town ☐ In suburbs ☐ Hig	hway 🗌 Off road (up/down)			
Driving conditions		□ Not affected □ At starting □ While idling □ At racing □ While accelerating □ While cruising □ While decelerating □ While turning (RH/LH) Vehicle speed □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □				
		0 10 20	30 40 50 60 MPH			
Malfunction in	idicator lamp	☐ Turned on ☐ Not turned on				

MTBL0017

DTC Inspection Priority Chart

INFOID:0000000002954747

If some DTCs are displayed at the same time, perform inspections one by one based on the following priority chart.

Priority	Detected items (DTC)	_
1	U1000 U1001 CAN communication line	-
	U1010 CAN communication	
	P0101 P0102 P0103 Mass air flow sensor P0101 P0102 P0103 Mass air flow sensor	
	P0112 P0113 P0127 Intake air temperature sensor P0115 P0117 P0118 P0135 Engine content temperature sensor	
	 P0116 P0117 P0118 P0125 Engine coolant temperature sensor P0122 P0123 P0222 P0223 P1225 P1226 P2135 Throttle position sensor 	
	P0122 F0123 F0222 F0223 F1223 F1220 F2133 Tillottle position sensor P0128 Thermostat function	
	P0181 P0182 P0183 Fuel tank temperature sensor	
	P0327 P0328 P0332 P0333 Knock sensor	
	P0335 Crankshaft position sensor (POS)	
	P0340 Camshaft position sensor (PHASE)	
	P0460 P0461 P0462 P0463 Fuel level sensor	
	P0500 Vehicle speed sensor	
	• P0605 ECM	
	P0643 Sensor power supply	
	• P0700 TCM	
	P0705 Transmission range switch P0850 Transmission range switch	
	 P0850 Transmission range switch P1550 P1551 P1552 P1553 P1554 Battery current sensor 	
	• P1610 - P1615 NATS	
	P2122 P2123 P2127 P2128 P2138 Accelerator pedal position sensor	
		_
2	• P0031 P0032 P0051 P0052 Air fuel ratio (A/F) sensor 1 heater	
	 P0037 P0038 P0057 P0058 Heated oxygen sensor 2 heater P0075 P0081 Intake valve timing control solenoid valve 	
	P0130 P0131 P0132 P0133 P0150 P0151 P0152 P0153 P2A00 P2A03 Air fuel ratio (A/F) sensor 1	
	P0137 P0138 P0139 P0157 P0158 P0159 Heated oxygen sensor 2	
	P0441 EVAP control system purge flow monitoring	
	P0443 P0444 P0445 EVAP canister purge volume control solenoid valve	
	P0447 P0448 EVAP canister vent control valve	
	P0451 P0452 P0453 EVAP control system pressure sensor	
	P0550 Power steering pressure sensor	
	P0603 ECM power supply	
	P0710 P0717 P0720 P0731 P0732 P0733 P0734 P0735 P0740 P0744 P0745 P1730 P1752 P1757 P1762 P1767 P0773 P0774 AT related concern colonial values and quitables.	
	P1772 P1774 A/T related sensors, solenoid valves and switches • P1140 P1145 Intake valve timing control position sensor	
	P1217 Engine over temperature (OVERHEAT)	
	P1220 Fuel pump control module	
	P1805 Brake switch	
	P2100 P2103 Throttle control motor relay	
	P2101 Electric throttle control function	
	P2118 Throttle control motor	
3	P0011 P0021 Intake valve timing control	-
	P0171 P0172 P0174 P0175 Fuel injection system function	
	• P0300 - P0308 Misfire	
	P0420 P0430 Three way catalyst function	
	P0442 P0456 EVAP control system (SMALL LEAK, VERY SMALL LEAK)	
	P0455 EVAP control system (GROSS LEAK)	
	P0506 P0507 Idle speed control system	
	P1148 P1168 Closed loop control P1211 TCS control unit	
	P1211 TCS control unit P1212 TCS communication line	
	P1212 TCS communication line P1421 Cold start control	
	P1564 ICC steering switch / ASCD steering switch	
	P1568 ICC command value	
	P1572 ICC brake switch / ASCD brake switch	
	P1574 ICC vehicle speed sensor / ASCD vehicle speed sensor	
	P1715 Input speed sensor	
	P1800 VIAS control solenoid valve	
	P2119 Electric throttle control actuator	

Fail-Safe Chart

When the DTC listed below is detected, the ECM enters fail-safe mode and the MIL lights up.

DTC No.	Detected items	Engine opera	ating condition in fail-safe mode								
P0102 P0103	Mass air flow sensor circuit	Engine speed will not rise more than 2,400 rpm due to the fuel cut.									
P0117 P0118	Engine coolant tempera- ture sensor circuit		determined by ECM based on the following conditions. oolant temperature decided by ECM.								
		Condition	Engine coolant temperature decided (CONSULT-III display)								
		Just as ignition switch is turned ON or START	40°C (104°F)								
		Approx. 4 minutes or more after engine starting.	80°C (176°F)								
		Except as shown above	40 - 80°C (104 - 176°F) (Depends on the time)								
		When the fail-safe system for engin fan operates while engine is runnin	e coolant temperature sensor is activated, the cooling g.								
P0122 P0123 P0222 P0223 P2135	Throttle position sensor	order for the idle position to be with	tle control actuator in regulating the throttle opening in +10 degrees. eed of the throttle valve to be slower than the normal								
P0643	Sensor power supply	ECM stops the electric throttle cont fixed opening (approx. 5 degrees) by	rol actuator control, throttle valve is maintained at a by the return spring.								
P2100 P2103	Throttle control motor relay	ECM stops the electric throttle cont fixed opening (approx. 5 degrees) by	rol actuator control, throttle valve is maintained at a by the return spring.								
P2101	Electric throttle control function	ECM stops the electric throttle cont fixed opening (approx. 5 degrees) by	rol actuator control, throttle valve is maintained at a by the return spring.								
P2118	Throttle control motor	ECM stops the electric throttle cont fixed opening (approx. 5 degrees) by	rol actuator control, throttle valve is maintained at a by the return spring.								
P2119	Electric throttle control actuator	malfunction:)	tor does not function properly due to the return spring ctuator by regulating the throttle opening around the not rise more than 2,000 rpm.								
			in fail-safe mode is not in specified range:) ontrol actuator by regulating the throttle opening to 20								
		engine stalls.	ve is stuck open:) down gradually by fuel cut. After the vehicle stops, the sition, and engine speed will not exceed 1,000 rpm or								
P2122 P2123 P2127 P2128 P2138	Accelerator pedal position sensor	order for the idle position to be with	cle control actuator in regulating the throttle opening in in +10 degrees. eed of the throttle valve to be slower than the normal								

[•] When there is an open circuit on MIL circuit, the ECM cannot warn the driver by lighting up MIL when there is malfunction on engine control system.

The fail-safe function also operates when above diagnoses except MIL circuit are detected and demands the driver to repair the malfunction.

Engine operating condition in fail-safe mode	Engine speed will not rise more than 2,500 rpm due to the fuel cut
--	--

Therefore, when electrical controlled throttle and part of ECM related diagnoses are continuously detected as NG for 5 trips, ECM warns the driver that engine control system malfunctions and MIL circuit is open by means of operating fail-safe function.

[VK45DE]

Α

Symptom Matrix Chart

INFOID:0000000002954749

SYSTEM — BASIC ENGINE CONTROL SYSTEM

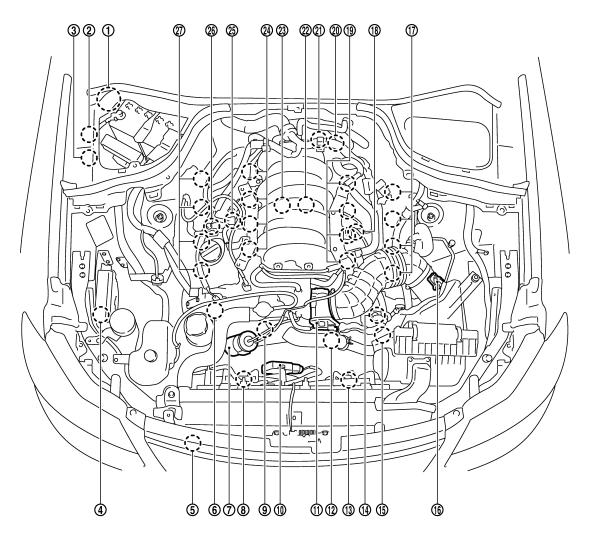
		SYMPTOM														EC
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page	C D E
Warrant	y symptom code	AA	AB	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	НА		G
Fuel	Fuel pump circuit	1	1	2	3	2		2	2			3		2	EC-1237	
	Fuel pressure regulator system	3	3	4	4	4	4	4	4	4		4			EC-708	Н
	Fuel injector circuit	1	1	2	3	2		2	2			2			EC-1232	
	Evaporative emission system	3	3	4	4	4	4	4	4	4		4			EC-662	
Air	Positive crankcase ventilation system	3	3	4	4	4	4	4	4	4		4	1		EC-673	
	Incorrect idle speed adjustment						1	1	1	1		1			EC-702	
	Electric throttle control actuator	1	1	2	3	3	2	2	2	2		2		2	EC-1175, EC-1186	J
Ignition	Incorrect ignition timing adjustment	3	3	1	1	1		1	1			1			EC-702	
	Ignition circuit	1	1	2	2	2		2	2			2			EC-1248	K
Main po	wer supply and ground circuit	2	2	3	3	3		3	3		2	3			EC-764	
Mass ai	r flow sensor circuit	1			2										EC-806, EC-814	L
Engine	coolant temperature sensor circuit						3			3					EC-828, EC-839	N. A
Air fuel	ratio (A/F) sensor 1 circuit		1	2	3	2		2	2			2			EC-848, EC-856, EC-864, EC-872, EC-1212	M
Throttle position sensor circuit							2			2					EC-833, EC-941, EC-1099, EC-1101, EC-1199	0
Accelera	ator pedal position sensor circuit			3	2	1									EC-1061, EC-1188, EC-1193, EC-1205	Р
Knock s	ensor circuit			2								3			EC-953	
Cranksh	naft position sensor (POS) circuit	2	2												EC-958	
Camsha	aft position sensor (PHASE) circuit	3	2												EC-963	

		SYMPTOM												
	HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page
Warranty symptom code	AA	AB	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	НА	
Vehicle speed signal circuit		2	3		3						3			EC-1044
Power steering pressure sensor circuit		2					3	3						EC-1050
ECM	2	2	3	3	3	3	3	3	3	3	3			EC-1055, EC-1059
Intake valve timing control solenoid valve circuit		3	2		1	3	2	2	3		3			EC-799
Transmission range switch circuit			3		3		3	3			3			EC-1066
Refrigerant pressure sensor circuit		2				3			3		4			EC-1259
Electrical load signal circuit							3							EC-1230
Air conditioner circuit	2	2	3	3	3	3	3	3	3		3		2	ATC-36
VIAS control solenoid valve circuit					1									EC-1159
ABS actuator and electric unit (control unit)			4											BRC-30

^{1 - 6:} The numbers refer to the order of inspection. (continued on next page)

SYSTEM — ENGINE MECHANICAL & OTHER

							S`	YMPT	ОМ							
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page	E
Warranty s	ymptom code	AA	AB	AC	AD	AE	AF	AG	AH	AJ	AK	AL	AM	НА		
Fuel	Fuel tank	5													<u>FL-10</u>	
	Fuel piping			5	5	5		5	5			5			<u>EM-192</u>	
	Vapor lock	5	5												_	_ _ _
	Valve deposit			5	5	5		5	5			5				
	Poor fuel (Heavy weight gasoline, Low octane)	3		3	3			3	3			3			_	
Air	Air duct														EM-175	
	Air cleaner														<u>EM-175</u>	
	Air leakage from air duct (Mass air flow sensor — electric throttle control actuator)	_	5	5	_	5	_	5	5	_		5			<u>EM-175</u>	
	Electric throttle control actuator	5			5		5			5					<u>EM-177</u>	
	Air leakage from intake manifold/ Collector/Gasket														<u>EM-177</u>	
Cranking	Battery	1	1	1		1		1	1					1	<u>SC-4</u>	
	Generator circuit														SC-19	
	Starter circuit	3										1			<u>SC-8</u>	
	Signal plate	6													EM-249	
	Transmission range switch	4													<u>AT-103</u>	
Engine	Cylinder head Cylinder head gasket	5	5	5	5	5		5	5		4	5	3		EM-230	
	Cylinder block									-	4		3	-		
	Piston												4			
	Piston ring												7			
	Connecting rod	6	6	6	6	6		6	6			6		-	<u>EM-249</u>	(
	Bearing															
	Crankshaft															
Valve	Timing chain														EM-202	
mecha- nism	Camshaft														EM-214	
1113111	Intake valve timing control	5	5	5	5	5		5	5			5			EM-214	
	Intake valve Exhaust valve												3		EM-230	


		SYMPTOM													
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page
Warranty s	Warranty symptom code		AB	AC	AD	AE	AF	AG	AH	AJ	AK	AL	AM	НА	
Exhaust	Exhaust manifold/Tube/Muffler/ Gasket	5	5	5	5	5		5	5			5			<u>EM-181</u> , <u>EX-3</u>
	Three way catalyst														<u>LX 0</u>
Lubrica- tion	Oil pan/Oil strainer/Oil pump/Oil filter/Oil gallery	5	5	5	5	5		5	5			5			EM-185, LU-27, LU- 26
	Oil level (Low)/Filthy oil														<u>LU-23</u>
Cooling	Radiator/Hose/Radiator filler cap														<u>CO-41</u> , <u>CO-45</u>
	Thermostat									5					<u>CO-53</u>
	Water pump	5	5	5	5	5		5	5		4	5			<u>CO-51</u>
	Water gallery	- 5 -	J	J	J	J		J	3		4	3			<u>CO-37</u>
	Cooling fan														<u>CO-49</u>
	Coolant level (Low)/Contaminated coolant									5					<u>CO-38</u>
IVIS (INFII NATS)	NITI Vehicle Immobilizer System —	1	1												EC-675 or BL-217

^{1 - 6:} The numbers refer to the order of inspection.

[VK45DE]

Engine Control Component Parts Location

INFOID:0000000002954750

PBIB2674E

4.	Cooling fan relay
7.	Vacuum tank
10.	Cooling fan control module
13.	Cooling fan motor-1
16.	Mass air flow sensor (with intake air temperature sensor)
19.	Fuel injector (bank 1)
22.	Knock sensor (bank 1)

solenoid valve

1. IPDM E/R

Cooling fan motor-2 8. Electric throttle control actuator 14. Intake valve timing control position sensor (bank 1) 17. Ignition coil (with power transistor) and spark plug (bank 1) 20. Engine coolant temperature sensor 23. Knock sensor (bank 2) 25. EVAP canister purge volume control 26. EVAP service port

ICC brake hold relay

Refrigerant pressure sensor

(ICC models only)

5.

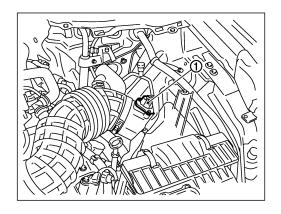
6. Intake valv sensor (ba	e timing control position nk 2)
Intake valv valve (ban	re timing control solenoid k 2)
12. Intake valv	re timing control solenoid k 1)
15. Camshaft	position sensor (PHASE)
18. VIAS contr	rol solenoid valve
21. Power valv	ve actuator
24. Fuel inject	or (bank 2)
-	il (with power transistor) plug (bank 2)

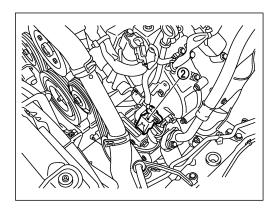
Battery current sensor

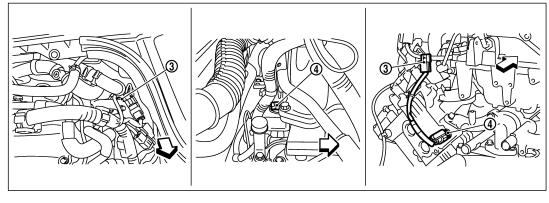
Α

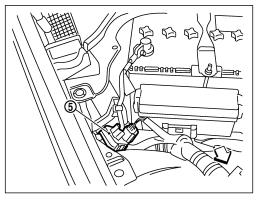
D

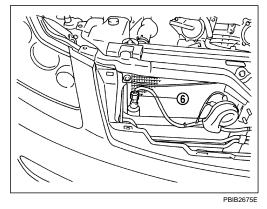
Е

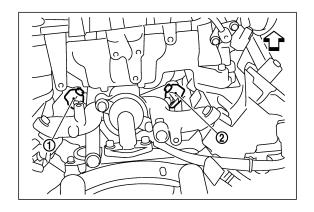

Н

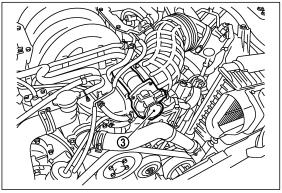

K

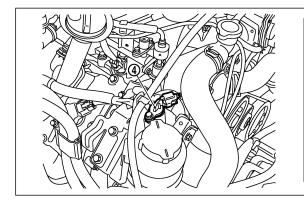

M

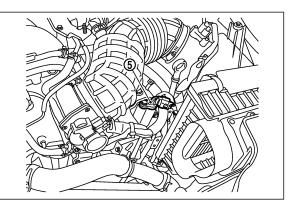

Ν

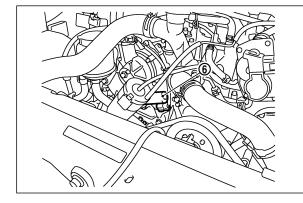

0

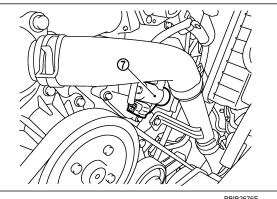







: Vehicle front


- 1. Mass air flow sensor
- 4. Engine coolant temperature sensor 5. Battery current sensor
- 2. Camshaft position sensor (PHASE) 3. Engine coolant temperature sensor sub-harness connector
 - 6. Refrigerant pressure sensor



PBIB2676E

- 1. Knock sensor (bank 1)
- Intake valve timing control position sensor (bank 2)
- 7. Intake valve timing control solenoid valve (bank 1)
- Knock sensor (bank 2)
- Intake valve timing control position sensor (bank 1)
- Electric throttle control actuator
- Intake valve timing control solenoid valve (bank 2)

EC

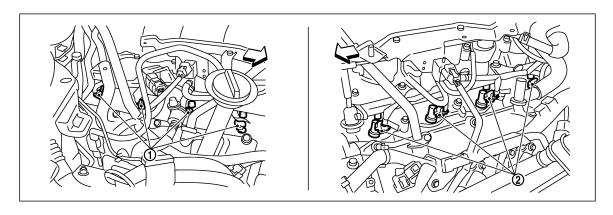
Α

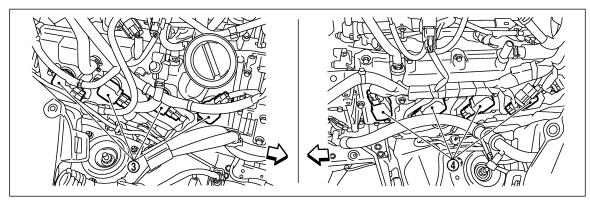
D

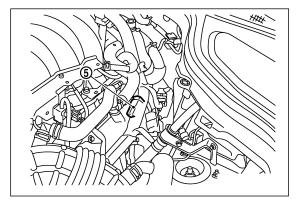
Е

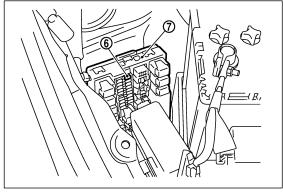
F

G

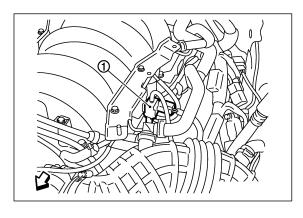

Н

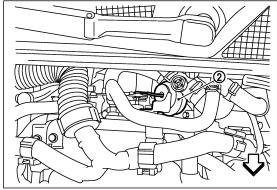

K

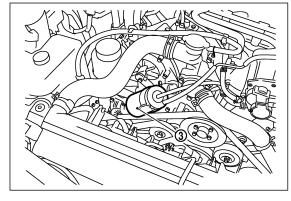

M

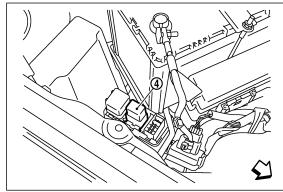

Ν

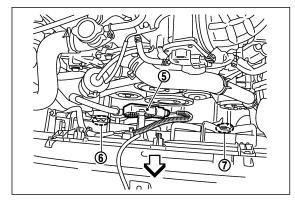
0

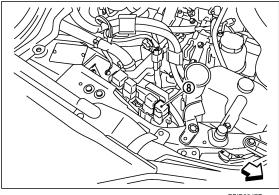



PBIB2677E


- 1. Fuel injector (bank 2)
- 4. Ignition coil (with power transistor) 5. Condenser (bank 1)
- 7. IPDM E/R


- 2. Fuel injector (bank 1)


- 3. Ignition coil (with power transistor) (bank 2)
- 6. Fuel pump fuse



PBIB3347E

- 1. VIAS control solenoid valve
- 4. ICC brake hold relay (ICC models only)
- 7. Cooling fan motor-1
- 2. Power valve actuator
- 5. Cooling fan control module
- 8. Cooling fan relay

- 3. Vacuum tank
- 6. Cooling fan motor-2

Α

EC

D

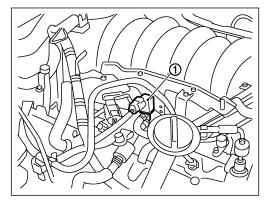
Е

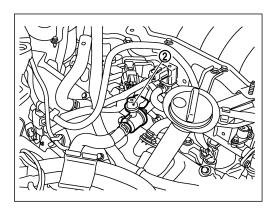
F

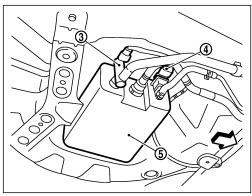
G

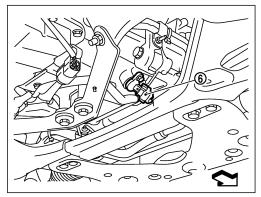
Н

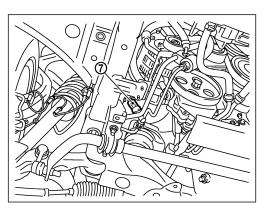
1

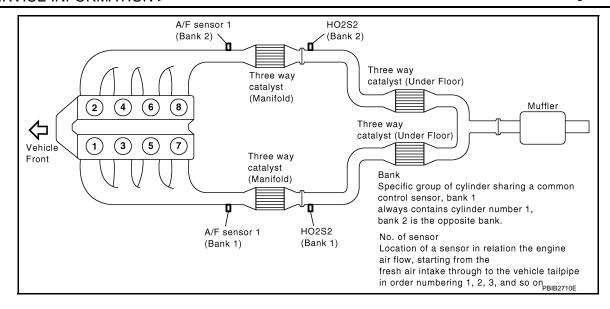

K

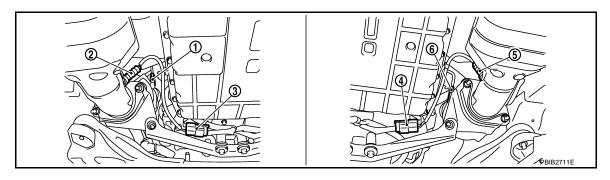

L


M


Ν


0




PBIB2679E

<□ : Vehicle front

- 1. EVAP canister purge volume control 2. EVAP service port solenoid valve
- 4. EVAP control system pressure sensor 5. EVAP canister
- 7. Power steering pressure sensor

- 3. EVAP canister vent control valve
- 6. Crankshaft position sensor (POS)

- 1. Air fuel ratio (A/F) sensor 1 (bank 1)
- 2. Heated oxygen sensor 2 (bank 1)
- 4. Heated oxygen sensor 2 (bank 2) harness connector
- . Heated oxygen sensor 2 (bank 2)
- 3. Heated oxygen sensor 2 (bank 1) harness connector
- 6. Air fuel ratio (A/F) sensor 1 (bank 2)

Α

EC

D

Е

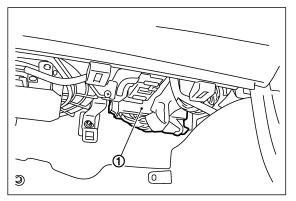
F

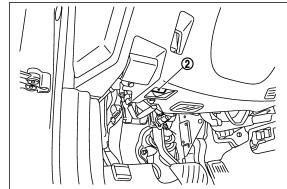
G

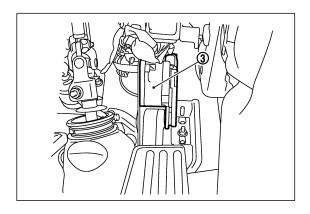
Н

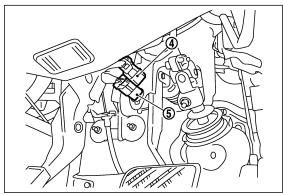
-

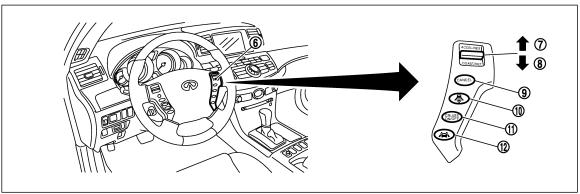
J

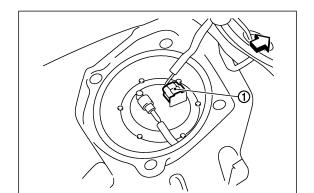

K

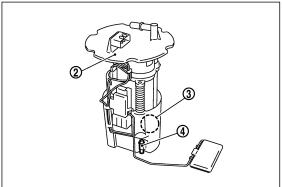

L

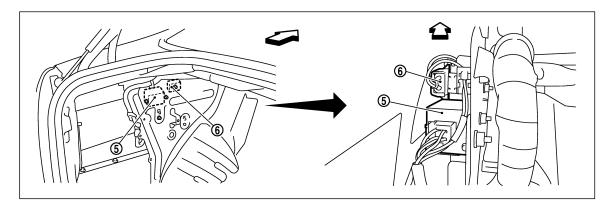

M


Ν


0




JMBIA1088ZZ


- 1. ECM
- 4. Stop lamp switch
- 7. RESUME/ACCELERATE switch
- 10. DISTANCE switch (ICC models only)

- 2. Data link connector
- ICC brake switch (models with ICC) ASCD brake switch (models with ASCD)
- 8. SET/COAST switch
- 11. MAIN switch

- 3. Accelerator pedal position sensor
- 6. ICC steering switch (models with ICC)
 ASCD steering switch (models with ASCD)
- 9. CANCEL switch
- 12. LDP ON switch (ICC models only)

1. Fuel level sensor unit and fuel pump 2. Fuel level sensor unit and fuel pump 3. Fuel pressure regulator harness connector

- 4. Fuel tank temperature sensor
- 5. FPCM

Dropping resistor

EC

Α

D

Е

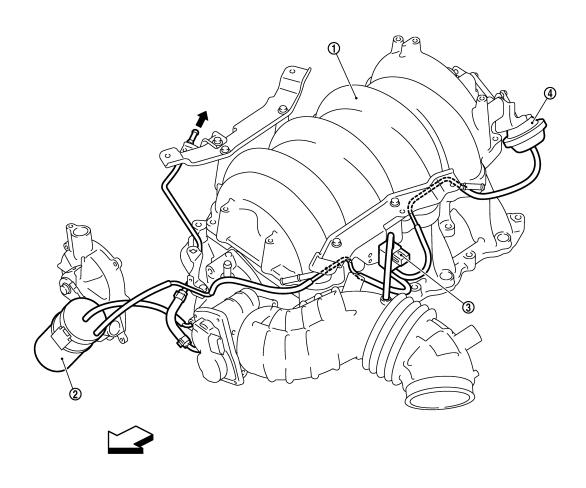
F

G

Н

Κ

L


M

Ν

0

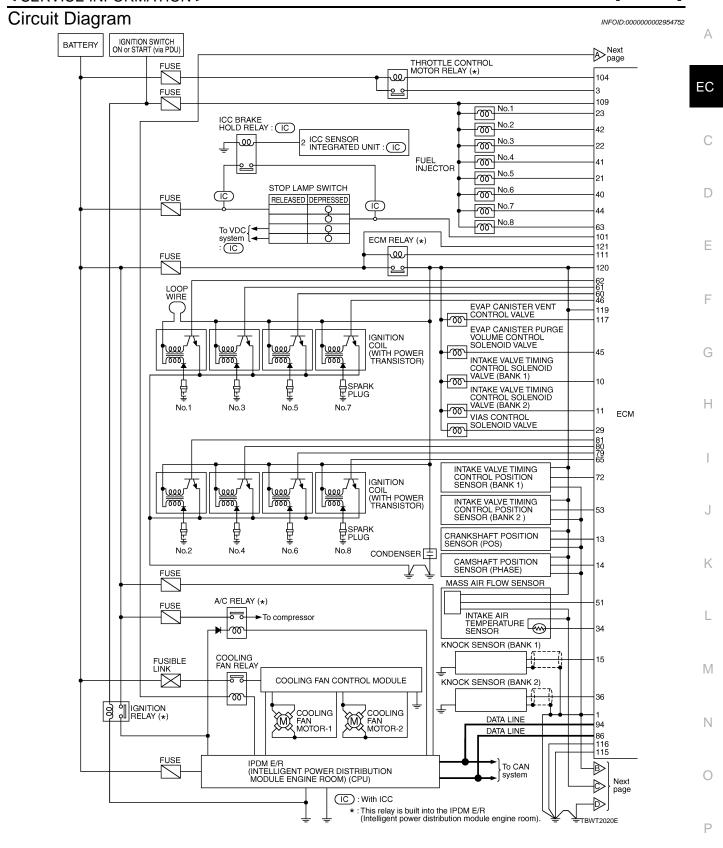
Vacuum Hose Drawing

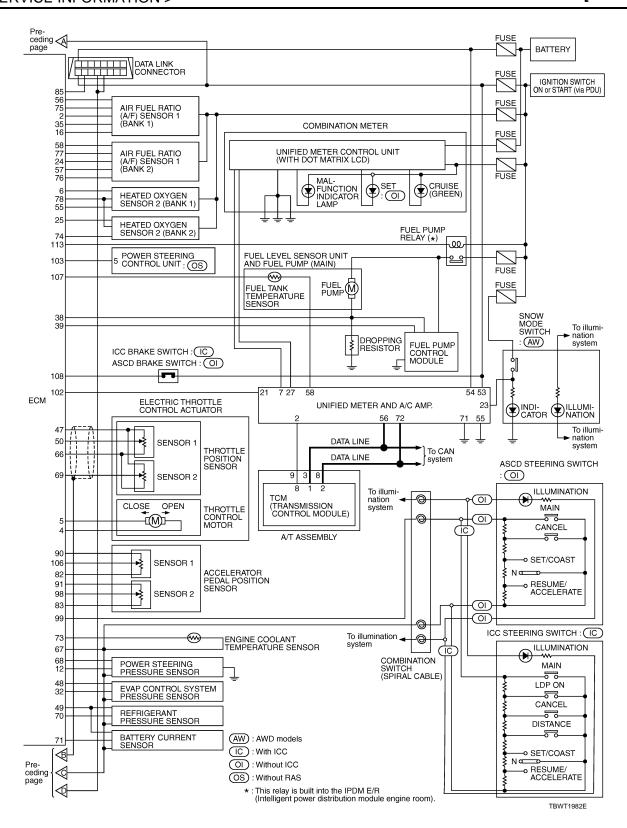
INFOID:0000000002954751

PBIB2732E

1. Intake manifold collector

2. Vacuum tank


3. VIAS control solenoid valve


4. Power valve actuator

NOTE:

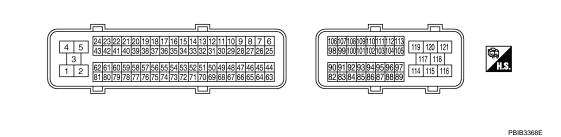
Do not use soapy water or any type of solvent while installing vacuum hoses or purge hoses.

Refer to EC-653, "Schematic" for Vacuum Control System.

[VK45DE]

Α

EC

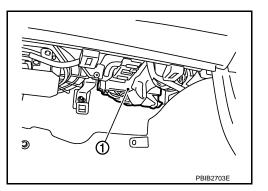

D

Е

Н

INFOID:0000000002954753

ECM Harness Connector Terminal Layout



ECM Terminal and Reference Value

INFOID:0000000002954754

PREPARATION

ECM (1) is located behind the passenger side instrument lower panel. For this inspection, remove passenger side instrument lower panel.

ECM INSPECTION TABLE

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECMs transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
1	В	ECM ground	[Engine is running] • Idle speed	Body ground
2	SB	A/F sensor 1 heater (bank 1)	[Engine is running]Warm-up conditionIdle speed	Approximately 5V★ N N N N N N PBIB1584E
3	R	Throttle control motor relay power supply	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)
4	W	Throttle control motor (Close)	[Ignition switch: ON] • Engine: Stopped • Selector lever: D • Accelerator pedal: Released	0 - 14V★ >> 5 V/Div 1 ms/Div T PBIB1104E

		01(III) (1101 1)		
TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
5	В	Throttle control motor (Open)	[Ignition switch: ON] • Engine: Stopped • Selector lever: D • Accelerator pedal: Fully depressed	0 - 14V★ >>> 5 V/Div 1 ms/Div T PBIB110SE
6	R/L	Heated oxygen sensor 2 heater (bank 1)	 [Engine is running] Engine speed: Below 3,600 rpm after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - 1.0V
			 [Ignition switch: ON] Engine: Stopped [Engine is running] Engine speed: Above 3,600 rpm 	BATTERY VOLTAGE (11 - 14V)
			[Engine is running]Warm-up conditionIdle speed	BATTERY VOLTAGE (11 - 14V)
10	W/G	Intake valve timing control solenoid valve (bank 1)	[Engine is running]Warm-up conditionEngine speed: 2,000rpm	7 - 12V★ → 10.0 V/Div PBIB1790E
			[Engine is running] • Warm-up condition • Idle speed	BATTERY VOLTAGE (11 - 14V)
11	G/O	Intake valve timing control solenoid valve (bank 2)	[Engine is running] • Warm-up condition • Engine speed: 2,000rpm	7 - 12V★
12	R/G	Power steering pressure sensor	[Engine is running] • Steering wheel: Being turned	0.5 - 4.5V
		3011301	[Engine is running]Steering wheel: Not being turned	0.4 - 0.8V

< SERVICE INFORMATION >

[VK45DE]

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	А	
		Crankshaft position sensor (POS)	[Engine is running] • Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle	1.0 - 2.0V★ S.0 V/Div 1 ma/Div T PBIB1041E	C	
13	W/R		[Engine is running] • Engine speed: 2,000 rpm	1.0 - 2.0V★	E	
		[Engine is running] • Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle Camshaft position sensor (PHASE) [Engine is running] • Engine speed: 2,000 rpm	1.0 - 4.0V★ >>> 5.0 V/Div 20 ma/Div 1 PBIB1039E	G H		
14	G		(PHASE)	[Engir		1.0 - 4.0V★
15	W	Knock sensor (bank 1)	[Engine is running] • Idle speed	Approximately 2.5V	L	
16	W/L			Approximately 3.1V		
35	GR/L	A/E	[Engine is running]	Approximately 2.6V	M	
56	LG/B	A/F sensor 1 (bank 1)	Warm-up condition Idle speed	Approximately 2.3V	IVI	
75	Υ			Approximately 2.3V		

0

< SER	VICE INF	ORMATION >		[VK45DE]
TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
21 22 23 40	21 W/B Fuel injector No. 5 22 R/Y Fuel injector No. 3 23 R/B Fuel injector No. 1	 [Engine is running] Warm-up condition Idle speed NOTE: The pulse cycle changes depending on rpm at idle 	BATTERY VOLTAGE (11 - 14V)★	
41 42 44 63	P/L R/W O G/Y	Fuel injector No. 6 Fuel injector No. 4 Fuel injector No. 2 Fuel injector No. 7 Fuel injector No. 8	[Engine is running] • Warm-up condition • Engine speed: 2,000 rpm	BATTERY VOLTAGE (11 - 14V)★ → 10.0V/Div 50 ms/Div PBIB0043E
24	SB	A/F sensor 1 heater (bank 2)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V★ → 10.0V/Div 10 ms/Div T PBIB1584E
25	P/B	Heated oxygen sensor 2 heater (bank 2)	 [Engine is running] Engine speed: Below 3,600 rpm after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load [Ignition switch: ON] Engine: Stopped 	0 - 1.0V BATTERY VOLTAGE
			 [Engine is running] Engine speed: Above 3,600 rpm [Engine is running] Selector lever: P or N 	(11 - 14V) 0 - 1.0V
29	V	VIAS control solenoid valve	[Engine is running] • Selector lever: D • Engine speed: Below 5,000 rpm	BATTERY VOLTAGE (11 - 14V)
			[Engine is running] • Engine speed: Above 5,000 rpm	0 - 1.0V
32	R/G	EVAP control system pressure sensor	[Ignition switch: ON]	Approximately 1.8 - 4.8V
34	Y/G	Intake air temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with intake air temperature.
36	W	Knock sensor (bank 2)	[Engine is running] • Idle speed	Approximately 2.5V

< SERVICE INFORMATION >

[VK45DE]

TER-		ORIVIATION >		[***:052]	
MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	А
			[When cranking engine]	Approximately 0V	EC
38	G/B	Fuel pump control module (FPCM) check	[Engine is running]Warm-up conditionIdle speed	4 - 6V	<u> </u>
			[When cranking engine]	0 - 0.5V	
39	B/R	Fuel pump control module (FPCM)	[Engine is running] • Warm-up condition • Idle speed	8 - 12V	D
				BATTERY VOLTAGE	
			[Engine is running] • Idle speed • Accelerator pedal: Not depressed even	(11 - 14V)★	E F
45	V	EVAP canister purge volume	slightly, after engine starting	▶ 10.0 V/Div 50 ms/Div SEC990C	G
10		control solenoid valve		BATTERY VOLTAGE	
			[Engine is running]Engine speed: About 2,000 rpm (More than 100 seconds after starting engine)	(11 - 14V)★	Н
				→ 10.0 V/Div 50 ms/Div r SEC991C	I
			[Engine is running] • Warm-up condition • Idle speed	0 - 0.2∨★	J
46 60 61	L/O V/W P Y/R	Ignition signal No. 7 Ignition signal No. 5 Ignition signal No. 3 Ignition signal No. 1	NOTE: The pulse cycle changes depending on rpm at idle	>> 2.0V/Div 50 ms/Div PBIB0044E	K L
62 65	BR/R	Ignition signal No. 8		0.1 - 0.4∨★	
79 80 81	GR/R GR/B G/R	Ignition signal No. 6 Ignition signal No. 4 Ignition signal No. 2	[Engine is running]Warm-up conditionEngine speed: 2,000 rpm		M
				>> 2.0V/Div 50 ms/Div PBIB0045E	N
47	G	Sensor power supply (Throt- tle position sensor)	[Ignition switch: ON]	Approximately 5V	0
48	BR	Sensor power supply (EVAP control system pressure sensor)	[Ignition switch: ON]	Approximately 5V	Р
49	B/Y	Sensor power supply (Refrigerant pressure sensor, Battery current sensor)	[Ignition switch: ON]	Approximately 5V	

1				
TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
50			[Ignition switch: ON] • Engine: Stopped • Selector lever: D • Accelerator pedal: Fully released	More than 0.36V
30	W	Throttle position sensor 1	[Ignition switch: ON]Engine: StoppedSelector lever: DAccelerator pedal: Fully depressed	Less than 4.75V
51	W	Mass air flow sensor	[Engine is running]Warm-up conditionIdle speed	0.9 - 1.2V
31	VV	IVIASS AII IIUW SEIISUI	[Engine is running]Warm-up conditionEngine speed: 2,500 rpm	1.6 - 1.9V
53	LG	Intake valve timing control position sensor (bank 2)	[Engine is running] • Warm-up condition • Idle speed	0 - 1.0V★
33	LG		[Engine is running] • Engine speed: 2,000 rpm	0 - 1.0V★
55	L/R	Heated oxygen sensor 2 (bank 1)	 [Engine is running] Revving engine from idle to 3,000 rpm quickly after the following conditions are met. Engine: After warming-up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V
57	BR/W			Approximately 2.6V
58	G/O	A/E sonsor 1 (bank 2)	[Engine is running] • Warm-up condition	Approximately 2.3V
76	G/W	A/F sensor 1 (bank 2)	Idle speed	Approximately 3.1V
77	GR			Approximately 2.3V
66	В	Sensor ground (Throttle position sensor)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
67	B/W	Sensor ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
68	L/Y	Sensor power supply (Power steering pressure sensor)	[Ignition switch: ON]	Approximately 5V

< SERVICE INFORMATION >

[VK45DE]

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
69	R	Throttle position sensor 2	 [Ignition switch: ON] Engine: Stopped Selector lever: D Accelerator pedal: Fully released 	Less than 4.75V
09	K	Throttle position sensor 2	[Ignition switch: ON]Engine: StoppedSelector lever: DAccelerator pedal: Fully depressed	More than 0.36V
70	L/R	Refrigerant pressure sensor	 [Engine is running] Warm-up condition Both A/C switch and blower fan motor switch: ON (Compressor operates) 	1.0 - 4.0V
71	L/R	Battery current sensor	 [Engine is running] Battery: Fully charged* Idle speed 	Approximately 2.6 - 3.5V
72		Intake valve timing control	[Engine is running] • Warm-up condition • Idle speed	0 - 1.0V★ S.0 V/Div PBIB2734E
12	position sensor (bank 1)	position sensor (bank 1) [Engine is running] • Engine speed: 2,000rpm	0 - 1.0V★	
73	Y/B	Engine coolant temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with engine coolant temperature.
74	W	Heated oxygen sensor 2 (bank 2)	 [Engine is running] Revving engine from idle to 3,000 rpm quickly after the following conditions are met Engine: After warming-up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V
78	В	Sensor ground (Heated oxygen sensor 2)	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
82	W	Sensor ground (APP sensor 1)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
83	Р	Sensor ground (APP sensor 2)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
85	V	Data link connector		_
86	Р	CAN communication line	_	_
90	L	Sensor power supply (APP sensor 1)	[Ignition switch: ON]	Approximately 5V

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
91	BR	Sensor power supply (APP sensor 2)	[Ignition switch: ON]	Approximately 5V
94	L	CAN communication line Accelerator pedal position	[Ignition switch: ON] • Engine: Stopped • Accelerator pedal: Fully released	0.20 - 0.55V
98	R	sensor 2	[Ignition switch: ON] • Engine: Stopped • Accelerator pedal: Fully depressed	1.85 - 2.40V
			[Ignition switch: ON] • ICC steering switch: OFF	Approximately 4.3V
			[Ignition switch: ON] • MAIN switch: Pressed	Approximately 0V
			[Ignition switch: ON] • CANCEL switch: Pressed	Approximately 1.9V
99	Υ	ICC steering switch (models with ICC system)	[Ignition switch: ON] • RESUME/ACCELERATE switch: Pressed	Approximately 3.8V
			[Ignition switch: ON] • SET/COAST switch: Pressed	Approximately 3.3V
			[Ignition switch: ON] • DISTANCE switch: Pressed	Approximately 2.6V
			[Ignition switch: ON] • LDP ON switch: Pressed	Approximately 1.1V
			[Ignition switch: ON] • ASCD steering switch: OFF	Approximately 4V
			[Ignition switch: ON] • MAIN switch: Pressed	Approximately 0V
99	Y	ASCD steering switch (models with ASCD system)	[Ignition switch: ON] • CANCEL switch: Pressed	Approximately 1V
			[Ignition switch: ON] • RESUME/ACCELERATE switch: Pressed	Approximately 3V
			[Ignition switch: ON] • SET/COAST switch: Pressed	Approximately 2V
404	\//D	Chan lama aviitali	[Ignition switch: OFF] • Brake pedal: Fully released	Approximately 0V
101	V/R	Stop lamp switch	[Ignition switch: OFF] • Brake pedal: Slightly depressed	BATTERY VOLTAGE (11 - 14V)
400		T	[Ignition switch: ON] • Selector lever: P or N	Approximately 0V
102	G	Transmission range switch	[Ignition switch: ON] • Selector lever: Except above	BATTERY VOLTAGE (11 - 14V)
104	0	Throttle control motor relay	[Ignition switch: OFF]	BATTERY VOLTAGE (11 - 14V)
			[Ignition switch: ON]	0 - 1.0V
106	16	Accelerator pedal position	[Ignition switch: ON] • Engine stopped • Accelerator pedal: Fully released	0.4 - 1.1V
סטו	LG	LG Accelerator pedal position sensor 1	[Ignition switch: ON] • Engine stopped • Accelerator pedal: Fully depressed	3.7 - 4.8V

Α

EC

D

Е

F

Н

K

M

Ν

0

Р

< SERVICE INFORMATION >

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
107	V/W	Fuel tank temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with fuel tank temperature.
108	BR	ICC brake switch (models witch ICC system)	[Ignition switch: ON] • Brake pedal: Slightly depressed	Approximately 0V
108	DK	ASCD brake switch (models witch ASCD system)	[Ignition switch: ON] • Brake pedal: Fully released	BATTERY VOLTAGE (11 - 14V)
			[Ignition switch: OFF]	0V
109	L	Ignition switch	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)
111	SB	SB ECM relay (Self shut-off)	[Engine is running] [Ignition switch: OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V
			[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
113	GR	D. Fusing relati	[Ignition switch: ON] • For 1 second after turning ignition switch ON [Engine is running]	0 - 1.5V
113	GK	Fuel pump relay	[Ignition switch: ON]More than 1 second after turning ignition switch ON	BATTERY VOLTAGE (11 - 14V)
115 116	B B	ECM ground	[Engine is running] • Idle speed	Body ground
117	GR/L	EVAP canister vent control valve	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)
119 120	R R	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)
121	L	Power supply for ECM (Back-up)	[Ignition switch: OFF]	BATTERY VOLTAGE (11 - 14V)

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

CONSULT-III Function

INFOID:0000000002954755

FUNCTION

Diagnostic test mode	Function
ECU Identification	ECM part number can be read.
Self Diagnostic Result	Self-diagnostic results such as 1st trip DTC, DTCs and 1st trip freeze frame data or freeze frame data can be read and erased quickly.*
Data Monitor	Input/Output data in the ECM can be read.
Active Test	Diagnostic Test Mode in which CONSULT-III drives some actuators apart from the ECMs and also shifts some parameters in a specified range.
Work Support	This mode enables a technician to adjust some devices faster and more accurately by following the indications on the CONSULT-III unit.
DTC & SRT CONFIRMATION	The status of system monitoring tests and the self-diagnosis status/result can be confirmed.

^{*:} The following emission-related diagnostic information is cleared when the ECM memory is erased.

^{*:} Before measuring the terminal voltage, confirm that the battery is fully charged. Refer to <u>SC-4. "How to Handle Battery"</u>.

[•] Diagnostic trouble codes

^{• 1}st trip diagnostic trouble codes

- Freeze frame data
- 1st trip freeze frame data
- System readiness test (SRT) codes
- Test values

ENGINE CONTROL COMPONENT PARTS/CONTROL SYSTEMS APPLICATION

				Direct D	iagnostic	Mode		
			Self Diagr	ostic Result			DTC 8	
	Item	Work Support	DTC*1	FREEZE FRAME DATA*2	Data Monitor	Active Test	SRT STA- TUS	DTC WORK SUP- PORT
	Crankshaft position sensor (POS)		×	×	×			
	Camshaft position sensor (PHASE)		×	×	×			
	Mass air flow sensor		×		×			
	Engine coolant temperature sensor		×	×	×	×		
	Air fuel ratio (A/F) sensor 1		×		×		×	×
	Heated oxygen sensor 2		×		×		×	×
	Wheel sensor		×	×	×			
	Accelerator pedal position sensor		×		×			
	Throttle position sensor		×	×	×			
2	Fuel tank temperature sensor		×		×	×		
4	EVAP control system pressure sensor		×		×			
	Intake air temperature sensor		×	×	×			
	Knock sensor		×					
Ĺ ≣ .	Refrigerant pressure sensor				×			
ENGINE CONTROL COMPONENT PARTS	Closed throttle position switch (accelerator pedal position sensor signal)				×			
<u> </u>	Air conditioner switch				×			
5	Transmission range switch		×		×			
	Stop lamp switch		×		×			
5	Power steering pressure sensor		×		×			
"	Battery voltage				×			
	Load signal				×			
	Intake valve timing control position sensor		×		×			
	Fuel level sensor		×		×			
	Battery current sensor		×		×			
	ICC steering switch		×		×			
	ASCD steering switch		×		×			
	ICC brake switch		×		×			
	ASCD brake switch		×		×			

			Direct Diagnostic Mode							
				Self Diagr	nostic Result			DTC & SRT CONFIRMATION		
	ltem		Work Support	DTC*1	FREEZE FRAME DATA*2	Data Monitor	Active Test	SRT STA- TUS	DTC WORK SUP- PORT	
		Fuel injector				×	×			
		Power transistor (Ignition timing)				×	×			
		Throttle control motor relay		×		×				
S		Throttle control motor		×						
CONTROL COMPONENT PARTS		EVAP canister purge volume control solenoid valve		×		×	×		×	
EN.		FPCM		×		×	×			
PON	_	Air conditioner relay				×				
OM	OUTPUT	Fuel pump relay	×			×	×			
)L C	JUT	Cooling fan control module		×		×	×			
ITRO	0	Air fuel ratio (A/F) sensor 1 heater		×		×		×* ³		
CON		Heated oxygen sensor 2 heater		×		×		×* ³		
INE		EVAP canister vent control valve	×	×		×	×			
ENGINE		Intake valve timing control solenoid valve		×		×	×			
		VIAS control solenoid valve		×		×	×			
		Alternator				×	×			
		Calculated load value			×	×				

X: Applicable

WORK SUPPORT MODE

Work Item

WORK ITEM	CONDITION	USAGE
FUEL PRESSURE RELEASE	FUEL PUMP WILL STOP BY TOUCHING "START" DUR- ING IDLING. CRANK A FEW TIMES AFTER ENGINE STALLS.	When releasing fuel pressure from fuel line
IDLE AIR VOL LEARN	THE IDLE AIR VOLUME THAT KEEPS THE ENGINE WITHIN THE SPECIFIED RANGE IS MEMORIZED IN ECM.	When learning the idle air volume
SELF-LEARNING CONT	THE COEFFICIENT OF SELF-LEARNING CONTROL MIXTURE RATIO RETURNS TO THE ORIGINAL COEF- FICIENT.	When clearing the coefficient of self-learning control value

EC-743 Revision: 2009 February 2008 M35/M45

EC

Α

D

Е

F

Н

Κ

^{*1:} This item includes 1st trip DTCs.

^{*2:} This mode includes 1st trip freeze frame data or freeze frame data. The items appear on CONSULT-III screen in freeze frame data mode only if a 1st trip DTC or DTC is detected. For details, refer to EC-677, "Emission-Related Diagnostic Information".

^{*3:} Always "CMPLT" is displayed.

WORK ITEM	CONDITION	USAGE
EVAP SYSTEM CLOSE	CLOSE THE EVAP CANISTER VENT CONTROL VALVE IN ORDER TO MAKE EVAP SYSTEM CLOSE UNDER THE FOLLOWING CONDITIONS. IGN SW ON ENGINE NOT RUNNING AMBIENT TEMPERATURE IS ABOVE 0°C (32°F). NO VACUUM AND NO HIGH PRESSURE IN EVAP SYSTEM FUEL TANK TEMP. IS MORE THAN 0°C (32°F). WITHIN 10 MINUTES AFTER STARTING "EVAP SYSTEM CLOSE" WHEN TRYING TO EXECUTE "EVAP SYSTEM CLOSE" UNDER THE CONDITION EXCEPT ABOVE, CONSULT-III WILL DISCONTINUE IT AND DISPLAY APPROPRIATE INSTRUCTION. NOTE: WHEN STARTING ENGINE, CONSULT-III MAY DISPLAY "BATTERY", EVEN IN USING CHARGED BATTERY", EVEN IN USING CHARGED BATTERY.	When detecting EVAP vapor leak point of EVAP system
VIN REGISTRATION	IN THIS MODE VIN IS REGISTERED IN ECM	When registering VIN in ECM
TARGET IDLE RPM ADJ*	IDLE CONDITION	When setting target idle speed
TARGET IGN TIM ADJ*	IDLE CONDITION	When adjusting target ignition timing

^{*:} This function is not necessary in the usual service procedure.

SELF DIAGNOSTIC RESULT MODE

Self Diagnostic Item

Regarding items of DTC and 1st trip DTC, refer to EC-677, "Emission-Related Diagnostic Information".

Freeze Frame Data and 1st Trip Freeze Frame Data

Freeze frame data item*	Description
DIAG TROUBLE CODE [PXXXX]	The engine control component part/control system has a trouble code, it is displayed as PXXXX. (Refer to EC-640, "U1000 - U1010".)
FUEL SYS-B1	"Fuel injection system status" at the moment a malfunction is detected is displayed.
FUEL SYS-B2	One mode in the following is displayed. Mode2: Open loop due to detected system malfunction Mode3: Open loop due to driving conditions (power enrichment, deceleration enleanment) Mode4: Closed loop - using oxygen sensor(s) as feedback for fuel control Mode5: Open loop - has not yet satisfied condition to go to closed loop
CAL/LD VALUE [%]	The calculated load value at the moment a malfunction is detected is displayed.
COOLANT TEMP [°C] or [°F]	The engine coolant temperature at the moment a malfunction is detected is displayed.
L-FUEL TRM-B1 [%]	"Long-term fuel trim" at the moment a malfunction is detected is displayed.
L-FUEL TRM-B2 [%]	 The long-term fuel trim indicates much more gradual feedback compensation to the base fuel schedule than short-term fuel trim.
S-FUEL TRM-B1 [%]	"Short-term fuel trim" at the moment a malfunction is detected is displayed.
S-FUEL TRM-B2 [%]	 The short-term fuel trim indicates dynamic or instantaneous feedback compensation to the base fuel sched- ule.
ENGINE SPEED [rpm]	The engine speed at the moment a malfunction is detected is displayed.
VEHICL SPEED [km/h] or [mph]	The vehicle speed at the moment a malfunction is detected is displayed.
ABSOL TH-P/S [%]	The throttle valve opening angle at the moment a malfunction is detected is displayed.
B/FUEL SCHDL [msec]	The base fuel schedule at the moment a malfunction is detected is displayed.

[VK45DE]

Α

Freeze frame data item*	Description
INT/A TEMP SE [°C] or [°F]	The intake air temperature at the moment a malfunction is detected is displayed.
INT MANI PRES [kPa]	These items are displayed but are not applicable to this model.
FTFMCH1	These items are displayed but are not applicable to this model.

^{*:} The items are the same as those of 1st trip freeze frame data.

DATA MONITOR MODE

Monitored Item

Monitored item	Unit	Description	Remarks
ENG SPEED	rpm	Indicates the engine speed computed from the signal of the crankshaft position sensor (POS) and camshaft position sensor (PHASE).	 Accuracy becomes poor if engine speed drops below the idle rpm. If the signal is interrupted while the engine is running, an abnormal value may be indicated.
MAS A/F SE-B1	V	The signal voltage of the mass air flow sensor is displayed.	When the engine is stopped, a certain value is indicated.
B/FUEL SCHDL	msec	"Base fuel schedule" indicates the fuel injection pulse width programmed into ECM, prior to any learned on board correction.	
A/F ALPHA-B1	%		When the engine is stopped, a certain val-
A/F ALPHA-B2	%	The mean value of the air-fuel ratio feedback cor- rection factor per cycle is indicated.	ue is indicated.This data also includes the data for the airfuel ratio learning control.
COOLAN TEMP/S	°C or °F	The engine coolant temperature (determined by the signal voltage of the engine coolant tempera- ture sensor) is displayed.	When the engine coolant temperature sensor is open or short-circuited, ECM en- ters fail-safe mode. The engine coolant temperature determined by the ECM is displayed.
A/F SEN1 (B1)	V	The A/F signal computed from the input signal of	
A/F SEN1 (B2)	V	the air fuel ratio (A/F) sensor 1 is displayed.	
HO2S2 (B1)	×V	The signal voltage of the heated oxygen sensor 2	
HO2S2 (B2)	V	is displayed.	
HO2S2 MNTR (B1)	RICH/ LEAN	Display of heated oxygen sensor 2 signal: RICH: means the amount of oxygen after three way	When the engine is stopped, a certain val-
HO2S2 MNTR (B2)	RICH/ LEAN	catalyst is relatively small. LEAN: means the amount of oxygen after three way catalyst is relatively large.	ue is indicated.
VHCL SPEED SE	km/h or mph	The vehicle speed computed from the vehicle speed signal sent from combination meter is dis- played.	
BATTERY VOLT	V	The power supply voltage of ECM is displayed.	
ACCEL SEN 1	V	The accelerator pedal position sensor signal volt-	ACCEL SEN 2 signal is converted be
ACCEL SEN 2	V	age is displayed.	ECM internally. Thus, it differs from ECM terminal voltage signal.
TP SEN 1-B1	V	The throttle position sensor signal voltage is dis-	TP SEN 2-B1 signal is converted by ECM
TP SEN 2-B1	V	played.	internally. Thus, it differs from ECM terminal voltage signal.
FUEL T/TMP SE	°C or °F	The fuel temperature (determined by the signal voltage of the fuel tank temperature sensor) is displayed.	
INT/A TEMP SE	°C or °F	The intake air temperature (determined by the signal voltage of the intake air temperature sensor) is indicated.	

[VK45DE]

Monitored item	Unit	Description	Remarks
EVAP SYS PRES	V	The signal voltage of EVAP control system pressure sensor is displayed.	
FPCM DR VOLT	V	The voltage between fuel pump and FPCM is displayed.	
FUEL LEVEL SE	V	The signal voltage of the fuel level sensor is displayed.	
START SIGNAL	ON/OFF	Indicates start signal status [ON/OFF] computed by the ECM according to the signals of engine speed and battery voltage.	After starting the engine, [OFF] is displayed regardless of the starter signal.
CLSD THL POS	ON/OFF	Indicates idle position [ON/OFF] computed by ECM according to the accelerator pedal position sensor signal.	
AIR COND SIG	ON/OFF	Indicates [ON/OFF] condition of the air conditioner switch as determined by the air conditioner signal.	
P/N POSI SW	ON/OFF	Indicates [ON/OFF] condition from the park/neutral position (PNP) switch signal.	
PW/ST SIGNAL	ON/OFF	[ON/OFF] condition of the power steering system (determined by the signal voltage of the power steering pressure sensor signal) is indicated.	
LOAD SIGNAL	ON/OFF	Indicates [ON/OFF] condition from the electrical load signal. ON: Rear window defogger switch is ON and/or lighting switch is in 2nd position. OFF: Both rear window defogger switch and lighting switch are OFF.	
IGNITION SW	ON/OFF	Indicates [ON/OFF] condition from ignition switch signal.	
HEATER FAN SW	ON/OFF	Indicates [ON/OFF] condition from the heater fan switch signal.	
BRAKE SW	ON/OFF	Indicates [ON/OFF] condition from the stop lamp switch signal.	
INJ PULSE-B1	msec	Indicates the actual fuel injection pulse width com-	When the engine is stopped, a certain
INJ PULSE-B2	msec	pensated by ECM according to the input signals.	computed value is indicated.
IGN TIMING	BTDC	Indicates the ignition timing computed by ECM according to the input signals.	When the engine is stopped, a certain value is indicated.
CAL/LD VALUE	%	"Calculated load value" indicates the value of the current air flow divided by peak air flow.	
MASS AIRFLOW	g·m/s	Indicates the mass air flow computed by ECM according to the signal voltage of the mass air flow sensor.	
PURG VOL C/V	%	 Indicates the EVAP canister purge volume control solenoid valve control value computed by the ECM according to the input signals. The opening becomes larger as the value increases. 	
INT/V TIM (B1)	°CA	ladiante [00A] efficiency of figures.	
INT/V TIM (B2)	°CA	Indicates [°CA] of intake camshaft advanced angle.	
INT/V SOL (B1)	%	The control value of the intake valve timing control	
INT/V SOL (B2)	%	 solenoid valve (determined by ECM according to the input signals) is indicated. The advance angle becomes larger as the value increases. 	

< SERVICE INFORMATION >

[VK45DE]

Monitored item	Unit	Description	Remarks	
VIAS S/V-1	ON/OFF	 The control condition of the VIAS control solenoid valve (determined by ECM according to the input signals) is indicated. OFF: VIAS control solenoid valve is not operating. ON: VIAS control solenoid valve is operating. 		E
AIR COND RLY	ON/OFF	The air conditioner relay control condition (determined by ECM according to the input signals) is indicated.		(
FUEL PUMP RLY	ON/OFF	Indicates the fuel pump relay control condition de- termined by ECM according to the input signals.		
FPCM	HI/LOW	The control condition of the fuel pump control mod- ule (FPCM) (determined by the ECM according to the input signal) is indicated.		
VENT CONT/V	ON/OFF	The control condition of the EVAP canister vent control valve (determined by ECM according to the input signals) is indicated. ON: Closed OFF: Open		E
THRTL RELAY	ON/OFF	Indicates the throttle control motor relay control condition determined by the ECM according to the input signals.		(
HO2S2 HTR (B1)	ON/OFF	Indicates [ON/OFF] condition of heated oxygen		
HO2S2 HTR (B2)	ON/OFF	sensor 2 heater determined by ECM according to the input signals.		ŀ
I/P PULLY SPD	rpm	Indicates the engine speed computed from the tur- bine revolution sensor signal.		
VEHICLE SPEED	km/h or MPH	The vehicle speed computed from the vehicle speed signal sent from TCM is displayed.		
IDL A/V LEARN	YET/CM- PLT	Display the condition of idle air volume learning YET: Idle air volume learning has not been performed yet. CMPLT: Idle air volume learning has already been performed successfully.		,
TRVL AFTER MIL	km or mile	Distance traveled while MIL is activated.		ŀ
A/F S1 HTR (B1)	%	Air fuel ratio (A/F) sensor 1 heater control value computed by ECM according to the input signals.		
A/F S1 HTR (B2)	%	The current flow to the heater becomes larger as the value increases.		
AC PRESS SEN	V	The signal voltage from the refrigerant pressure sensor is displayed.		ľ
VHCL SPEED SE	km/h or mph	The vehicle speed computed from the vehicle speed signal sent from combination meter is dis- played.		ľ
SET VHCL SPD	km/h or mph	The preset vehicle speed is displayed.		(
MAIN SW	ON/OFF	Indicates [ON/OFF] condition from MAIN switch signal.		(
CANCEL SW	ON/OFF	Indicates [ON/OFF] condition from CANCEL switch signal.		
RESUME/ACC SW	ON/OFF	Indicates [ON/OFF] condition from RESUME/AC- CELERATE switch signal.		
SET SW	ON/OFF	Indicates [ON/OFF] condition from SET/COAST switch signal.		
BRAKE SW1	ON/OFF	 Indicates [ON/OFF] condition from ASCD brake switch signal. 		

Monitored item	Unit	Description	Remarks
BRAKE SW2	ON/OFF	Indicates [ON/OFF] condition of stop lamp switch signal.	
DIST SW	ON/OFF	Indicates [ON/OFF] condition from DISTANCE switch signal.	
CRUISE LAMP	ON/OFF	Indicates [ON/OFF] condition of CRUISE lamp de- termined by the ECM according to the input sig- nals.	
SET LAMP	ON/OFF	Indicates [ON/OFF] condition of SET lamp determined by the ECM according to the input signals.	
FAN DUTY	%	Indicates a command value for cooling fan. The value is calculated by ECM based on input signals.	
AC EVA TEMP	°C or °F	Indicates A/C evaporator temperature sent from "unified meter and A/C amp.".	
AC EVA TARGET	°C or °F	Indicates target A/C evaporator temperature sent from "unified meter and A/C amp.".	
ALT DUTY	%	Indicates the duty ratio of the power generation command value. The ratio is calculated by ECM based on the battery current sensor signal.	
BAT CUR SEN	mV	The signal voltage of battery current sensor is displayed.	
ALT DUTY SIG	ON/OFF	The control condition of the power generation voltage variable control (determined by ECM according to the input signals) is indicated. ON: Power generation voltage variable control is active. OFF: Power generation voltage variable control is inactive.	
A/F ADJ-B1	_	Indicates the correction factor stored in ECM. The	
A/F ADJ-B2	_	factor is calculated from the difference between the target air/fuel ratio stored in ECM and the air-fuel ratio calculated from air fuel ratio (A/F) sensor 1 signal.	

NOTE:

Any monitored item that does not match the vehicle being diagnosed is deleted from the display automatically.

ACTIVE TEST MODE

Test Item

TEST ITEM	CONDITION	JUDGEMENT	CHECK ITEM (REMEDY)
FUEL INJEC- TION	Engine: Return to the original trouble condition Change the amount of fuel injection using CONSULT-III.	If trouble symptom disappears, see CHECK ITEM.	Harness and connectorsFuel injectorAir fuel ratio (A/F) sensor 1
POWER BAL- ANCE	 Engine: After warming up, idle the engine. A/C switch OFF Selector lever: P or N Cut off each fuel injector signal one at a time using CONSULT-III. 	Engine runs rough or dies.	 Harness and connectors Compression Fuel injector Power transistor Spark plug Ignition coil
ENG COOLANT TEMP	Engine: Return to the original trouble condition Change the engine coolant temperature using CONSULT-III.	If trouble symptom disappears, see CHECK ITEM.	Harness and connectors Engine coolant temperature sensor Fuel injector

< SERVICE INFORMATION >

[VK45DE]

M

Ν

Р

TEST ITEM	CONDITION	JUDGEMENT	CHECK ITEM (REMEDY)	
FUEL PUMP RE- LAY	Ignition switch: ON (Engine stopped) Turn the fuel pump relay ON and OFF using CONSULT-III and listen to operating sound.	Fuel pump relay makes the operating sound.	Harness and connectors Fuel pump relay	EC
VIAS S/V-1	Ignition switch: ON Turn solenoid valve ON and OFF with CONSULT-III and listen to operating sound.	Solenoid valve makes an operating sound.	Harness and connectors Solenoid valve	С
PURG VOL CONT/V	 Engine: After warming up, run engine at 1,500 rpm. Change the EVAP canister purge volume control solenoid valve opening percent using CONSULT-III. 	Engine speed changes according to the opening percent.	Harness and connectors Solenoid valve	D E
FUEL/T TEMP SEN	Change the fuel tank temperature	using CONSULT-III.		=
VENT CON- TROL/V	Ignition switch: ON (Engine stopped) Turn solenoid valve ON and OFF with the CONSULT-III and listen to operating sound.	Solenoid valve makes an operating sound.	Harness and connectors Solenoid valve	F G
FPCM	Engine: Returns to the original trouble condition Select "LOW" and "HI" with CONSULT-III.	If trouble symptom disappears, see CHECK ITEM.	Harness and connectors FPCM	Н
V/T ASSIGN AN- GLE	Engine: Return to the original trouble condition Change intake valve timing using CONSULT-III.	If trouble symptom disappears, see CHECK ITEM.	Harness and connectors Intake valve timing control solenoid valve	-
FAN DUTY CONTROL*	Ignition switch: ON Change duty ratio using CON-SULT-III.	Cooling fan speed changes.	Harness and connectors Cooling fan motor Cooling fan relay Cooling fan control module IPDM E/R	J K
ALTERNATOR DUTY	Engine: Idle Change duty ratio using CON- SULT-III.	Battery voltage changes.	Harness and connectors IPDM E/R Alternator	L

^{*:} Leaving cooling fan OFF with CONSULT-III while engine is running may cause the engine to overheat.

DTC & SRT CONFIRMATION MODE

SRT STATUS Mode

For details, refer to "How to Display SRT Status" in EC-677, "Emission-Related Diagnostic Information".

SRT WORK SUPPORT Mode

This mode enables a technician to drive a vehicle to set the SRT while monitoring the SRT status.

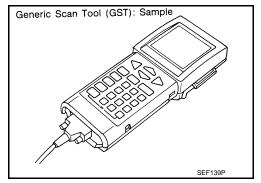
DTC WORK SUPPORT Mode

Test mode	Test item	Corresponding DTC No.	Reference page
	EVP SML LEAK P0442/P1442*	P0442	EC-978
	EVF SIVIL LLAR F 0442/F 1442	P0455	EC-1025
EVAPORATIVE SYSTEM	EVP V/S LEAK P0456/P1456*	P0456	EC-1031
	PURG VOL CN/V P1444	P0443	EC-985
	PURG FLOW P0441	P0441	EC-973

Test mode	Test item	Corresponding DTC No.	Reference page
	A/F SEN1 (B1) P1278/P1279	P0133	EC-872
A/F SEN1	A/F SEN1 (B1) P1276	P0130	EC-848
AVF SEINT	A/F SEN1 (B2) P1288/P1289	P0153	EC-872
	A/F SEN1 (B2) P1286	P0150	EC-848
	HO2S2 (B1) P1146	P0138	EC-890
	HO2S2 (B1) P1147	P0137	EC-881
HO2S2	HO2S2 (B1) P0139	P0139	EC-902
ПО232	HO2S2 (B2) P1166	P0158	EC-890
	HO2S2 (B2) P1167	P0157	EC-881
	HO2S2 (B2) P0159	P0159	EC-902

^{*:} DTC P1442 and P1456 does not apply to Y50 models but appears in DTC Work Support Mode screens.

Generic Scan Tool (GST) Function

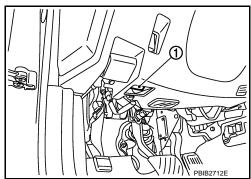

INFOID:0000000002954756

DESCRIPTION

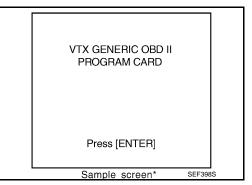
Generic Scan Tool (OBDII scan tool) complying with SAE J1978 has 8 different functions explained below.

ISO9141 is used as the protocol.

The name "GST" or "Generic Scan Tool" is used in this service manual.

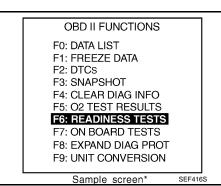

FUNCTION

Diagnostic service		Function	
Service \$01	READINESS TESTS	This diagnostic service gains access to current emission-related data values, including analog inputs and outputs, digital inputs and outputs, and system status information.	
Service \$02	(FREEZE DATA)	This diagnostic service gains access to emission-related data value which were stored by ECM during the freeze frame. For details, refer to EC-677. "Emission-Related Diagnostic Information".	
Service \$03	DTCs	This diagnostic service gains access to emission-related power train trouble codes which were stored by ECM.	
Service \$04	CLEAR DIAG INFO	This diagnostic service can clear all emission-related diagnostic information. This includes: • Clear number of diagnostic trouble codes (Service \$01) • Clear diagnostic trouble codes (Service \$03) • Clear trouble code for freeze frame data (Service \$01) • Clear freeze frame data (Service \$02) • Reset status of system monitoring test (Service \$01) • Clear on board monitoring test results (Service \$06 and \$07)	
Service \$06	(ON BOARD TESTS)	This diagnostic service accesses the results of on board diagnostic monitoring tests of specific components/systems that are not continuously monitored.	
Service \$07	(ON BOARD TESTS)	This diagnostic service enables the off board test drive to obtain test results for emission-related powertrain components/systems that are continuously monitored during normal driving conditions.	


Diagnostic service Function		Function
Service \$08		This diagnostic service can close EVAP system in ignition switch ON position (Engine stopped). When this diagnostic service is performed, EVAP canister vent control valve can be closed. In the following conditions, this diagnostic service cannot function. • Low ambient temperature • Low battery voltage • Engine running • Ignition switch OFF • Low fuel temperature • Too much pressure is applied to EVAP system
Service \$09	(CALIBRATION ID)	This diagnostic service enables the off-board test device to request specific vehicle information such as Vehicle Identification Number (VIN) and Calibration IDs.

INSPECTION PROCEDURE

- 1. Turn ignition switch OFF.
- 2. Connect GST to data link connector (1), which is located under LH dash panel near the hood opener handle.



- 3. Turn ignition switch ON.
- 4. Enter the program according to instruction on the screen or in the operation manual.
 - (*: Regarding GST screens in this section, sample screens are shown.)

Perform each diagnostic service according to each service procedure.

For further information, see the GST Operation Manual of the tool maker.

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002954757

Remarks:

- Specification data are reference values.
- Specification data are output/input values which are detected or supplied by the ECM at the connector.

Revision: 2009 February **EC-751** 2008 M35/M45

EC

Α

D

Е

F

G

Н

.

J

K

I

Ν

0

i.e. Adjust ignition timing with a timing light before monitoring IGN TIMING, because the monitor may show the specification data in spite of the ignition timing not being adjusted to the specification data. This IGN TIMING monitors the data calculated by the ECM according to the signals input from the camshaft position sensor and other ignition timing related sensors.

MONITOR ITEM	CONDITION		SPECIFICATION
ENG SPEED	Run engine and compare CONSULT-III value with the tachometer indication.		Almost the same speed as the tachometer indication.
MAS A/F SE-B1	See EC-755, "Inspection Procedure"	<u>.</u>	
B/FUEL SCHDL	See EC-755, "Inspection Procedure".		
A/F ALPHA-B1 A/F ALPHA-B2	See EC-755, "Inspection Procedure"		
COOLAN TEMP/S	Engine: After warming up		More than 70°C (158°F)
A/F SEN1 (B1) A/F SEN1 (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	Fluctuates around 1.5 V
HO2S2 (B1) HO2S2 (B2)	Revving engine from idle to 3,000 rpm quickly after the following conditions are met.		0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S2 MNTR (B1) HO2S2 MNTR (B2)	Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load		$LEAN \longleftrightarrow RICH$
VHCL SPEED SE	Turn drive wheels and compare C dication.	ONSULT-III value with the speedometer in-	Almost the same speed as speedometer indication
BATTERY VOLT	Ignition switch: ON (Engine stoppe	ed)	11 - 14V
ACCEL SEN 1	Ignition switch: ON	Accelerator pedal: Fully released	0.4 - 1.1V
ACCEL SEN 2*1	(Engine stopped)	Accelerator pedal: Fully depressed	3.7 - 4.8V
TP SEN 1-B1	Ignition switch: ON	Accelerator pedal: Fully released	More than 0.36V
TP SEN 2-B1* ¹	(Engine stopped) • Selector lever: D	Accelerator pedal: Fully depressed	Less than 4.75V
EVAP SYS PRES	Ignition switch: ON		Approx. 1.8 - 4.8V
START SIGNAL	• Ignition switch: $ON \rightarrow START \rightarrow ON$		$OFF \to ON \to OFF$
CLSD THL POS	Ignition switch: ON (Engine stopped)	Accelerator pedal: Fully released	ON
CLSD THE POS		Accelerator pedal: Slightly depressed	OFF
AIR COND SIG • Engine: A engine	Engine: After warming up, idle the	Air conditioner switch: OFF	OFF
		Air conditioner switch: ON (Compressor operates.)	ON
P/N POSI SW	Ignition switch: ON	Selector lever: P or N	ON
F/N FO31 3W		Selector lever: Except above	OFF
PW/ST SIGNAL	Engine: After warming up, idle the engine	Steering wheel: Not being turned (Forward direction)	OFF
		Steering wheel: Being turned	ON
LOAD SIGNAL	Ignition switch: ON	Rear window defogger switch: ON and/or Lighting switch: 2ND position	ON
		Rear window defogger switch and lighting switch: OFF	OFF
IGNITION SW	• Ignition switch: $ON \rightarrow OFF \rightarrow ON$		$ON \to OFF \to ON$
HEATED FAN SW	Engine: After warming up, idle the	Heater fan switch: ON	ON
HEATER FAN SW	engine	Heater fan switch: OFF	OFF
DDAKE OW	Ignition switch: ON	Brake pedal: Fully released	OFF
BRAKE SW		Brake pedal: Slightly depressed	ON
	Engine: After warming up	Idle	2.0 - 3.0 msec
INJ PULSE-B1 INJ PULSE-B2	Selector lever: P or N Air conditioner switch: OFF No load	2,000 rpm	1.9 - 2.9 msec

^{*} Specification data may not be directly related to their components signals/values/operations.

< SERVICE INFORMATION >

[VK45DE]

Engine: After warming up Selector lever: P or N Air conditioner switch: OFF No load	MONITOR ITEM	CC	ONDITION	SPECIFICATION
Air conditioner switch: OFF 2,000 rpm 25° - 45° BTDC			Idle	7° - 17° BTDC
Selector lever: P or N Air conditioner switch: OFF No load Engine: After warming up Selector lever: P or N Air conditioner switch: OFF No load Engine: After warming up Selector lever: P or N Air conditioner switch: OFF No load Engine: After warming up Selector lever: P or N Air conditioner switch: OFF No load Engine: After warming up Selector lever: P or N Air conditioner switch: OFF No load Engine: After warming up Selector lever: P or N Air conditioner switch: OFF No load Engine: After warming up Selector lever: P or N No load Engine: After warming up Selector lever: P or N No load Engine: After warming up Selector lever: P or N No load Engine: After warming up Selector lever: P or N No load Engine: After warming up Selector lever: P or N No load Engine: After warming up Selector lever: P or N Air conditioner switch: OFF No load Approx. 0° - 20°CA Approx. 0° - 20°CA Approx. 25% - 50% Approx. 25% - 50% ON Engine speed: Less than 5,000 rpm Approx. 25% - 50% Alic conditioner switch: OFF Alic conditioner switch: OFF Air conditioner switch: OFF FUEL PUMP RLY Engine: Cranking Engine: After warming up Keptro of the speed: More than 10°C (50°F) Vehicle speed: Above 3,600 rpm ON Turn drive wheels and compare CONSULT-III value with the speedometer in Almost the same speed as	IGN TIMING	Air conditioner switch: OFF	2,000 rpm	25° - 45° BTDC
Air conditioner switch: OFF No load 2,500 rpm 12% - 25%			Idle	14% - 33%
Selector lever: P or N Selector lever: Except P or N Selector lever: Sexept P or	CAL/LD VALUE	Air conditioner switch: OFF	2,500 rpm	12% - 25%
ASS AIRTLOW Air conditioner switch: OFF No load Engine: After warming up Selector lever: P or N No load Engine: After warming up Selector lever: P or N No load Engine: After warming up Selector lever: P or N Air conditioner switch: OFF No load Engine: After warming up Selector lever: P or N Air conditioner switch: OFF No load Engine: After warming up Selector lever: P or N Air conditioner switch: OFF No load Engine: After warming up Selector lever: P or N Air conditioner switch: OFF No load Engine: After warming up Selector lever: P or N No load Engine: After warming up Selector lever: P or N No load Selector lever: P or N Engine speed: More than 5,000 rpm Engine speed: Less than 5,000 rpm Selector lever: Except P or N Engine: Speed: Less than 5,000 rpm Selector lever: Except P or N Engine: Speed: Less than 5,000 rpm Selector lever: Except P or N Engine: Speed: Less than 5,000 rpm Selector lever: Except P or N Engine: Speed: Less than 5,000 rpm Selector lever: Except P or N Engine: Speed: Less than 5,000 rpm ON Engine: After warming up, idle the engine EVEL PUMP RLY For 1 seconds after turning ignition switch: ON Engine: Cranking Except above Engine: Cranking Engine: After warming up Air conditioner switch: ON ON Compressor operates) OFF HRTL RELAY Ignition switch: ON OFF HRTL RELAY Engine: Speed: Below 3,600 rpm after the following conditions are met. Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load Engine speed: Above 3,600 rpm Vehicle speed: More than 20 km/h (12 MPH) FillCI E SPEED Air conditioner witch: OFF Almost the same speed as			Idle	2.0 - 6.0 g·m/s
Selector lever: Por N Air conditioner switch: OFF No load • Engine: After warming up Selector lever: Por N Air conditioner switch: OFF No load • Engine: After warming up Selector lever: Por N Air conditioner switch: OFF No load • Engine: After warming up Selector lever: Por N Air conditioner switch: OFF No load • Engine: After warming up Selector lever: Por N Air conditioner switch: OFF No load • Engine: After warming up Selector lever: Por N Air conditioner switch: OFF No load • Engine: After warming up Selector lever: Por N Air conditioner switch: OFF No load • Engine speed: More than 5,000 rpm • Selector lever: Except Por N Engine speed: More than 5,000 rpm • Selector lever: Except Por N Engine speed: Less than 5,000 rpm • Selector lever: Except Por N Engine speed: Less than 5,000 rpm • Selector lever: Except Por N Engine speed: Less than 5,000 rpm • Selector lever: Except Por N Engine speed: Less than 5,000 rpm • Selector lever: Except Por N Engine speed: Less than 5,000 rpm • Selector lever: Except Por N Engine speed: Less than 5,000 rpm • Selector lever: Except Por N Engine speed: Less than 5,000 rpm • Selector lever: Except Por N Engine speed: Less than 5,000 rpm • Engine speed: Less than 5,000 rpm • Engine speed: Less than 5,000 rpm • Engine running or cranking • Engine: After warming up, idle the engine • Engine: Cranking • Engine: Speed: Below 3,600 rpm after the following conditions are met. Engine: After warming up - Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load • Engine speed: Above 3,600 rpm • Vehicle speed: More than 20 km/h (12 MPH) • Turn drive wheels and compare CONSULT-III value with the speedometer in-	IASS AIRFLOW	Air conditioner switch: OFF	2,500 rpm	7.0 - 20.0 g·m/s
Part Politics Speed: Fingine: After warming up Idle -5° -5°CA Selector lever: P or N Aprox. 0° - 20°CA Selector lever: P or N Aprox. 0° - 20°CA Selector lever: P or N Aprox. 0° - 20°CA No load Engine: After warming up Idle 0% - 2% Selector lever: P or N Aprox. 25% - 50% No load Engine: After warming up Aprox. 25% - 50% Selector lever: P or N Engine speed: More than 5,000 rpm ON Selector lever: P or N Engine speed: Less than 5,000 rpm OFF Selector lever: Except P or N Engine speed: Less than 5,000 rpm OFF Selector lever: Except P or N Engine speed: Less than 5,000 rpm OFF Selector lever: Except P or N Engine speed: Less than 5,000 rpm OFF Selector lever: Except P or N Engine speed: Less than 5,000 rpm OFF Selector lever: Except P or N Engine speed: Less than 5,000 rpm OFF Selector lever: P or N ON OFF Selector lever: P or N Engine speed: Less than 5,000 rpm OFF Selector lever: P or N ON ON Engine speed: After warming up, idle the engine OFF Selector lever: P or N ON ON Engine: Cranking HI ON OFF Selector lever: P or N ON ON Selector lever: P or N ON ON ON ON Selector lever: P or N ON ON ON ON ON Selector lever: P or N ON ON ON ON ON ON ON	PURG VOL C/V	Selector lever: P or N	(Accelerator pedal: Not depressed even	0%
NT/V TIM (81) NT/V TIM (82) - Selector lever: P or N - Air conditioner switch: OFF - No load - Engine: After warming up - Selector lever: P or N - No load - Selector lever: P or N - No load - Selector lever: P or N - No load - Selector lever: P or N - No load - Selector lever: P or N - Selector lever: P or N - Selector lever: Except P or N - Engine speed: More than 5,000 rpm - Selector lever: Except P or N - Engine speed: Less than 5,000 rpm - Selector lever: Except P or N - Engine: After warming up, idle the engine - Engine: After warming up, idle the engine - For 1 seconds after turning ignition switch: ON - Engine roranking - Except above - For 1 seconds after turning ignition switch: ON - Engine: Cranking - Except above - Engine: Cranking - Engine: Cranking - Engine: Cranking - Ill - Engine: Idle - Engine coolant temperature: More than 10°C (50°F) - Ignition switch: ON - Ignition switch: ON - Ignition switch: ON - Ignition switch: ON - Indition switch: ON - Ignition switch: ON - Indition switch: ON - Inditio		No load	2,000 rpm	_
Aprox. 0° - 20°CA	NITA/ TIM/ (D4)		Idle	−5° - 5°CA
NT/V SOL (B1) NT/V SOL (B2) Selector lever: P or N Air conditioner switch: OFF No load Selector lever: P or N Engine speed: More than 5,000 rpm Selector lever: Except P or N Engine speed: Less than 5,000 rpm Selector lever: Except P or N Engine speed: Less than 5,000 rpm Selector lever: Except P or N Engine speed: Less than 5,000 rpm Selector lever: Except P or N Engine speed: Less than 5,000 rpm Selector lever: Except P or N Engine speed: Less than 5,000 rpm OFF Air conditioner switch: OFF Air conditioner switch: ON (Compressor operates) ON Selector lever: Except P or N Engine: After warming up, idle the engine FUEL PUMP RLY FOR 1 seconds after turning ignition switch: ON Engine running or cranking Except above FUEL PUMP RLY Engine: Cranking Except above Sengine: Cranking Engine: Coolant temperature: More than 10°C (50°F) FUEL PUMP RLY FUEL PUMP RLY FUEL PUMP RLY Engine speed: Below 3,600 rpm after the following conditions are met. Engine: After warming up Engine speed: Below 3,600 rpm Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load Engine speed: Above 3,600 rpm OFF Vehicle speed: More than 20 km/h (12 MPH) FUEL SPEED FUEL SPEED To No Approx. 25% - 50% ON OFF Air conditioner switch: OFF Air conditioner swit		Air conditioner switch: OFF	2,000 rpm	Approx. 0° - 20°CA
Approx. 25% - 50% Approx. 25% - 50% Approx. 25% - 50% Selector lever: P or N Engine speed: More than 5,000 rpm Selector lever: Except P or N Engine speed: Less than 5,000 rpm Selector lever: Except P or N Engine speed: Less than 5,000 rpm Air conditioner switch: OFF Air conditioner switch: ON (Compressor operates) FUEL PUMP RLY FOR 1 seconds after turning ignition switch: ON Engine running or cranking Except above Engine: Cranking Engine: Cranking Engine: Colar limit temperature: More than 10°C (50°F) FOR 1 lightion switch: ON ON OFF THRTL RELAY Ignition switch: ON Engine speed: Below 3,600 rpm after the following conditions are met. Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load Engine speed: Above 3,600 rpm Vehicle speed: More than 20 km/h (12 MPH) FUELLY SPD Approx. 25% - 50% ON ON Approx. 25% - 50% ON ON OFF Air conditioner switch: OFF ON ON ON OFF OFF OFF OFF OF	NTA/OOL (DA)		Idle	0% - 2%
PERMIT CONT/V I Engine speed: More than 5,000 rpm Selector lever: Except P or N Engine speed: Less than 5,000 rpm PERMIT COND RLY I Engine: After warming up, idle the engine FUEL PUMP RLY I FOr 1 seconds after turning ignition switch: ON Engine running or cranking Except above Engine: Cranking Engine: Cranking Engine: Idle Engine coolant temperature: More than 10°C (50°F) FUENT CONT/V I Ignition switch: ON I Ignition swi		Air conditioner switch: OFF	2,000 rpm	Approx. 25% - 50%
PLACE SIV-1 • Engine speed: More than 5,000 rpm • Selector lever: Except P or N • Engine speed: Less than 5,000 rpm • Selector lever: Except P or N • Engine speed: Less than 5,000 rpm • Engine: After warming up, idle the engine • Engine: After warming up, idle the engine • For 1 seconds after turning ignition switch: ON (Compressor operates) • For 1 seconds after turning ignition switch: ON • Engine running or cranking • Except above • Engine: Cranking • Engine: Cranking • Engine: Cranking • Engine: Alde • Engine coolant temperature: More than 10°C (50°F) **PENT CONT/V* • Ignition switch: ON • Ignition switch: ON • Ignition switch: ON • Engine speed: Below 3,600 rpm after the following conditions are met. • Engine: After warming up • Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load • Engine speed: Above 3,600 rpm • Vehicle speed: More than 20 km/h (12 MPH) **Turn drive wheels and compare CONSULT-III value with the speedometer in- **Almost the same speed as the tachometer indication		Selector lever: P or N		ON
• Engine speed: Less than 5,000 rpm • Engine: After warming up, idle the engine • For 1 seconds after turning ignition switch: ON • Engine running or cranking • Except above • Engine: Cranking • Engine: Idle • Engine coolant temperature: More than 10°C (50°F) VENT CONT/V • Ignition switch: ON • Ignition switch: ON • Ignition switch: ON • Engine speed: Below 3,600 rpm after the following conditions are met. • Engine: After warming up • Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load • Engine speed: Above 3,600 rpm • Vehicle speed: More than 20 km/h (12 MPH) • Turn drive wheels and compare CONSULT-III value with the speedometer in- Almost the same speed as the tachometer indication	/IAS S/V-1	Engine speed: More than 5,000 rpm		ON
PERMIT COND RLY Engine: After warming up, idle the engine FOR 1 seconds after turning ignition switch: ON (Compressor operates) FOR 1 seconds after turning ignition switch: ON Engine running or cranking Except above Except above Engine: Cranking Engine: Cranking Engine: Idle Engine coolant temperature: More than 10°C (50°F) FOR 1 lightion switch: ON FOR 2 lightion switch: ON FOR 3 lightion switch: ON Engine speed: Below 3,600 rpm after the following conditions are met. Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load Engine speed: Above 3,600 rpm FOR PULLY SPD Vehicle speed: More than 20 km/h (12 MPH) Turn drive wheels and compare CONSULT-III value with the speedometer in- Almost the same speed as the tachometer in-			m	OFF
engine Air conditioner switch: ON (Compressor operates) FUEL PUMP RLY FUEL PUMP RLY FOR 1 seconds after turning ignition switch: ON Engine running or cranking Except above Engine: Cranking Engine: Idle Engine coolant temperature: More than 10°C (50°F) FORM FORM FORM FORM FORM Engine: Idle Engine coolant temperature: More than 10°C (50°F) FORM		Engine: After warming up, idle the	Air conditioner switch: OFF	OFF
EUEL PUMP RLY Engine running or cranking Except above Engine: Cranking Engine: Cranking Engine: Cranking Engine: Cranking Engine: Cranking Engine: Idle Engine coolant temperature: More than 10°C (50°F) Engine coolant temperature: More than 10°C (50°F) ENT CONT/V Ignition switch: ON Ignition switch: ON Engine speed: Below 3,600 rpm after the following conditions are met. Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load Engine speed: Above 3,600 rpm ON Engine speed: Above 3,600 rpm Vehicle speed: More than 20 km/h (12 MPH) Turn drive wheels and compare CONSULT-III value with the speedometer in- Almost the same speed as	AIR COND RLY	= :		ON
Engine: Cranking Engine: Idle Engine coolant temperature: More than 10°C (50°F) PENT CONT/V Ignition switch: ON Ignition switch:	FUEL PUMP RLY		n switch: ON	ON
FPCM • Engine: Idle • Engine coolant temperature: More than 10°C (50°F) VENT CONT/V • Ignition switch: ON • Engine speed: Below 3,600 rpm after the following conditions are met. • Engine: After warming up • Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load • Engine speed: Above 3,600 rpm • Vehicle speed: More than 20 km/h (12 MPH) • Turn drive wheels and compare CONSULT-III value with the speedometer in- Almost the same speed as the tachometer indication		Except above		OFF
• Engine coolant temperature: More than 10°C (50°F) VENT CONT/V • Ignition switch: ON • Engine speed: Below 3,600 rpm after the following conditions are met. • Engine: After warming up • Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load • Engine speed: Above 3,600 rpm OFF Vehicle speed: More than 20 km/h (12 MPH) • Turn drive wheels and compare CONSULT-III value with the speedometer in- Almost the same speed as				HI
PRTL RELAY • Ignition switch: ON • Engine speed: Below 3,600 rpm after the following conditions are met. - Engine: After warming up - Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load • Engine speed: Above 3,600 rpm ON ON ON Almost the same speed as the tachometer indication OFF - Vehicle speed: More than 20 km/h (12 MPH) • Turn drive wheels and compare CONSULT-III value with the speedometer in-	-РСМ		e than 10°C (50°F)	LOW
Engine speed: Below 3,600 rpm after the following conditions are met. Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load Engine speed: Above 3,600 rpm PPULLY SPD Vehicle speed: More than 20 km/h (12 MPH) Turn drive wheels and compare CONSULT-III value with the speedometer in- Almost the same speed as the tachometer indication	/ENT CONT/V	Ignition switch: ON	Ignition switch: ON	
- Engine: After warming up - Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load • Engine speed: Above 3,600 rpm • Vehicle speed: More than 20 km/h (12 MPH) • Turn drive wheels and compare CONSULT-III value with the speedometer in-	HRTL RELAY	Ignition switch: ON		ON
P PULLY SPD • Vehicle speed: More than 20 km/h (12 MPH) • Turn drive wheels and compare CONSULT-III value with the speedometer in- Almost the same speed as the tachometer indication Almost the same speed as		- Engine: After warming up - Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at		ON
the tachometer indication **Turn drive wheels and compare CONSULT-III value with the speedometer in- **Turn drive wheels and compare CONSULT-III value with the speedometer in-		Engine speed: Above 3,600 rpm		OFF
/FAILLE SPEED	/P PULLY SPD	Vehicle speed: More than 20 km/h (12 MPH)		-
uio apodemicio indicateri	VEHICLE SPEED	Turn drive wheels and compare CONSULT-III value with the speedometer indication.		Almost the same speed as the speedometer indication
Vehicle has traveled after MIL has turned O - 65,535 km (0 - 40,723 miles)		Ignition switch: ON		
A/F S1 HTR (B1) A/F S1 HTR (B2) • Engine: After warming up, idle the engine 0 - 100%		Engine: After warming up, idle the engine		0 - 100%
• Engine: Idle • Both A/C switch and blower fan switch: ON (Compressor operates) 1.0 - 4.0V	AC PRESS SEN		1.0 - 4.0V	

MONITOR ITEM	cc	NDITION	SPECIFICATION
VHCL SPEED SE	dication. th		Almost the same speed as the speedometer indication
SET VHCL SPD	Engine: Running	ASCD: Operating	The preset vehicle speed is displayed
MAIN SW	Ignition switch: ON	MAIN switch: Pressed	ON
WAIN SW	• Ignition switch. ON	MAIN switch: Released	OFF
CANCEL SW	Ignition switch: ON	CANCEL switch: Pressed	ON
CANCEL SW	Ignition switch: ON	CANCEL switch: Released	OFF
RESUME/ACC SW	Ignition switch: ON	RESUME/ACCELERATE switch: Pressed	ON
NEGOWIL/ACC 3W	- Igrillion switch. On	RESUME/ACCELERATE switch: Released	OFF
SET SW	Ignition quitab: ON	SET/COAST switch: Pressed	ON
3E1 3W	Ignition switch: ON	SET/COAST switch: Released	OFF
BRAKE SW1		Brake pedal: Fully released	ON
(ICC/ASCD brake switch)	Ignition switch: ON	Brake pedal: Slightly depressed	OFF
BRAKE SW2	Ignition switch: ON	Brake pedal: Fully released	OFF
(Stop lamp switch)	ignition switch. Or	Brake pedal: Slightly depressed	ON
DIST SW	Ignition switch: ON	DISTANCE switch: Pressed	ON
	igililon owiton. Orv	CANCEL switch: Released RESUME/ACCELERATE switch: Pressed RESUME/ACCELERATE switch: Released SET/COAST switch: Pressed SET/COAST switch: Released Brake pedal: Fully released Brake pedal: Slightly depressed Brake pedal: Slightly depressed DISTANCE switch: Pressed DISTANCE switch: Released MAIN switch: Pressed at the 1st time → at the 2nd time ASCD: Operating	OFF
CRUISE LAMP	Ignition switch: ON		$ON \to OFF$
	MAIN switch: ON	ASCD: Operating	ON
SET LAMP	When vehicle speed is between 40 km/h (25 MPH) and 144 km/h (89 MPH)	ASCD: Not operating	OFF
FAN DUTY	Engine: Running		0 - 100%
ALT DUTY	Engine: Idle		0 - 80%
BAT CUR SEN	 Engine speed: Idle Battery: Fully charged*² Selector lever: P or N Air conditioner switch: OFF No load 		Approx. 2,600 - 3,500mV
ALT DUTY SIG	Power generation voltage variable control: Operating		ON
ALT DUTY SIG	Power generation voltage variable control: Not operating		OFF

^{*1:} Accelerator pedal position sensor 2 signal and throttle position sensor 2 signal are converted by ECM internally. Thus, they differ from ECM terminals voltage signal.

^{*2:} Before measuring the terminal voltage, confirm that the battery is fully charged. Refer to SC-4, "How to Handle Battery".

TROUBLE DIAGNOSIS - SPECIFICATION VALUE

< SERVICE INFORMATION >

[VK45DE]

TROUBLE DIAGNOSIS - SPECIFICATION VALUE

Description INFOID:000000002954759

The specification (SP) value indicates the tolerance of the value that is displayed in "SPEC" of "DATA MONITOR" mode of CONSULT-III during normal operation of the Engine Control System. When the value in "SPEC" of "DATA MONITOR" mode is within the SP value, the Engine Control System is confirmed OK. When the value in "SPEC" of "DATA MONITOR" mode is NOT within the SP value, the Engine Control System may have one or more malfunctions.

The SP value is used to detect malfunctions that may affect the Engine Control System, but will not light the MIL.

The SP value will be displayed for the following three items:

- B/FUEL SCHDL (The fuel injection pulse width programmed into ECM prior to any learned on board correction)
- A/F ALPHA-B1/B2 (The mean value of air-fuel ratio feedback correction factor per cycle)
- MAS A/F SE-B1 (The signal voltage of the mass air flow sensor)

Testing Condition

- Vehicle driven distance: More than 5,000 km (3,107 miles)
- Barometric pressure: 98.3 104.3 kPa (1.003 1.064 kg/cm², 14.25 15.12 psi)
- Atmospheric temperature: 20 30°C (68 86°F)
- Engine coolant temperature: 75 95°C (167 203°F)
- Engine speed: Idle
- Transmission: Warmed-up
- After the engine is warmed up to normal operating temperature, drive vehicle until "ATF TEMP SE 1" (A/T fluid temperature sensor signal) in "DATA MONITOR" mode of "TRANSMISSION" indicates more than 60°C (140°F).
- Electrical load: Not applied
- Rear window defogger switch, air conditioner switch, lighting switch are OFF. Steering wheel is straight ahead.

Inspection Procedure

NOTE:

Perform "SPEC" of "DATA MONITOR" mode in maximum scale display.

- Perform EC-702, "Basic Inspection".
- Confirm that the testing conditions indicated above are met.
- 3. Select "B/FUEL SCHDL", "A/F ALPHA-B1", "A/F ALPHA-B2" and "MAS A/F SE-B1" in "SPEC" of "DATA MONITOR" mode with CONSULT-III.
- Make sure that monitor items are within the SP value.
- If NG, go to <u>EC-756</u>, "<u>Diagnosis Procedure</u>".

EC

Α

D

Е

.

G

G

INFOID:00000000002954761

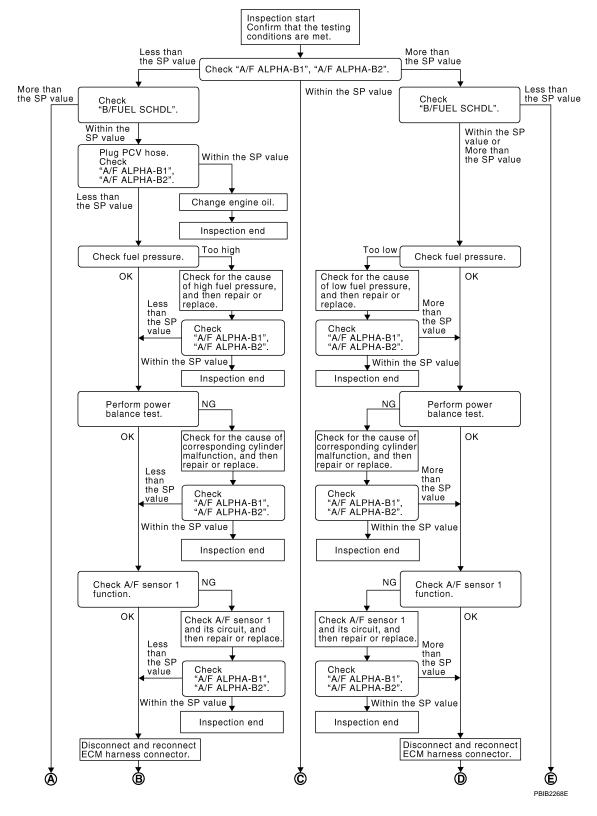
K

L

M

Ν

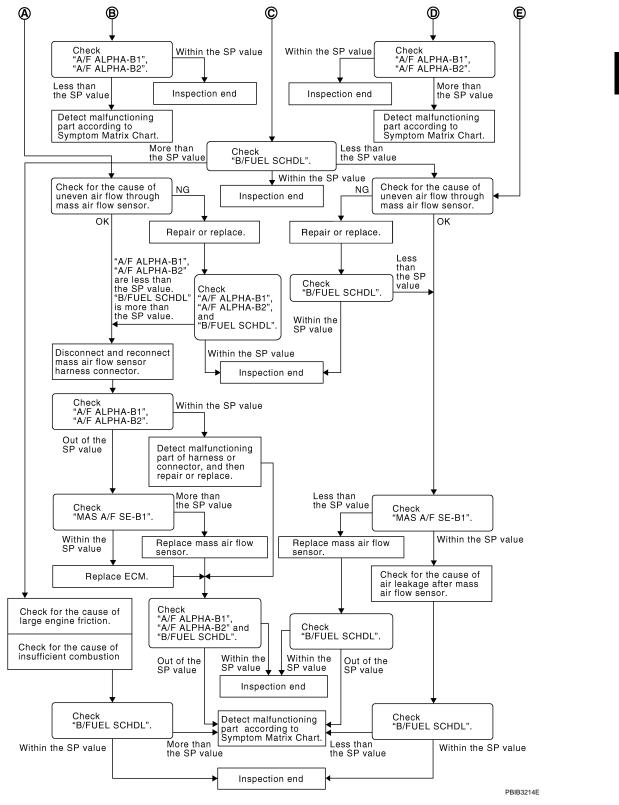
O


Ρ

[VK45DE]

Diagnosis Procedure

INFOID:0000000002954762


OVERALL SEQUENCE

Α

EC

D

DETAILED PROCEDURE

1.CHECK "A/F ALPHA-B1", "A/F ALPHA-B2"

- Start engine.
- Confirm that the testing conditions are met. Refer to <u>EC-755</u>. "Testing Condition".
- Select "A/F ALPHA-B1", "A/F ALPHA-B2" in "SPEC" of "DATA MONITOR" mode, and make sure that the each indication is within the SP value.
 NOTE:

< SERVICE INFORMATION >

[VK45DE]

2008 M35/M45

Check "A/F ALPHA-B1", "A/F ALPHA-B2" for approximately 1 minute because they may fluctuate. It is NG if the indication is out of the SP value even a little.

OK or NG

OK >> GO TO 17.

NG (Less than the SP value)>>GO TO 2.

NG (More than the SP value)>>GO TO 3.

2.CHECK "B/FUEL SCHDL"

Select "B/FUEL SCHDL" in "SPEC" of "DATA MONITOR" mode, and make sure that the indication is within the SP value.

OK or NG

OK >> GO TO 4.

NG (More than the SP value)>>GO TO 19.

${f 3.}$ CHECK "B/FUEL SCHDL"

Select "B/FUEL SCHDL" in "SPEC" of "DATA MONITOR" mode, and make sure that the indication is within the SP value.

OK or NG

OK >> GO TO 6.

NG (More than the SP value)>>GO TO 6.

NG (Less than the SP value)>>GO TO 25.

4.CHECK "A/F ALPHA-B1", "A/F ALPHA-B2"

- 1. Stop the engine.
- 2. Disconnect PCV hose, and then plug it.
- 3. Start engine.
- 4. Select "A/F ALPHA-B1", "A/F ALPHA-B2" in "SPEC" of "DATA MONITOR" mode, and make sure that the each indication is within the SP value.

OK or NG

OK >> GO TO 5.

NG >> GO TO 6.

5. CHANGE ENGINE OIL

- 1. Stop the engine.
- 2. Change engine oil.

NOTE:

This symptom may occur when a large amount of gasoline is mixed with engine oil because of driving conditions (such as when engine oil temperature does not rise enough since a journey distance is too short during winter). The symptom will not be detected after changing engine oil or changing driving condition.

>> INSPECTION END

6.CHECK FUEL PRESSURE

Check fuel pressure. (Refer to EC-708, "Fuel Pressure Check".)

OK or NG

OK >> GO TO 9.

NG (Fuel pressure is too high)>>Replace fuel pressure regulator, refer to <u>EC-708, "Fuel Pressure Check"</u>. GO TO 8.

NG (Fuel pressure is too low)>>GO TO 7.

.DETECT MALFUNCTIONING PART

- 1. Check the following.
- Clogged and bent fuel hose and fuel tube
- Clogged fuel filter
- Fuel pump and its circuit (Refer to EC-1239, "Diagnosis Procedure".)
- 2. If NG, repair or replace the malfunctioning part. (Refer to <u>EC-708, "Fuel Pressure Check"</u>.) If OK, replace fuel pressure regulator.

[VK45DE] < SERVICE INFORMATION >

Α >> GO TO 8. 8.CHECK "A/F ALPHA-B1", "A/F ALPHA-B2" 1. Start engine. EC Select "A/F ALPHA-B1", "A/F ALPHA-B2" in "SPEC" of "DATA MONITOR" mode, and make sure that the each indication is within the SP value. OK or NG OK >> INSPECTION END NG >> GO TO 9. 9. PERFORM POWER BALANCE TEST D Perform "POWER BALANCE" in "ACTIVE TEST" mode. Make sure that the each cylinder produces a momentary engine speed drop. Е OK or NG OK >> GO TO 12. NG >> GO TO 10. 10.DETECT MALFUNCTIONING PART Check the following. Ignition coil and its circuit (Refer to EC-1254, "Diagnosis Procedure".) Fuel injector and its circuit (Refer to EC-1234, "Diagnosis Procedure".) Intake air leakage Low compression pressure (Refer to "CHECKING COMPRESSION PRESSURE" in EM-230, "On-Vehicle Service".) 2. If NG, repair or replace the malfunctioning part. If OK, replace fuel injector. (It may be caused by leakage from fuel injector or clogging.) >> GO TO 11. 11. CHECK "A/F ALPHA-B1", "A/F ALPHA-B2" Start engine. Select "A/F ALPHA-B1", "A/F ALPHA-B2" in "SPEC" of "DATA MONITOR" mode, and make sure that the each indication is within the SP value. K OK or NG OK >> INSPECTION END NG >> GO TO 12. 12. CHECK A/F SENSOR 1 FUNCTION Perform all DTC Confirmation Procedure related with A/F sensor 1. For DTC P0130, P0150, refer to EC-848, "DTC Confirmation Procedure". For DTC P0131, P0151, refer to <u>EC-856, "DTC Confirmation Procedure"</u>. For DTC P0132, P0152, refer to EC-864, "DTC Confirmation Procedure".
For DTC P0133, P0153, refer to EC-872, "DTC Confirmation Procedure". N For DTC P2A00, P2A03, refer to <u>EC-1212</u>, "DTC Confirmation Procedure". OK or NG OK >> GO TO 15. NG >> GO TO 13. 13.CHECK A/F SENSOR 1 CIRCUIT Perform Diagnostic Procedure according to corresponding DTC. >> GO TO 14. **14.**CHECK "A/F ALPHA-B1", "A/F ALPHA-B2"

1. Start engine.

Select "A/F ALPHA-B1", "A/F ALPHA-B2" in "SPEC" of "DATA MONITOR" mode, and make sure that the each indication is within the SP value.

< SERVICE INFORMATION >

[VK45DE]

OK or NG

OK >> INSPECTION END

NG >> GO TO 15.

15. DISCONNECT AND RECONNECT ECM HARNESS CONNECTOR

- Stop the engine.
- 2. Disconnect ECM harness connector. Check pin terminal and connector for damage, and then reconnect it.

>> GO TO 16.

16.CHECK "A/F ALPHA-B1", "A/F ALPHA-B2"

- Start engine.
- Select "A/F ALPHA-B1", "A/F ALPHA-B2" in "SPEC" of "DATA MONITOR" mode, and make sure that the each indication is within the SP value.

OK or NG

OK >> INSPECTION END

NG >> Detect malfunctioning part according to <u>EC-717</u>, "Symptom Matrix Chart".

17. CHECK "B/FUEL SCHDL"

Select "B/FUEL SCHDL" in "SPEC" of "DATA MONITOR" mode, and make sure that the indication is within the SP value.

OK or NG

OK >> INSPECTION END

NG (More than the SP value)>>GO TO 18.

NG (Less than the SP value)>>GO TO 25.

18. DETECT MALFUNCTIONING PART

- 1. Check for the cause of large engine friction. Refer to the following.
- Engine oil level is too high
- Engine oil viscosity
- Belt tension of power steering, alternator, A/C compressor, etc. is excessive
- Noise from engine
- Noise from transmission, etc.
- Check for the cause of insufficient combustion. Refer to the following.
- Valve clearance malfunction
- Intake valve timing control function malfunction
- Camshaft sprocket installation malfunction, etc.

>> Repair or replace malfunctioning part, and then GO TO 30.

19. CHECK INTAKE SYSTEM

Check for the cause of uneven air flow through mass air flow sensor. Refer to the following.

- · Crushed air ducts
- Malfunctioning seal of air cleaner element
- · Uneven dirt of air cleaner element
- Improper specification of intake air system

OK or NG

OK >> GO TO 21.

NG >> Repair or replace malfunctioning part, and then GO TO 20.

20.CHECK "A/F ALPHA-B1", "A/F ALPHA-B2", AND "B/FUEL SCHDL"

Select "A/F ALPHA-B1", "A/F ALPHA-B2", and "B/FUEL SCHDL" in "SPEC" of "DATA MONITOR" mode, and make sure that the each indication is within the SP value.

OK or NG

OK >> INSPECTION END

NG ("B/FUEL SCHDL" is more, "A/F ALPHA-B1", "A/F ALPHA-B2" are less than the SP value)>>GO TO 21.

 $21.\,$ DISCONNECT AND RECONNECT MASS AIR FLOW SENSOR HARNESS CONNECTOR

< SERVICE INFORMATION > [VK45DE]

1. Stop the engine.

2. Disconnect mass air flow sensor harness connector. Check pin terminal and connector for damage and then reconnect it again.

>> GO TO 22.

22.CHECK "A/F ALPHA-B1", "A/F ALPHA-B2"

1. Start engine.

2. Select "A/F ALPHA-B1", "A/F ALPHA-B2" in "SPEC" of "DATA MONITOR" mode, and make sure that the each indication is within the SP value.

0

D

EC

OK or NG

OK

>> 1. Detect malfunctioning part of mass air flow sensor circuit and repair it. Refer to EC-817, <a href="Diagnosis Procedure".

2. GO TO 29.

NG >> GO TO 23.

Е

23. CHECK "MAS A/F SE-B1"

Select "MAS A/F SE-B1" in "SPEC" of "DATA MONITOR" mode, and make sure that the indication is within the SP value.

tne _F

OK or NG

OK >> GO TO 24.

NG (More than the SP value)>>Replace mass air flow sensor, and then GO TO 29.

G

24.REPLACE ECM

Replace ECM.

Н

2. Perform initialization of IVIS(NATS) system and registration of all IVIS(NATS) ignition key IDs. Refer to BL-221, "ECM Re-Communicating Function".

3. Perform EC-706, "VIN Registration".

Perform <u>EC-706</u>, "Accelerator Pedal Released Position Learning".

Perform <u>EC-706</u>. "<u>Throttle Valve Closed Position Learning</u>".
 Perform <u>EC-707</u>, "<u>Idle Air Volume Learning</u>".

J

>> GO TO 29. **25.**CHECK INTAKE SYSTEM

K

Check for the cause of uneven air flow through mass air flow sensor. Refer to the following.

Crushed air ducts

Malfunctioning seal of air cleaner element

Uneven dirt of air cleaner element
Improper specification of intake air system

OK or NG

M

OK >> GO TO 27.

NG >> Repair or replace malfunctioning part, and then GO TO 26.

26. CHECK "B/FUEL SCHDL"

Ν

Select "B/FUEL SCHDL" in "SPEC" of "DATA MONITOR" mode, and make sure that the indication is within the SP value.

OK or NG

0

OK >> INSPECTION END

NG (Less than the SP value)>>GO TO 27.

27.CHECK "MAS A/F SE-B1"

Р

Select "MAS A/F SE-B1" in "SPEC" of "DATA MONITOR" mode, and make sure that the indication is within the SP value.

OK or NG

OK >> GO TO 28.

NG (Less than the SP value)>>Replace mass air flow sensor, and then GO TO 30.

< SERVICE INFORMATION >

[VK45DE]

2008 M35/M45

28. CHECK INTAKE SYSTEM

Check for the cause of air leak after the mass air flow sensor. Refer to the following.

- Disconnection, looseness, and cracks in air duct
- Looseness of oil filler cap
- · Disconnection of oil level gauge
- Open stuck, breakage, hose disconnection, or cracks of PCV valve
- Disconnection or cracks of EVAP purge hose, open stuck of EVAP canister purge volume control solenoid valve
- Malfunctioning seal of rocker cover gasket
- Disconnection, looseness, or cracks of hoses, such as vacuum hose, connecting to intake air system parts
- · Malfunctioning seal of intake air system, etc.

>> GO TO 30.

$29.\mathsf{CHECK}$ "A/F ALPHA-B1", "A/F ALPHA-B2", AND "B/FUEL SCHDL"

Select "A/F ALPHA-B1", "A/F ALPHA-B2", and "B/FUEL SCHDL" in "SPEC" of "DATA MONITOR" mode, and make sure that the each indication is within the SP value.

OK or NG

OK >> INSPECTION END

NG >> Detect malfunctioning part according to <u>EC-717</u>, "Symptom Matrix Chart".

30. CHECK "B/FUEL SCHDL"

Select "B/FUEL SCHDL" in "SPEC" of "DATA MONITOR" mode, and then make sure that the indication is within the SP value.

OK or NG

OK >> INSPECTION END

NG >> Detect malfunctioning part according to EC-717, "Symptom Matrix Chart".

TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT

< SERVICE INFORMATION >

[VK45DE]

TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT

Description INFOID:000000002954763

Intermittent incidents may occur. In many cases, the malfunction resolves itself (the part or circuit function returns to normal without intervention). It is important to realize that the symptoms described in the customer's complaint often do not recur on (1st trip) DTC visits. Realize also that the most frequent cause of intermittent incidents occurrences is poor electrical connections. Because of this, the conditions under which the incident occurred may not be clear. Therefore, circuit checks made as part of the standard diagnostic procedure may not indicate the specific malfunctioning area.

Common Intermittent Incidents Report Situations

STEP in Work Flow	Situation
2	The CONSULT-III is used. The SELF DIAGNOSTIC RESULT screen shows time data other than [0] or [1t].
3 or 4	The symptom described by the customer does not recur.
5	(1st trip) DTC does not appear during the DTC Confirmation Procedure.
10	The Diagnostic Procedure for PXXXX does not indicate the malfunctioning area.

Diagnosis Procedure

1.INSPECTION START

Erase (1st trip) DTCs. Refer to "How to Erase DTC" in EC-677, "Emission-Related Diagnostic Information".

>> GO TO 2.

2. CHECK GROUND TERMINALS

Check ground terminals for corroding or loose connection.

Refer to EC-769, "Ground Inspection".

OK or NG

OK >> GO TO 3.

NG >> Repair or replace.

3. SEARCH FOR ELECTRICAL INCIDENT

Perform GI-26, "How to Perform Efficient Diagnosis for an Electrical Incident", "INCIDENT SIMULATION TESTS".

OK or NG

OK >> GO TO 4.

Revision: 2009 February

NG >> Repair or replace.

4. CHECK CONNECTOR TERMINALS

Refer to GI-23, "How to Check Terminal", "HOW TO PROBE CONNECTORS", "How to Check Enlarged Contact Spring of Terminal".

OK or NG

OK >> INSPECTION END

NG >> Repair or replace connector.

EC

Α

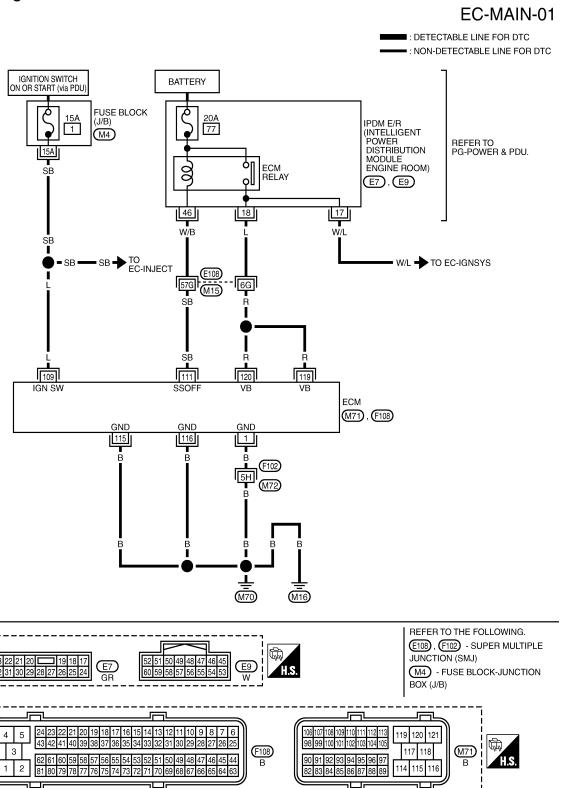
D

Е

- 1

Н

L


M

Ν

INFOID:0000000002954764

POWER SUPPLY AND GROUND CIRCUIT

Wiring Diagram

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

POWER SUPPLY AND GROUND CIRCUIT

< SERVICE INFORMATION >

[VK45DE]

INFOID:0000000002954766

Α

EC

D

Е

F

Н

K

M

Р

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
1	В	ECM ground	[Engine is running] • Idle speed	Body ground
			[Ignition switch: OFF]	OV
109	109 L	Ignition switch	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)
111 SB	ECM relay	[Engine is running] [Ignition switch: OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V	
		(Self shut-off)	[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
115 116	B B	ECM ground	[Engine is running] • Idle speed	Body ground
119 120	R R	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

Diagnosis Procedure

1. INSPECTION START

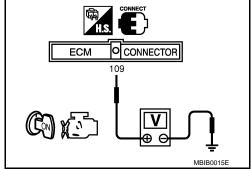
Start engine.

Is engine running?

Yes or No

Yes >> GO TO 8. No >> GO TO 2.

2.CHECK ECM POWER SUPPLY CIRCUIT-I


Turn ignition switch OFF and then ON.

2. Check voltage between ECM terminal 109 and ground with CONSULT-III or tester.

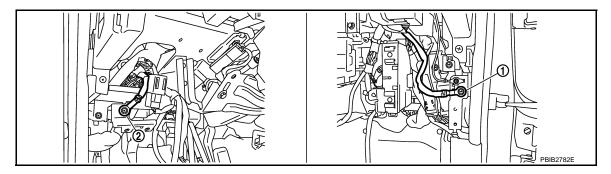
Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3.DETECT MALFUNCTIONING PART

Check the following.


- Fuse block (J/B) connector M4
- 15A fuse
- Harness for open or short between ECM and fuse

>> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK GROUND CONNECTIONS

- Turn ignition switch OFF.
- Loosen and retighten ground screws on the body. Refer to EC-769, "Ground Inspection".

EC-765 Revision: 2009 February 2008 M35/M45

- 1. Body ground M70
- 2. Body ground M16

OK or NG

OK >> GO TO 5.

NG >> Repair or replace ground connections.

CHECK ECM GROUND CIRCUIT FOR OPEN AND SHORT-I

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminals 1, 115, 116 and ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

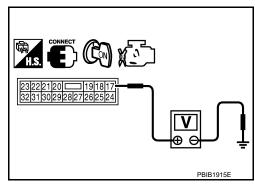
OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F102, M72
- Harness for open or short between ECM and ground
 - >> Repair open circuit or short to power in harness or connectors.

7. CHECK ECM POWER SUPPLY CIRCUIT-II


- 1. Reconnect ECM harness connector.
- 2. Turn ignition switch ON.
- 3. Check voltage between IPDM E/R terminal 17 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> Go to EC-1254, "Diagnosis Procedure".

NG >> GO TO 8.

8.CHECK ECM POWER SUPPLY CIRCUIT-III

- 1. Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON and then OFF.

POWER SUPPLY AND GROUND CIRCUIT

< SERVICE INFORMATION >

[VK45DE]

3. Check voltage between ECM terminals 119, 120 and ground with CONSULT-III or tester.

Voltage: After turning ignition switch OFF, battery

voltage will exist for a few seconds, then drop

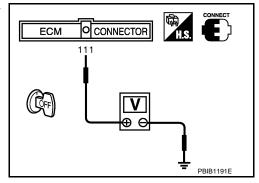
approximately 0V.

OK >> GO TO 15.

NG (Battery voltage does not exist.)>>GO TO 9.

NG (Battery voltage exists for more than a few seconds.)>>GO TO

12.


9. CHECK ECM POWER SUPPLY CIRCUIT-IV

Check voltage between ECM terminal 111 and ground with CON-SULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 10. NG >> GO TO 12.

CONNECTOR

119, 120

10. CHECK ECM POWER SUPPLY CIRCUIT-V

- 1. Disconnect ECM harness connector.
- 2. Disconnect IPDM E/R harness connector E7.
- Check harness continuity between ECM terminals 119, 120 and IPDM E/R terminal 18. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 18. NG >> GO TO 11.

11. DETECT MALFUNCTIONING PART

Check the following.

- Harness or connectors E108, M15
- Harness for open or short between ECM and IPDM E/R

>> Repair open circuit or short to ground or short to power in harness or connectors.

12. CHECK ECM POWER SUPPLY CIRCUIT-VI

- 1. Disconnect ECM harness connector.
- Disconnect IPDM E/R harness connector E9.
- Check harness continuity between ECM terminal 111 and IPDM E/R terminal 46. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 14. NG >> GO TO 13.

13. DETECT MALFUNCTIONING PART

Α

EC

С

D

Е

F

Н

1

L

IVI

Ν

0

Check the following.

Harness or connectors E108, M15

< SERVICE INFORMATION >

Harness for open or short between ECM and IPDM E/R

>> Repair open circuit or short to ground or short to power in harness or connectors.

14. CHECK 20A FUSE

- Disconnect 20A fuse from IPDM E/R.
- Check 20A fuse.

OK or NG

OK >> GO TO 18.

NG >> Replace 20A fuse.

15. CHECK GROUND CONNECTIONS

Loosen and retighten ground screws on the body. Refer to EC-769, "Ground Inspection".

1. Body ground M70

2. Body ground M16

OK or NG

OK >> GO TO 16.

NG >> Repair or replace ground connections.

16.CHECK ECM GROUND CIRCUIT FOR OPEN AND SHORT-II

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminals 1, 115, 116 and ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

>> GO TO 18. OK

NG >> GO TO 17.

17. DETECT MALFUNCTIONING PART

Check the following.

- Harness or connectors F102, M72
- Harness for open or short between ECM and ground
 - >> Repair open circuit or short to power in harness or connectors.

18. CHECK INTERMITTENT INCIDENT

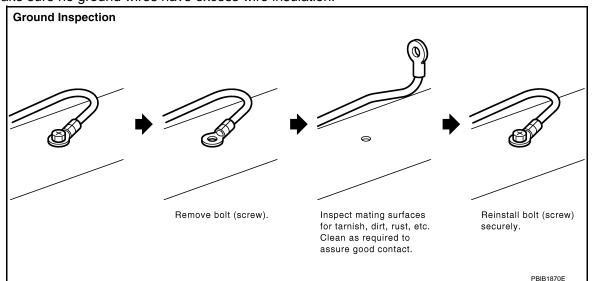
Refer to EC-763, "Diagnosis Procedure".

OK or NG

OK >> Replace IPDM E/R.

NG >> Repair open circuit or short to power in harness or connectors.

Ground Inspection


INFOID:0000000002954767

Ground connections are very important to the proper operation of electrical and electronic circuits. Ground connections are often exposed to moisture, dirt and other corrosive elements. The corrosion (rust) can become an unwanted resistance. This unwanted resistance can change the way a circuit works.

Electronically controlled circuits are very sensitive to proper grounding. A loose or corroded ground can drastically affect an electronically controlled circuit. A poor or corroded ground can easily affect the circuit. Even when the ground connection looks clean, there can be a thin film of rust on the surface.

When inspecting a ground connection follow these rules:

- Remove the ground bolt or screw.
- Inspect all mating surfaces for tarnish, dirt, rust, etc.
- Clean as required to assure good contact.
- · Reinstall bolt or screw securely.
- Inspect for "add-on" accessories which may be interfering with the ground circuit.
- If several wires are crimped into one ground eyelet terminal, check for proper crimps. Make sure all of the wires are clean, securely fastened and providing a good ground path. If multiple wires are cased in one eyelet make sure no ground wires have excess wire insulation.

EC

C

D

Е

F

Н

Ν

DTC U1000, U1001 CAN COMMUNICATION LINE

< SERVICE INFORMATION >

[VK45DE]

DTC U1000, U1001 CAN COMMUNICATION LINE

Description INFOID:000000002954768

CAN (Controller Area Network) is a serial communication line for real time application. It is an on-vehicle multiplex communication line with high data communication speed and excellent error detection ability. Many electronic control units are equipped onto a vehicle, and each control unit shares information and links with other control units during operation (not independent). In CAN communication, control units are connected with 2 communication lines (CAN H line, CAN L line) allowing a high rate of information transmission with less wiring. Each control unit transmits/receives data but selectively reads required data only.

On Board Diagnosis Logic

INFOID:0000000002954769

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
U1000* ¹	CAN communication line	When ECM is not transmitting or receiving CAN communication signal of OBD (emission-related diagnosis) for 2 seconds or more.	Harness or connectors (CAN communication line is open or
U1001* ² 1001* ²		When ECM is not transmitting or receiving CAN communication signal other than OBD (emission-related diagnosis) for 2 seconds or more.	shorted)

^{*1:} This self-diagnosis has the one trip detection logic.

DTC Confirmation Procedure

INFOID:0000000002954770

- 1. Turn ignition switch ON and wait at least 3 seconds.
- 2. Check 1st trip DTC.
- 3. If 1st trip DTC is detected, go to <u>EC-771, "Diagnosis Procedure".</u>

^{*2:} The MIL will not light up for this diagnosis.

DTC U1000, U1001 CAN COMMUNICATION LINE

< SERVICE INFORMATION >

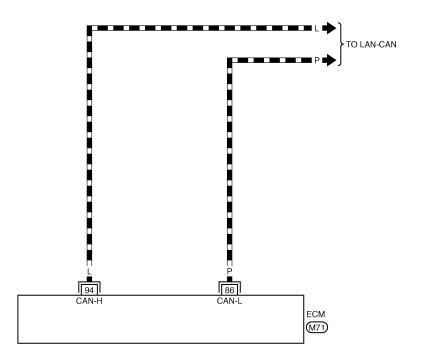
[VK45DE]

Wiring Diagram

INFOID:0000000002954771

EC-CAN-01

: DETECTABLE LINE FOR DTC : NON-DETECTABLE LINE FOR DTC : DATA LINE


EC

D

Е

F

Α

K

M

Ν

0

Р

INFOID:0000000002954772

TBWT1011E

Diagnosis Procedure

Go to LAN-20, "Trouble Diagnosis Flow Chart".

DTC U1010 CAN COMMUNICATION

Description INFOID.000000002954773

CAN (Controller Area Network) is a serial communication line for real time application. It is an on-vehicle multiplex communication line with high data communication speed and excellent error detection ability. Many electronic control units are equipped onto a vehicle, and each control unit shares information and links with other control units during operation (not independent). In CAN communication, control units are connected with 2 communication lines (CAN H line, CAN L line) allowing a high rate of information transmission with less wiring. Each control unit transmits/receives data but selectively reads required data only.

On Board Diagnosis Logic

INFOID:0000000002954774

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
U1010 1010	CAN communication bus	When detecting error during the initial diagnosis of CAN controller of ECM.	• ECM

DTC Confirmation Procedure

INFOID:0000000002954775

- Turn ignition switch ON.
- 2. Check DTC.
- 3. If DTC is detected, go to EC-772, "Diagnosis Procedure".

Diagnosis Procedure

INFOID:0000000002954776

1. INSPECTION START

- 1. Turn ignition switch ON.
- 2. Erase DTC.
- 3. Perform DTC Confirmation Procedure.

See EC-772, "DTC Confirmation Procedure".

- Check DTC.
- 5. Is DTC U1010 displayed again?

Yes or No

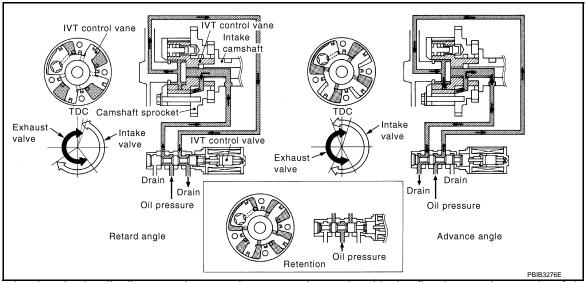
Yes >> GO TO 2.

No >> INSPECTION END

2.REPLACE ECM

- 1. Replace ECM.
- Perform initialization of IVIS (NATS) system and registration of all IVIS (NATS) ignition key IDs. Refer to BL-221, "ECM Re-Communicating Function".
- 3. Perform EC-706, "VIN Registration".
- 4. Perform EC-706, "Accelerator Pedal Released Position Learning".
- 5. Perform EC-706, "Throttle Valve Closed Position Learning".
- 6. Perform EC-707, "Idle Air Volume Learning".

>> INSPECTION END


DTC P0011, P0021 IVT CONTROL

Description INFOID:0000000002954777

SYSTEM DESCRIPTION

Sensor	Input signal to ECM function	ECM	Actuator	
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed			
Intake valve timing control position sensor	Intake valve timing signal	Intake valve timing control	Intake valve timing control solenoid valve	
Engine coolant temperature sensor	Engine coolant temperature	Soleriola valve		
Wheel sensor	Vehicle speed*			

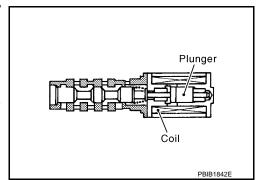
^{*:} This signal is sent to the ECM through CAN communication line

This mechanism hydraulically controls cam phases continuously with the fixed operating angle of the intake valve.

The ECM receives signals such as crankshaft position, camshaft position, engine speed, and engine coolant temperature. Then, the ECM sends ON/OFF pulse duty signals to the intake valve timing (IVT) control solenoid valve depending on driving status. This makes it possible to control the shut/open timing of the intake valve to increase engine torque in low/mid speed range and output in high-speed range.

COMPONENT INSPECTION

Intake Valve Timing Control Solenoid Valve


Intake Valve Timing (IVT) control solenoid valve is activated by ON/ OFF pulse duty (ratio) signals from the ECM.

The IVT control solenoid valve changes the oil amount and direction of flow through intake valve timing control unit or stops oil flow.

The longer pulse width advances valve angle.

The shorter pulse width retards valve angle.

When ON and OFF pulse widths become equal, the solenoid valve stops oil pressure flow to fix the intake valve angle at the control position.

Intake Valve Timing Control Position Sensor

Revision: 2009 February **EC-773** 2008 M35/M45

D

Α

EC

Е

F

G

Н

I

J

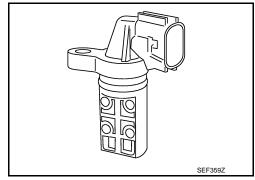
<

M

Ν

0

DTC P0011, P0021 IVT CONTROL


< SERVICE INFORMATION >

[VK45DE]

Intake valve timing control position sensors are located in the front of cylinder heads in both bank 1 and bank 2.

This sensor uses a Hall IC.

The cam position is determined by the intake primary cam sprocket concave (in three places). The ECM provides feedback to the intake valve timing control for appropriate target valve open-close timing according to drive conditions based on detected cam position.

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002954778

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
INT/V TIM (B1) INT/V TIM (B2)	Engine: After warming up	Idle	–5° - 5°CA
	Selector lever: P or NAir conditioner switch: OFFNo load	2,000 rpm	Approx. 0° - 20°CA
INT/V SOL (B1) INT/V SOL (B2)	Engine: After warming up	Idle	0% - 2%
	Selector lever: P or NAir conditioner switch: OFFNo load	2,000 rpm	Approx. 25% - 50%

On Board Diagnosis Logic

INFOID:0000000002954779

DTC No.	Trouble diagnosis name		Detecting condition	Possible cause
P0011 0011 (Bank 1)		A)	The alignment of the intake valve timing control has been misresistered.	Harness or connectors (Intake valve timing control solenoid valve circuit is open or shorted.)
P0021 0021 (Bank 2)	Intake valve timing control performance	В)	There is a gap between angle of target and phase-control angle degree.	Harness or connectors (Intake valve timing control position sensor circuit is open or shorted.) Intake valve timing control solenoid valve Intake valve timing control position sensor Crankshaft position sensor (POS) Camshaft position sensor (PHASE) Accumulation of debris to the signal pick-up portion of the camshaft sprocket Timing chain installation Foreign matter caught in the oil groove for intake valve timing control

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode.

Detected items	Engine operating condition in fail-safe mode		
Intake valve timing control	The signal is not energized to the solenoid valve and the valve control does not function		

DTC Confirmation Procedure

INFOID:0000000002954780

CAUTION:

Always drive at a safe speed.

NOTE:

DTC P0011, P0021 IVT CONTROL

< SERVICE INFORMATION >

[VK45DE]

- If DTC P0011 or P0021 is displayed with DTC P0075, P0081, P1140 or P1145, first perform the trouble diagnosis for DTC P0075, P0081 (Refer to EC-799, "DTC Confirmation Procedure") or DTC P1140, P1145 (Refer to EC-1071, "DTC Confirmation Procedure").
- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is between 10V and 16V at idle.

PROCEDURE FOR MALFUNCTION A

- 1. Start engine and warm it up to normal operating temperature.
- 2. Maintain the following conditions for at least 10 consecutive seconds.

Engine speed	More than 2,000 rpm (A constant rotation is maintained.)
Engine coolant temperature	More than 70°C (158°F)
Selector lever	1st or 2nd position
Driving location uphill	Driving vehicle uphill (Increased engine load will help maintain the driving conditions required for this test.)

3. Maintain the following conditions for at least 20 consecutive seconds.

Engine speed	Idle
Engine coolant temperature	More than 70°C (158°F)
Selector lever	P or N position

- 4. Check 1st trip DTC.
- 5. If 1st trip DTC is detected, go to EC-779, "Diagnosis Procedure".

PROCEDURE FOR MALFUNCTION B

- 1. Start engine and warm it up to normal operating temperature.
- 2. Maintain the following conditions for at least 10 consecutive seconds.

Engine speed	1,700 - 3,175 rpm (A constant rotation is maintained.)
Engine coolant temperature	70 - 105°C (158 - 221°F)
Selector lever	1st or 2nd position
Driving location uphill	Driving vehicle uphill (Increased engine load will help maintain the driving conditions required for this test.)

- 3. Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-779</u>, "<u>Diagnosis Procedure</u>".

EC

С

D

Е

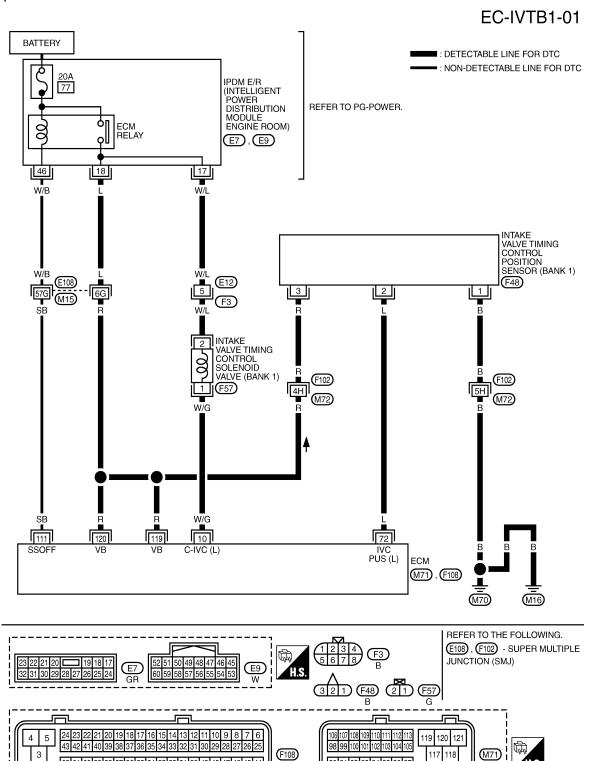
F

G

Н

L

N


Ν

0

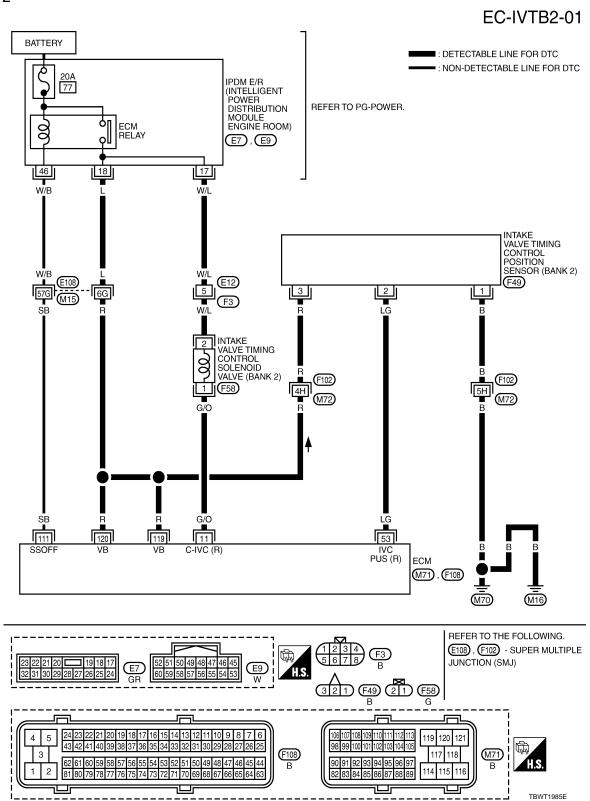
Wiring Diagram

INFOID:0000000002954781

BANK 1

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III. CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
			[Engine is running] • Warm-up condition • Idle speed	BATTERY VOLTAGE (11 - 14V)	С
10 W/G	Intake valve timing control solenoid valve (bank 1)	[Engine is running] • Warm-up condition	7 - 12V*	D	
			Engine speed: 2,000rpm	≥≥ 10.0 V/DIV	E
				0 - 1.0V*	F
		Intake valve timing control position sensor (bank 1)	[Engine is running]Warm-up conditionIdle speed		G
				> 5.0 V/Div PBIB2734E	Н
72	L			0 - 1.0∨★	
			[Engine is running] • Engine speed: 2,000rpm	S.0 V/D/v IT PBIB2735E	J
111 SB	SB	SB ECM relay (Self shut-off)	[Engine is running][Ignition switch: OFF]For a few seconds after turning ignition switch OFF	0 - 1.5V	K L
			[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)	M
119 120	R R	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)	IVI

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

0

Ν

BANK 2

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

Α

EC

D

Е

F

Н

L

Ν

0

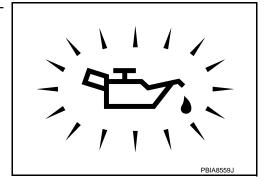
INFOID:0000000002954782

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Engine is running] • Warm-up condition • Idle speed	BATTERY VOLTAGE (11 - 14V)
11	G/O	Intake valve timing control solenoid valve (bank 2)	[Engine is running] • Warm-up condition • Engine speed: 2,000rpm	7 - 12V*
F2	Int	_G Intake valve timing control position sensor (bank 2)	[Engine is running] • Warm-up condition • Idle speed	0 - 1.0V★
53 LG	LG		[Engine is running] • Engine speed: 2,000 rpm	0 - 1.0V★
111	SB	ECM relay (Self shut-off)	[Engine is running] [Ignition switch: OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V
			[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
119 120	R R	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

1. CHECK OIL PRESSURE WARNING LAMP

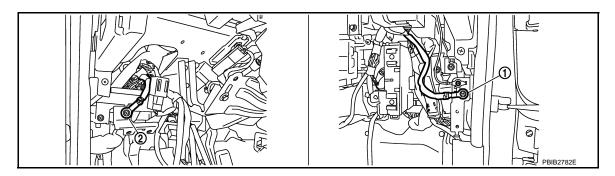
1. Start engine.


2. Check oil pressure warning lamp and confirm it is not illuminated.

OK or NG

OK >> GO TO 2.

Diagnosis Procedure


NG >> Go to <u>LU-23</u>, "Inspection".

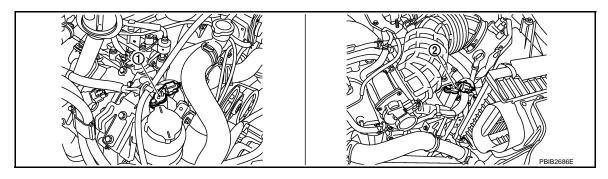
Revision: 2009 February **EC-779** 2008 M35/M45

2. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten ground screws on the body. Refer to EC-769. "Ground Inspection".

1. Body ground M70

2. Body ground M16

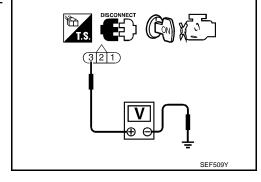

OK or NG

OK >> GO TO 3.

NG >> Repair or replace ground connections.

3.check intake valve timing control position sensor power supply circuit

1. Disconnect intake valve timing control position sensor harness connector.



- Intake valve timing control position sensor (bank 2)
- 2. Intake valve timing control position sensor (bank 1)
- 2. Turn ignition switch ON.
- 3. Check voltage between intake valve timing control position sensor terminal 3 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- Harness connectors F102, M72
- Harness for open or short between intake valve timing control position sensor and ECM
- Harness for open or short between intake valve timing control position sensor and IPDM E/R

DTC P0011, P0021 IVT CONTROL

< SERVICE INFORMATION >

[VK45DE]

>> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK INTAKE VALVE TIMING CONTROL POSITION SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Check harness continuity between intake valve timing control position sensor terminal 1 and ground. Refer to Wiring Diagram.

EC

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6. D

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F102, M72
- · Harness for open or short between intake valve timing control position sensor and ground

F

>> Repair open circuit or short to power in harness or connectors.

7.CHECK INTAKE VALVE TIMING CONTROL POSITION SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between the following;
 ECM terminal 72 and intake valve timing control position sensor (bank 1) terminal 2 or
 ECM terminal 53 and intake valve timing control position sensor (bank 2) terminal 2.
 Refer to Wiring Diagram.

Н

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

K

8.CHECK INTAKE VALVE TIMING CONTROL POSITION SENSOR

Refer to EC-783, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace intake valve timing control position sensor.

M

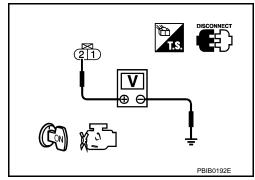
9.CHECK INTAKE VALVE TIMING CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT

- 1. Reconnect ECM harness connector.
- 2. Disconnect intake valve timing control solenoid valve harness connector.

PBIB2687E

Intake valve timing control solenoid valve (bank 2)

Intake valve timing control solenoid valve (bank 1)


Revision: 2009 February **EC-781** 2008 M35/M45

- 3. Turn ignition switch ON.
- 4. Check voltage between intake valve timing control solenoid valve terminal 2 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 11. NG >> GO TO 10.

10. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E12, F3
- Harness for open or short between intake valve timing control solenoid valve and IPDM E/R.
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

11.CHECK INTAKE VALVE TIMING CONTROL SOLENOID VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between the following;
 ECM terminal 10 and intake valve timing control solenoid valve (bank 1) terminal 1 or
 ECM terminal 11 and intake valve timing control solenoid valve (bank 2) terminal 1.
 Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 12.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

12. CHECK INTAKE VALVE TIMING CONTROL SOLENOID VALVE

Refer to EC-783, "Component Inspection".

OK or NG

OK >> GO TO 13.

NG >> Replace intake valve timing control solenoid valve.

13. CHECK CRANKSHAFT POSITION SENSOR (POS)

Refer to EC-962, "Component Inspection".

OK or NG

OK >> GO TO 14.

NG >> Replace crankshaft position sensor (POS).

14. CHECK CAMSHAFT POSITION SENSOR (PHASE)

Refer to EC-967, "Component Inspection".

OK or NG

OK >> GO TO 15.

NG >> Replace camshaft position sensor (PHASE).

15. CHECK CAMSHAFT SPROCKET

Check accumulation of debris to the signal pick-up portion of the camshaft sprocket. Refer to EM-214.

OK or NG

OK >> GO TO 16.

NG >> Remove debris and clean the signal pick-up cutout of camshaft sprocket.

Revision: 2009 February **EC-782** 2008 M35/M45

DTC P0011, P0021 IVT CONTROL

< SERVICE INFORMATION >

[VK45DE]

16. CHECK TIMING CHAIN INSTALLATION

Check service records for any recent repairs that may cause timing chain misaligned.

Are there any service records that may cause timing chain misaligned?

Yes or No

Yes >> Check timing chain installation. Refer to EM-202.

No >> GO TO 17.

17. CHECK LUBRICATION CIRCUIT

Refer to EM-214, "Removal and Installation".

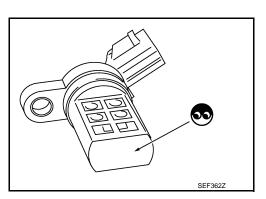
OK or NG

OK >> GO TO 18.

NG >> Clean lubrication line.

18. CHECK INTERMITTENT INCIDENT

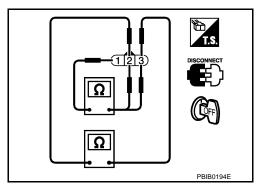
Refer to EC-763, "Diagnosis Procedure".


>> INSPECTION END

Component Inspection

INFOID:0000000002954783

INTAKE VALVE TIMING CONTROL POSITION SENSOR


- 1. Disconnect intake valve timing control position sensor harness connector.
- Loosen the fixing bolt of the sensor.
- 3. Remove the sensor.
- 4. Visually check the sensor for chipping.

Check resistance as shown below.

Terminal No. (Polarity)	Resistance Ω [at 25°C (77°F)]
3 (+) - 1 (-)	
2 (+) - 1 (-)	Except 0 or ∞
3 (+) - 2 (-)	

6. If NG, replace intake valve timing control position sensor.

INTAKE VALVE TIMING CONTROL SOLENOID VALVE

1. Disconnect intake valve timing control solenoid valve harness connector.

Revision: 2009 February **EC-783** 2008 M35/M45

EC

С

D

Е

F

G

Н

|

J

K

M

Ν

0

DTC P0011, P0021 IVT CONTROL

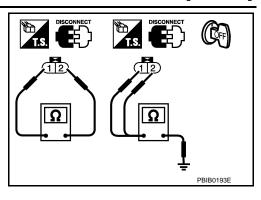
< SERVICE INFORMATION >

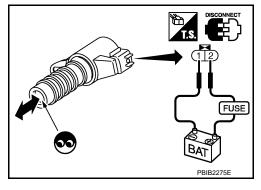
[VK45DE]

Check resistance between intake valve timing control solenoid valve terminals as follows.

Terminals	Resistance	
1 and 2	7.0 - 7.5Ω [at 20°C (68°F)]	
1 or 2 and ground	${}^{\infty}\Omega$ (Continuity should not exist)	

If NG, replace intake valve timing control solenoid valve. If OK, go to next step.


- 3. Remove intake valve timing control solenoid valve.
- 4. Provide 12V DC between intake valve timing control solenoid valve terminals and then interrupt it. Make sure that the plunger moves as shown in the figure.


CAUTION:

Do not apply 12V DC continuously for 5 seconds or more. Doing so may result in damage to the coil in intake valve timing control solenoid valve.

If NG, replace intake valve timing control solenoid valve. **NOTE:**

Always replace O-ring when intake valve timing control solenoid valve is removed.

INFOID:0000000002954784

Removal and Installation

INTAKE VALVE TIMING CONTROL POSITION SENSOR Refer to EM-202.

INTAKE VALVE TIMING CONTROL SOLENOID VALVE Refer to EM-202.

DTC P0031, P0032, P0051, P0052 A/F SENSOR 1 HEATER

< SERVICE INFORMATION >

[VK45DE]

DTC P0031, P0032, P0051, P0052 A/F SENSOR 1 HEATER

Description INFOID:0000000002954785

SYSTEM DESCRIPTION

EC

Α

D

Е

F

Н

K

M

Ν

Sensor	Input Signal to ECM	ECM function	Actuator	
Camshaft position sensor (PHASE) Crankshaft position sensor (POS)	Engine speed	Air fuel ratio (A/F) sensor 1 heater control	Air fuel ratio (A/F) sensor 1 heater	
Mass air flow sensor	Amount of intake air	neater control		

The ECM performs ON/OFF duty control of the A/F sensor 1 heater corresponding to the engine operating condition to keep the temperature of A/F sensor 1 element at the specified range.

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002954786

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
A/F S1 HTR (B1) A/F S1 HTR (B2)	Engine: After warming up, idle the engine	0 - 100%

On Board Diagnosis Logic

INFOID:0000000002954787

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0031 0031 (Bank 1)	Air fuel ratio (A/F) sensor 1	The current amperage in the A/F sensor 1 heater circuit is out of the normal range.	 Harness or connectors (The A/F sensor 1 heater circuit is open or shorted.) A/F sensor 1 heater
P0051 0051 (Bank 2)	heater control circuit low	(An excessively low voltage signal is sent to ECM through the A/F sensor 1 heater.)	
P0032 0032 (Bank 1)	Air fuel ratio (A/F) sensor 1	The current amperage in the A/F sensor 1 heater circuit is out of the normal range.	Harness or connectors (The A/F sensor 1 heater circuit is)
P0052 0052 (Bank 2)	heater control circuit high	(An excessively high voltage signal is sent to ECM through the A/F sensor 1 heater.)	shorted.) • A/F sensor 1 heater

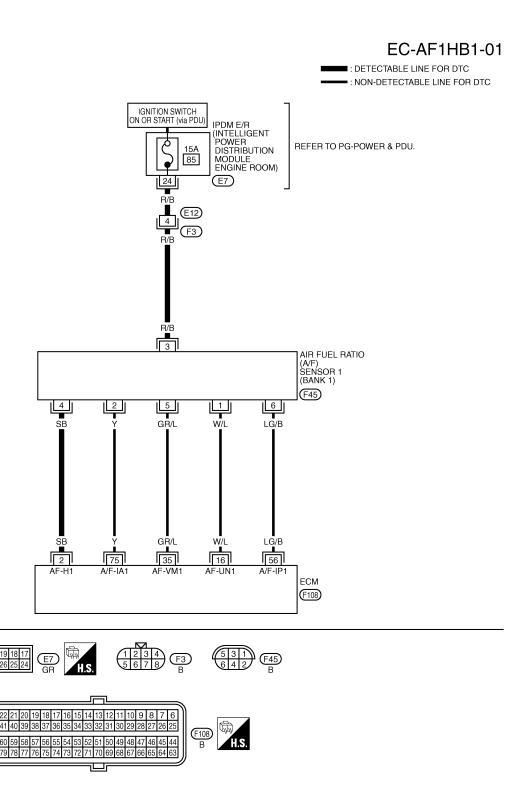
DTC Confirmation Procedure

INFOID:0000000002954788

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is between 11V and 16V at idle.


- 1. Turn ignition switch ON and wait at least 5 seconds.
- 2. Check 1st trip DTC.
- If 1st trip DTC is detected, go to EC-789, "Diagnosis Procedure".

EC-785 Revision: 2009 February 2008 M35/M45

Wiring Diagram

INFOID:0000000002954789

BANK 1

TBWT1033E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III. CAUTION:

3

DTC P0031, P0032, P0051, P0052 A/F SENSOR 1 HEATER

< SERVICE INFORMATION >

[VK45DE]

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
2	SB	A/F sensor 1 heater (bank 1)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V★ → 10.0V/Div 10 ms/Div T PBIB1584E
16	W/L			Approximately 3.1V
35	GR/L	A/F sensor 1 (bank 1)	[Engine is running]Warm-up conditionIdle speed	Approximately 2.6V
56	LG/B			Approximately 2.3V
75	Υ			Approximately 2.3V

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

EC

Α

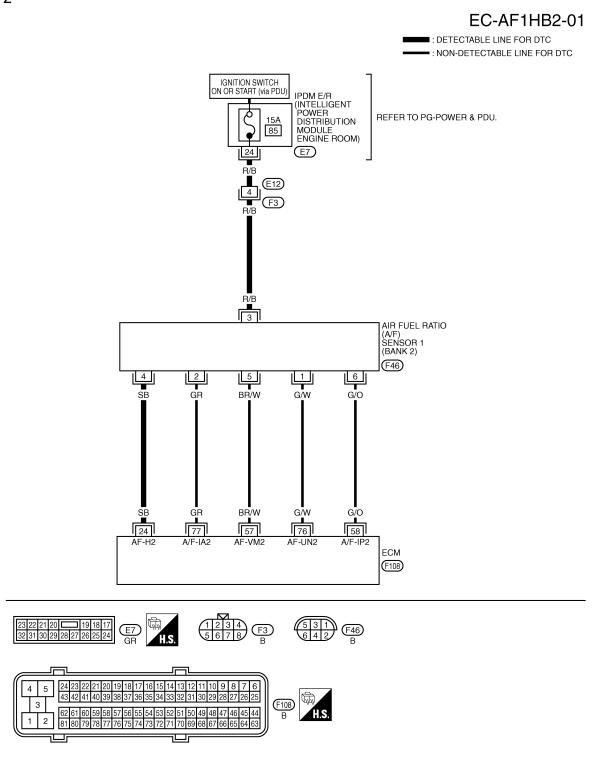
Е

D

-F

G

Н


K

//

N

0

BANK 2

TBWT1034E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

CAUTION:

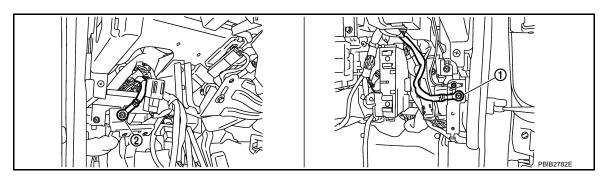
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

DTC P0031, P0032, P0051, P0052 A/F SENSOR 1 HEATER

< SERVICE INFORMATION >

[VK45DE]

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
24	SB	A/F sensor 1 heater (bank 2)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V★ → 10.0V/Div 10 ms/Div T PBIB1584E
57	BR/W	[Engine is running] A/F sensor 1 (bank 2) Warm-up condition Idle speed		Approximately 2.6V
58	G/O		Warm-up condition	Approximately 2.3V
76	G/W			Approximately 3.1V
77	GR			Approximately 2.3V


^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnosis Procedure

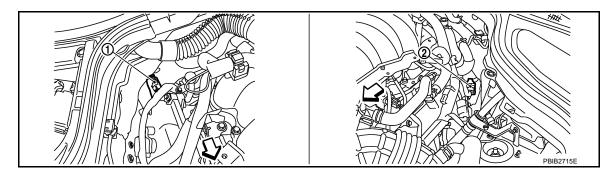
1. CHECK GROUND CONNECTIONS

1. Turn ignition switch OFF.

2. Loosen and retighten ground screws on the body. Refer to <u>EC-769</u>, "Ground Inspection".

1. Body ground M70

2. Body ground M16


OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK AIR FUEL RATIO (A/F) SENSOR 1 POWER SUPPLY CIRCUIT

1. Disconnect air fuel ratio (A/F) sensor 1 harness connector.

Revision: 2009 February **EC-789** 2008 M35/M45

EC

Α

D

Е

INFOID:0000000002954790

Н

K

M

. .

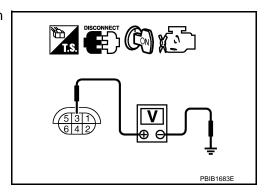
0

F

DTC P0031, P0032, P0051, P0052 A/F SENSOR 1 HEATER

SERVICE INFORMATION >

: Vehicle front


- 1. A/F sensor 1 (bank 2) harness connector
- 2. A/F sensor 1 (bank 1) harness connector

- 2. Turn ignition switch ON.
- Check voltage between A/F sensor 1 terminal 3 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

[VK45DE]

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E12, F3
- IPDM E/R harness connector E7
- 15A fuse
- Harness for open or short between A/F sensor 1 and fuse

>> Repair or replace harness or connectors.

4. CHECK A/F SENSOR 1 HEATER OUTPUT SIGNAL CIRCUIT

- 1. Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check harness continuity between the following; ECM terminal 2 and A/F sensor 1 (bank 1) terminal 4 or ECM terminal 24 and A/F sensor 1 (bank 2) terminal 4. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK A/F SENSOR 1 HEATER

Refer to EC-791, "Component Inspection".

OK or NG

OK >> GO TO 6. NG >> GO TO 7.

6.CHECK INTERMITTENT INCIDENT

Perform EC-763, "Diagnosis Procedure".

OK or NG

OK >> GO TO 7.

NG >> Repair or replace.

7.REPLACE AIR FUEL RATIO (A/F) SENSOR 1

Replace air fuel ratio (A/F) sensor 1.

CAUTION:

- Discard any A/F sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new A/F sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

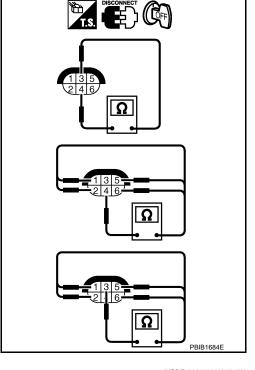
INFOID:0000000002954791

>> INSPECTION END

Component Inspection

AIR FUEL RATIO (A/F) SENSOR 1 HEATER Check resistance between terminals 3 and 4.

Resistance: 2.3 - 4.3 Ω [at 25°C (77°F)]


Check continuity between terminals 3 and 1, 2, 5, 6, terminals 4 and 1, 2, 5, 6.

Continuity should not exist.

If NG, replace the A/F sensor 1.

CAUTION:

- Discard any A/F sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new A/F sensor, clean exhaust system threads using Heated Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

INFOID:0000000002954792

Removal and Installation

AIR FUEL RATIO (A/F) SENSOR 1 Refer to EM-181.

Revision: 2009 February EC-791

EC

Α

D

Е

F

G

Н

1

Κ

N

 \circ

Р

2008 M35/M45

DTC P0037, P0038, P0057, P0058 HO2S2 HEATER

DescriptionINFOID:000000002954793

SYSTEM DESCRIPTION

Sensor	Input signal to ECM	ECM function	Actuator	
Camshaft position sensor (PHASE) Crankshaft position sensor (POS)	Engine speed Heated oxygen sensor 2			
Engine coolant temperature sensor	Engine coolant temperature	heater control	Heated oxygen sensor 2 heater	
Mass air flow sensor	Amount of intake air			

The ECM performs ON/OFF control of the heated oxygen sensor 2 heater corresponding to the engine speed, amount of intake air and engine coolant temperature.

OPERATION

Engine speed rpm	Heated oxygen sensor 2 heater
Above 3,600	OFF
Below 3,600 rpm after the following conditions are met. Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load	ON

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002954794

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
HO2S2 HTR (B1) HO2S2 HTR (B2)	 Engine speed: Below 3,600 rpm after the following conditions are met. Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	ON
	Engine speed: Above 3,600 rpm	OFF

On Board Diagnosis Logic

INFOID:0000000002954795

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0037 0037 (Bank 1)	Heated oxygen sensor 2	The current amperage in the heated oxygen sensor 2 heater circuit is out of the normal range.	Harness or connectors (The heated oxygen sensor 2 heater circuit)
P0057 0057 (Bank 2)	heater control circuit low	(in an and an and a control of the	is open or shorted.)Heated oxygen sensor 2 heater
P0038 0038 (Bank 1)	Heated oxygen sensor 2	The current amperage in the heated oxygen sensor 2 heater circuit is out of the normal range.	Harness or connectors (The heated oxygen sensor 2 heater circuit)
P0058 0058 (Bank 2)	heater control circuit high	(An excessively high voltage signal is sent to ECM through the heated oxygen sensor 2 heater.)	is shorted.) • Heated oxygen sensor 2 heater

DTC Confirmation Procedure

INFOID:0000000002954796

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

DTC P0037, P0038, P0057, P0058 HO2S2 HEATER

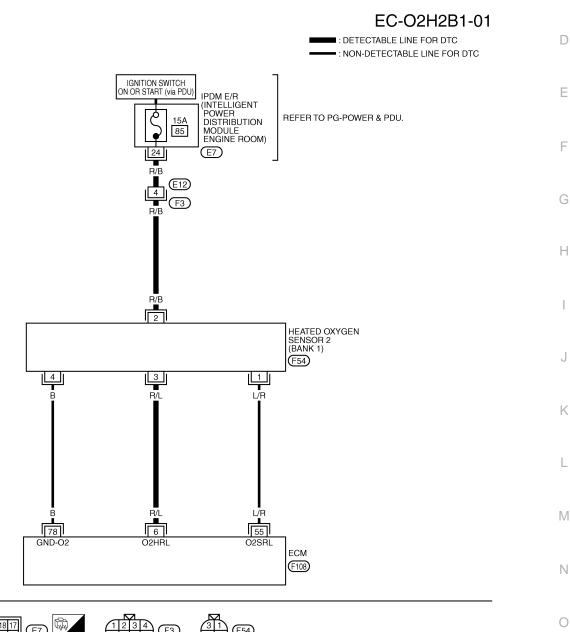
< SERVICE INFORMATION >

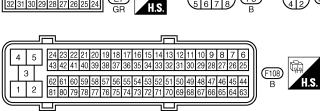
[VK45DE]

Α

EC

F


Р


Before performing the following procedure, confirm that battery voltage is between 11V and 16V at idle.

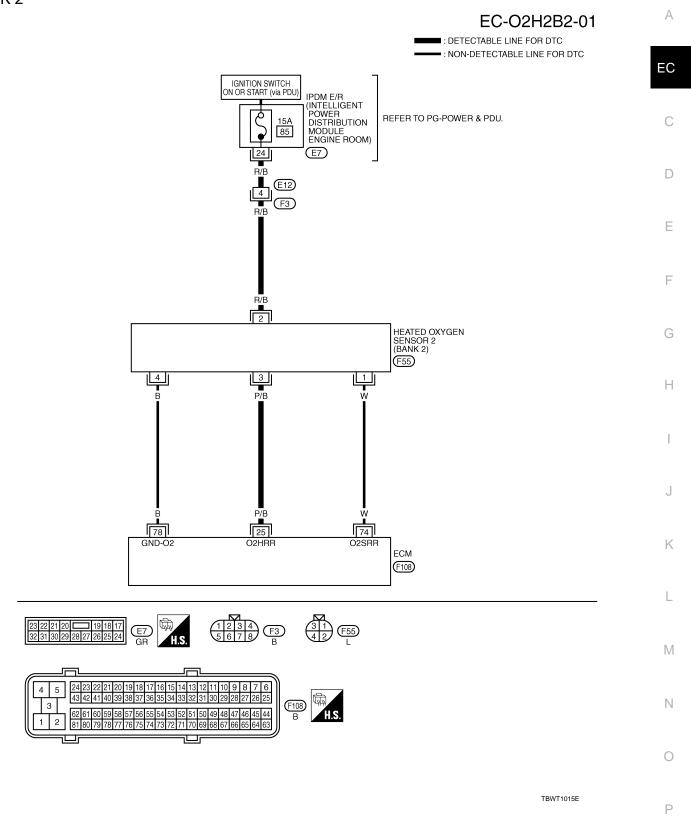
- 1. Turn ignition switch ON and wait at least 5 seconds.
- 2. Check 1st trip DTC.
- If 1st trip DTC is detected, go to EC-796, "Diagnosis Procedure".

Wiring Diagram INFOID:0000000002954797

BANK 1

DTC P0037, P0038, P0057, P0058 HO2S2 HEATER

[VK45DE]


Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

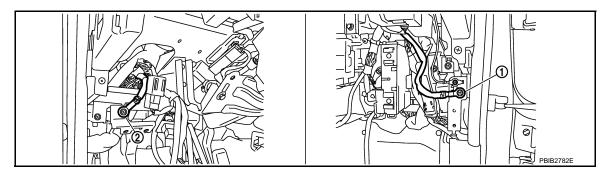
TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
6	R/L	Heated oxygen sensor 2 heater (bank 1)	 [Engine is running] Engine speed: Below 3,600 rpm after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - 1.0V
			[Ignition switch: ON] • Engine: Stopped [Engine is running] • Engine speed: Above 3,600 rpm	BATTERY VOLTAGE (11 - 14V)
55	L/R	Heated oxygen sensor 2 (bank 1)	 [Engine is running] Revving engine from idle to 3,000 rpm quickly after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V
78	В	Sensor ground (Heated oxygen sensor 2)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V

[VK45DE]

BANK 2

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
25	P/B	Heated oxygen sensor 2 heater (bank 2)	 [Engine is running] Engine speed: Below 3,600 rpm after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - 1.0V
			[Ignition switch: ON] • Engine: Stopped [Engine is running] • Engine speed: Above 3,600 rpm	BATTERY VOLTAGE (11 - 14V)
74	W	Heated oxygen sensor 2 (bank 2)	 [Engine is running] Revving engine from idle to 3,000 rpm quickly after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V
78	В	Sensor ground (Heated oxygen sensor 2)	[Engine is running]Warm-up conditionIdle speed	Approximately 0V

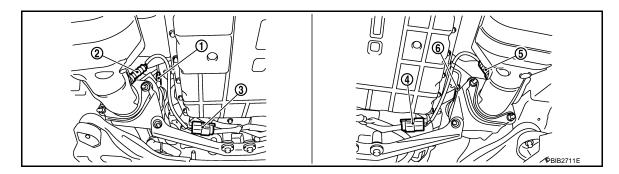
Diagnosis Procedure

INFOID:0000000002954798

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- Loosen and retighten ground screws on the body. Refer to <u>EC-769</u>, "Ground Inspection".

- 1. Body ground M70
- 2. Body ground M16


OK or NG

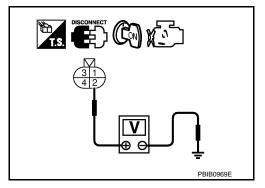
OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. CHECK HO2S2 HEATER POWER SUPPLY CIRCUIT

1. Disconnect heated oxygen sensor 2 harness connector.

4. Heated oxygen sensor 2 (bank 2)


- Air fuel ratio (A/F) sensor 1 (bank 1) 2. Heated oxygen sensor 2 (bank 1)
 - 5. Heated oxygen sensor 2 (bank 2)
- Heated oxygen sensor 2 (bank 1) harness connector
- 6. Air fuel ratio (A/F) sensor 1 (bank 2)

- harness connector Turn ignition switch ON.
- Check voltage between HO2S2 terminal 2 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E12, F3
- IPDM E/R connector E7
- 15A fuse
- Harness for open or short between heated oxygen sensor 2 and fuse

>> Repair open circuit or short to ground or short to power in harness or connectors.

f 4.CHECK HO2S2 HEATER OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Disconnect ECM harness connector. 2.
- Check harness continuity between ECM terminal and HO2S2 terminal as follows. Refer to Wiring Diagram.

DTC	Tern	Bank	
ыс	ECM	Sensor	Dalik
P0037, P0038	6	3	1
P0057, P0058	25	3	2

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK HEATED OXYGEN SENSOR 2 HEATER

Refer to EC-798, "Component Inspection".

EC-797 Revision: 2009 February 2008 M35/M45

EC

Α

D

Е

L

Ν

DTC P0037, P0038, P0057, P0058 HO2S2 HEATER

< SERVICE INFORMATION >

OK or NG

OK >> GO TO 6.

NG >> Replace malfunctioning heated oxygen sensor 2.

6. CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

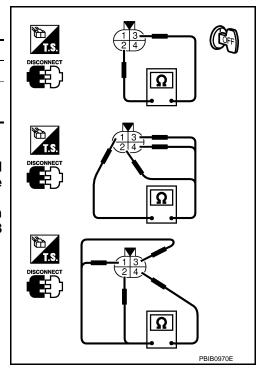
>> INSPECTION END

Component Inspection

INFOID:0000000002954799

[VK45DE]

HEATED OXYGEN SENSOR 2 HEATER


1. Check resistance between HO2S2 terminals as follows.

Terminal No.	Resistance
2 and 3	5.0 - 7.0 Ω [at 25°C (77°F)]
1 and 2, 3, 4	Ω ∞
4 and 1, 2, 3	(Continuity should not exist)

2. If NG, replace heated oxygen sensor 2.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation

INFOID:0000000002954800

HEATED OXYGEN SENSOR 2 Refer to <u>EM-181</u>.

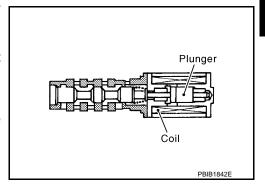
< SERVICE INFORMATION >

[VK45DE]

INFOID:0000000002954801

DTC P0075, P0081 IVT CONTROL SOLENOID VALVE

Component Description


Intake valve timing control solenoid valve is activated by ON/OFF pulse duty (ratio) signals from the ECM.

The intake valve timing control solenoid valve changes the oil amount and direction of flow through intake valve timing control unit or stops oil flow.

The longer pulse width advances valve angle.

The shorter pulse width retards valve angle.

When ON and OFF pulse widths become equal, the solenoid valve stops oil pressure flow to fix the intake valve angle at the control position.

CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CO	NDITION	SPECIFICATION
INITA (001 (D4)	Engine: After warming up	Idle	0% - 2%
INT/V SOL (B1) INT/V SOL (B2)	Selector lever: P or NAir conditioner switch: OFFNo load	2,000 rpm	Approx. 25% - 50%

On Board Diagnosis Logic

INFOID:0000000002954803

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0075 0075 (Bank 1)	Intake valve timing control	An improper voltage is sent to the ECM through intake valve timing control solenoid	Harness or connectors (Intake valve timing control solenoid valve)
P0081 0081 (Bank 2)	solenoid valve circuit	valve.	circuit is open or shorted.) Intake valve timing control solenoid valve

DTC Confirmation Procedure

INFOID:0000000002954804

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

- 1. Start engine and let it idle for 5 seconds.
- 2. Check 1st rip DTC.
- If 1st trip DTC is detected, go to <u>EC-803</u>, "<u>Diagnosis Procedure</u>".

EC

Α

С

D

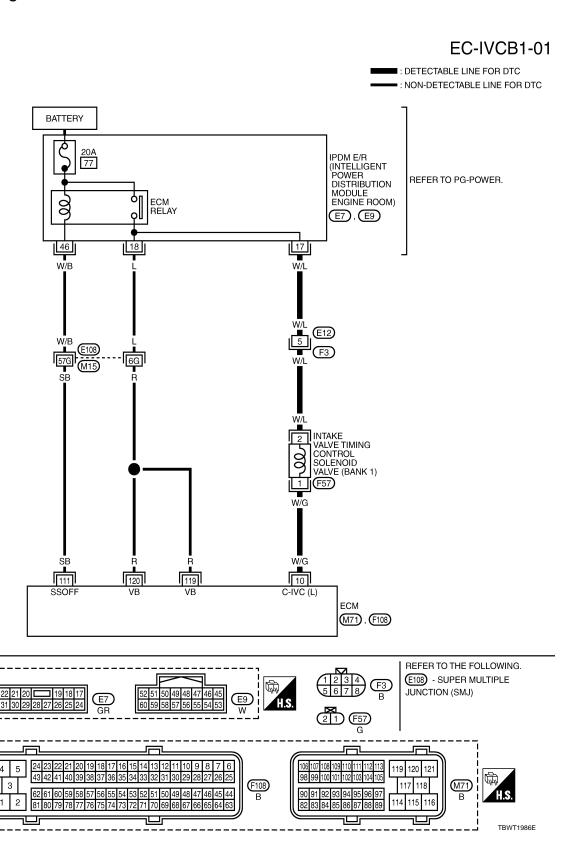
Е

F

INFOID:0000000002954802

Ν

M


K

[VK45DE]

Wiring Diagram

INFOID:0000000002954805

BANK 1

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III. CAUTION:

< SERVICE INFORMATION >

[VK45DE]

Α

D

Е

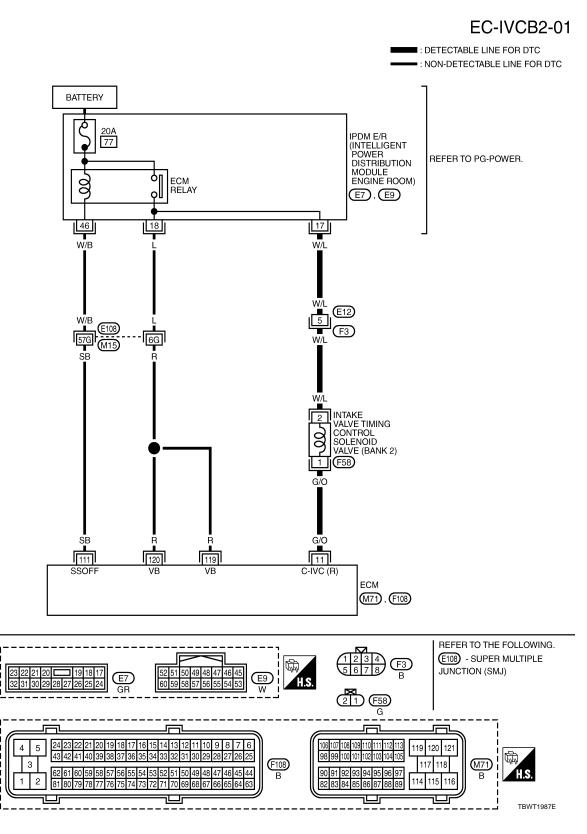
F

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
		Intake valve timing control solenoid valve (bank 1)	[Engine is running] • Warm-up condition • Idle speed	BATTERY VOLTAGE (11 - 14V)
10	W/G		[Engine is running]Warm-up conditionEngine speed: 2,000rpm	7 - 12V★
111	SB	SB ECM relay (Self shut-off)	[Engine is running] [Ignition switch: OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V
			[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
119 120	R R	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

H


K

Ν

0

[VK45DE]

BANK 2

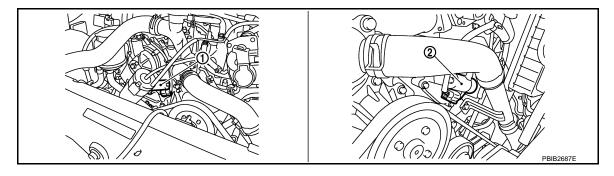
Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

< SERVICE INFORMATION >

[VK45DE]

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Engine is running]Warm-up conditionIdle speed	BATTERY VOLTAGE (11 - 14V)
11	G/O Intake valve timing control solenoid valve (bank 2)	[Engine is running]Warm-up conditionEngine speed: 2,000rpm	7 - 12V*	
111	SB	SB ECM relay	[Engine is running] [Ignition switch: OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V
		(Self shut-off)	[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
119 120	R R	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

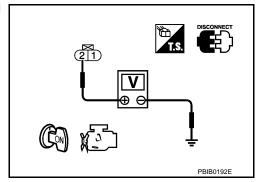

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnosis Procedure

1. CHECK INTAKE VALVE TIMING CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT

1. Turn ignition switch OFF.

2. Disconnect intake valve timing control solenoid valve harness connector.



- Intake valve timing control solenoid valve (bank 2)
- Intake valve timing control solenoid valve (bank 1)
- 3. Turn ignition switch ON.
- 4. Check voltage between intake valve timing control solenoid valve terminal 2 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

Α

EC

Е

D

F

G

.

INFOID:0000000002954806

K

L

M

Ν

0

< SERVICE INFORMATION >

[VK45DE]

2.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E12, F3
- IPDM E/R harness connector E7
- Harness for open or short between intake valve timing control solenoid valve and IPDM E/R
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

3.CHECK INTAKE VALVE TIMING CONTROL SOLENOID VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between the following;
 ECM terminal 10 and intake valve timing control solenoid valve (bank 1) terminal 1 or
 ECM terminal 11 and intake valve timing control solenoid valve (bank 2) terminal 1.
 Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

f 4.CHECK INTAKE VALVE TIMING CONTROL SOLENOID VALVE

Refer to EC-804, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace intake valve timing control solenoid valve.

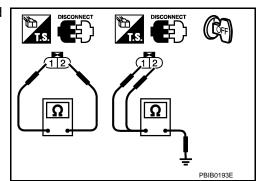
5. CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

>> INSPECTION END

Component Inspection

INFOID:0000000002954807


INTAKE VALVE TIMING CONTROL SOLENOID VALVE

- 1. Disconnect intake valve timing control solenoid valve harness connector.
- 2. Check resistance between intake valve timing control solenoid valve terminals as follows.

Terminals	Resistance
1 and 2	7.0 - 7.5Ω [at 20°C (68°F)]
1 or 2 and ground	${}^{\infty}\Omega$ (Continuity should not exist)

If NG, replace intake valve timing control solenoid valve. If OK, go to next step.

3. Remove intake valve timing control solenoid valve.

< SERVICE INFORMATION >

[VK45DE]

 Provide 12V DC between intake valve timing control solenoid valve terminals and then interrupt it. Make sure that the plunger moves as shown in the figure.

CAUTION:

Do not apply 12V DC continuously for 5 seconds or more. Doing so may result in damage to the coil in intake valve timing control solenoid valve.

If NG, replace intake valve timing control solenoid valve. **NOTE:**

Always replace O-ring when intake valve timing control solenoid valve is removed.

FUSE PBIB2275E

INFOID:0000000002954808

Removal and Installation

INTAKE VALVE TIMING CONTROL SOLENOID VALVE Refer to EM-202.

Revision: 2009 February **EC-805** 2008 M35/M45

EC

Α

С

D

Е

F

G

Н

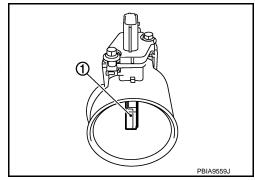
1

K

L

Ν

0


INFOID:0000000002954809

DTC P0101 MAF SENSOR

Component Description

The mass air flow sensor (1) is placed in the stream of intake air. It measures the intake flow rate by measuring a part of the entire intake flow. The mass air flow sensor controls the temperature of the hot wire to a certain amount. The heat generated by the hot wire is reduced as the intake air flows around it. The more air, the greater the heat loss.

Therefore, the electric current supplied to hot wire is changed to maintain the temperature of the hot wire as air flow increases. The ECM detects the air flow by means of this current change.

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002954810

Specification data are reference values.

MONITOR ITEM		SPECIFICATION	
MAS A/F SE-B1	See EC-755, "Inspection Procedure".		
	Engine: After warming up Selector lever: P or N Air conditioner switch: OFF No load	Idle	14% - 33%
CAL/LD VALUE		2,500 rpm	12% - 25%
	Engine: After warming up Selector lever: P or N Air conditioner switch: OFF No load	Idle	2.0 - 6.0 g·m/s
MASS AIRFLOW		2,500 rpm	7.0 - 20.0 g·m/s

On Board Diagnosis Logic

INFOID:0000000002954811

DTC No.	Trouble diagnosis name		DTC detecting condition	Possible cause
	Mass air flow sensor circuit	A)	A high voltage from the sensor is sent to ECM under light load driving condition.	Harness or connectors (The sensor circuit is open or shorted.) Mass air flow sensor EVAP control system pressure sensor Intake air temperature sensor
P0101 0101	range/performance	В)	A low voltage from the sensor is sent to ECM under heavy load driving condition.	Harness or connectors (The sensor circuit is open or shorted.) Intake air leaks Mass air flow sensor EVAP control system pressure sensor Intake air temperature sensor

DTC Confirmation Procedure

INFOID:0000000002954812

Perform PROCEDURE FOR MALFUNCTION A first. If DTC cannot be confirmed, perform PROCEDURE FOR MALFUNCTION B. NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

PROCEDURE FOR MALFUNCTION A **NOTE**:

Revision: 2009 February

[VK45DE]

< SERVICE INFORMATION >

If engine will not start or stops soon, wait at least 10 seconds with engine stopped (Ignition switch ON) instead of running engine at idle speed.

- 1. Start engine and warm it up to normal operating temperature.
- 2. Run engine for at least 10 seconds at idle speed.
- 3. Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-810</u>, "<u>Diagnosis Procedure</u>".

PROCEDURE FOR MALFUNCTION B

CAUTION:

Always drive vehicle at a safe speed.

NOTÉ:

Check vehicle specifications and VIN, then select the procedure to be performed. (Refer to the table below.)

Vehicle specification	Vehicle serial number	Procedure	
Axle	venicle serial number		
2WD	Up to 500994	B-a	
2000	From 500995	B-b	
4WD	Up to 551363	B-a	
400	From 551364	B-b	

Procedure for Malfunction B-a

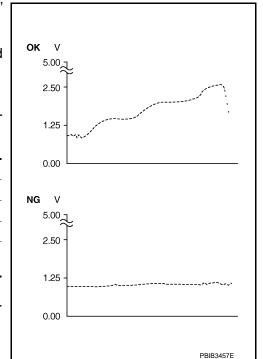
(II) WITH CONSULT-III

1. Start engine and warm it up to normal operating temperature.

If engine cannot be started, go to EC-810, "Diagnosis Procedure".
2. Check the voltage of "MAS A/F SE-B1" in "DATA MONITOR"

- mode with CONSULT-III.

 3. Increases engine speed to about 4,000 rpm.
- Monitor the linear voltage rise in response to engine speed increases.


If NG, go to EC-810, "Diagnosis Procedure".

If OK, go to following step.

Maintain the following conditions for at least 10 consecutive seconds.

ENG SPEED	More than 2,000 rpm
TP SEN 1-B1	More than 3 V
TP SEN 2-B1	More than 3 V
Selector lever	Suitable position
Driving location	Driving vehicle uphill (Increased engine load) will help maintain the driving conditions required for this test.

- Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-810</u>. "<u>Diagnosis Procedure</u>".

Procedure for Malfunction B-b

WITH CONSULT-III
 Start engine and

Start engine and warm it up to normal operating temperature.
 If engine cannot be started, go to <u>EC-810</u>, "<u>Diagnosis Procedure</u>".

Revision: 2009 February **EC-807** 2008 M35/M45

EC

Α

С

D

F

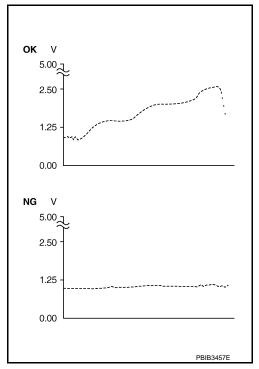
Е

C

Н

|

M


Ν

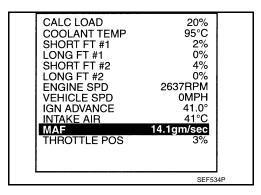
< SERVICE INFORMATION >

- Check the voltage of "MAS A/F SE-B1" in "DATA MONITOR" mode with CONSULT-III.
- 3. Increases engine speed to about 4,000 rpm.
- Monitor the linear voltage rise in response to engine speed increases.
 - If NG, go to <u>EC-810</u>, "<u>Diagnosis Procedure</u>". If OK, go to following step.
- Maintain the following conditions for at least 10 consecutive seconds.

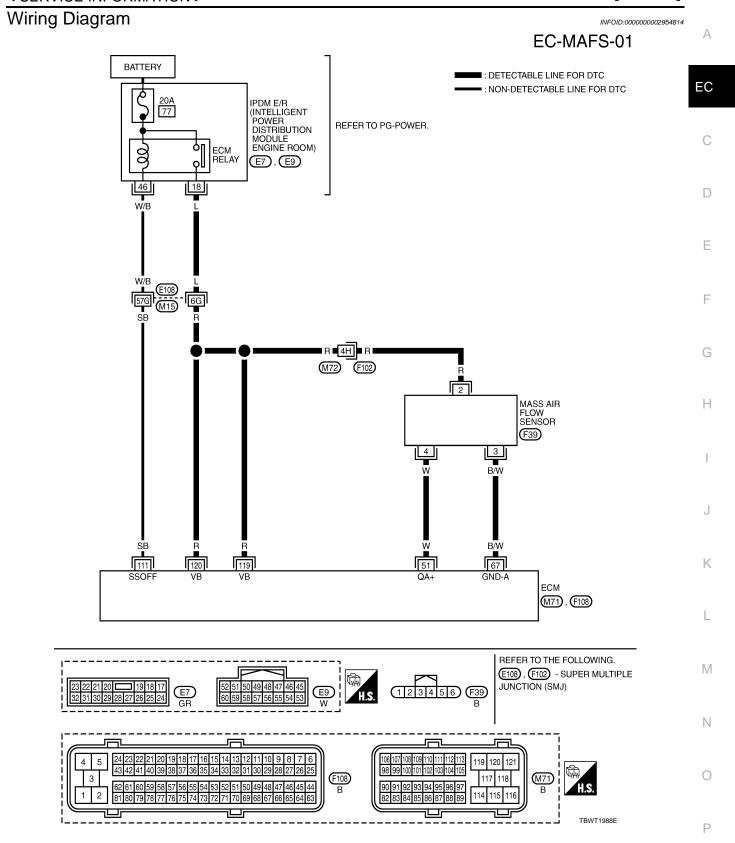
ENG SPEED	More than 2,000 rpm
TP SEN 1-B1	More than 1.5 V
TP SEN 2-B1	More than 1.5 V
Selector lever	Suitable position
Driving location	Driving vehicle uphill (Increased engine load) will help maintain the driving conditions required for this test.

- 6. Check 1st trip DTC.
- 7. If 1st trip DTC is detected, go to EC-810, "Diagnosis Procedure".

Overall Function Check


INFOID:0000000002954813

PROCEDURE FOR MALFUNCTION B


Use this procedure to check the overall function of the mass air flow sensor circuit. During this check, a 1st trip DTC might not be confirmed.

With GST

- 1. Start engine and warm it up to normal operating temperature.
- Select Service \$01 with GST.
- 3. Check the mass air flow sensor signal with Service \$01.
- 4. Check for linear mass air flow sensor signal value rise in response to increases to about 4,000 rpm in engine speed.
- 5. If NG, go to EC-810, "Diagnosis Procedure".

[VK45DE]

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

INFOID:0000000002954815

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
51	W	Mass air flow sensor	[Engine is running]Warm-up conditionIdle speed	0.9 - 1.2V
31	VV	ividos all flow serisor	[Engine is running]Warm-up conditionEngine speed: 2,500 rpm	1.6 - 1.9V
67	B/W	Sensor ground (MAF sensor)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
111	SB	ECM relay (Self shut-off)	[Engine is running] [Ignition switch: OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V
	(Sell Shut-Oil)		[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
119 120	R R	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

Diagnosis Procedure

1.INSPECTION START

Which malfunction (A or B) is duplicated?

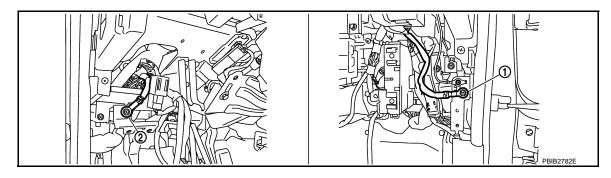
A or B

A >> GO TO 3. B >> GO TO 2.

2. CHECK INTAKE SYSTEM

Check the following for connection.

- Air duct
- Vacuum hoses
- Intake air passage between air duct and intake manifold


OK or NG

OK >> GO TO 3.

NG >> Reconnect the parts.

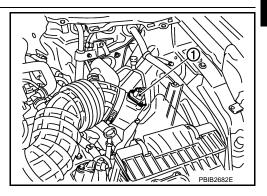
3. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten ground screws on the body. Refer to EC-769, "Ground Inspection".

1. Body ground M70

2. Body ground M16

[VK45DE] < SERVICE INFORMATION >

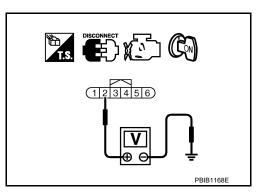

OK or NG

OK >> GO TO 4.

NG >> Repair or replace ground connections.

4. CHECK MAF SENSOR POWER SUPPLY CIRCUIT

- Disconnect mass air flow (MAF) sensor (1) harness connector.
- 2. Turn ignition switch ON.



3. Check voltage between MAF sensor terminal 2 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

$5.\mathsf{DETECT}$ MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- Harness connectors M72, F102
- Harness for open or short between mass air flow sensor and ECM
- Harness for open or short between mass air flow sensor and IPDM E/R

>> Repair open circuit or short to ground or short to power in harness or connectors.

6.CHECK MAF SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between MAF sensor terminal 3 and ECM terminal 67. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

1. CHECK MAF SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Check harness continuity between MAF sensor terminal 4 and ECM terminal 51. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

EC-811 Revision: 2009 February 2008 M35/M45

EC

Α

D

Е

Н

L

N

DTC P0101 MAF SENSOR

< SERVICE INFORMATION > [VK45DE]

OK >> GO TO 8.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

8.CHECK INTAKE AIR TEMPERATURE SENSOR

Refer to EC-824, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace intake air temperature sensor.

9. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-1010, "Component Inspection".

OK or NG

OK >> GO TO 10.

NG >> Replace EVAP control system pressure sensor.

10. CHECK MASS AIR FLOW SENSOR

Refer to EC-812, "Component Inspection".

OK or NG

OK >> GO TO 11.

NG >> Replace mass air flow sensor.

11. CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

>> INSPECTION END

Component Inspection

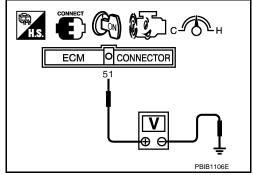
INFOID:0000000002954816

MASS AIR FLOW SENSOR

(II) With CONSULT-III

- 1. Reconnect all harness connectors disconnected.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Connect CONSULT-III and select "DATA MONITOR" mode.
- 4. Select "MAS A/F SE-B1" and check indication under the following conditions.

Condition	MAS A/F SE-B1 (V)
Ignition switch ON (Engine stopped.)	Approx. 0.4
Idle (Engine is warmed-up to normal operating temperature.)	0.9 - 1.2
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.6 - 1.9
Idle to about 4,000 rpm	0.9 - 1.2 to Approx. 2.4*


^{*:} Check for linear voltage rise in response to engine being increased to about 4,000 rpm.

- 5. If the voltage is out of specification, proceed the following.
- a. Check for the cause of uneven air flow through mass air flow sensor. Refer to following.
 - · Crushed air ducts
 - · Malfunctioning seal of air cleaner element
 - · Uneven dirt of air cleaner element
 - · Improper specification of intake air system parts
- b. If NG, repair or replace malfunctioning part and perform step 2 to 4 again. If OK, go to next step.
- 6. Turn ignition switch OFF.
- 7. Disconnect mass air flow sensor harness connector and reconnect it again.
- 8. Perform step 2 to 4 again.

[VK45DE]

- 9. If NG, clean or replace mass air flow sensor.
- ₩ Without CONSULT-III
- Reconnect all harness connectors disconnected.
- 2. Start engine and warm it up to normal operating temperature.
- Check voltage between ECM terminal 51 (Mass air flow sensor signal) and ground.

Condition	Voltage V
Ignition switch ON (Engine stopped.)	Approx. 0.4
Idle (Engine is warmed-up to normal operating temperature.)	0.9 - 1.2
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.6 - 1.9
Idle to about 4,000 rpm	0.9 - 1.2 to Approx. 2.4*

- *: Check for linear voltage rise in response to engine being increased to about 4,000 rpm.
- 4. If the voltage is out of specification, proceed the following.
- a. Check for the cause of uneven air flow through mass air flow sensor. Refer to following.
 - · Crushed air ducts
 - · Malfunctioning seal of air cleaner element
 - · Uneven dirt of air cleaner element
 - Improper specification of intake air system parts
- b. If NG, repair or replace malfunctioning part and perform step 2 and 3 again. If OK, go to next step.
- 5. Turn ignition switch OFF.
- 6. Disconnect mass air flow sensor harness connector and reconnect it again.
- 7. Perform step 2 and 3 again.
- 8. If NG, clean or replace mass air flow sensor.

Removal and Installation

MASS AIR FLOW SENSOR

Refer to EM-175.

Α

EC

D

Е

F

G

Н

INFOID:0000000002954817

Ν

U


INFOID:0000000002954818

DTC P0102, P0103 MAF SENSOR

Component Description

The mass air flow sensor (1) is placed in the stream of intake air. It measures the intake flow rate by measuring a part of the entire intake flow. The mass air flow sensor controls the temperature of the hot wire to a certain amount. The heat generated by the hot wire is reduced as the intake air flows around it. The more air, the greater the heat loss.

Therefore, the electric current supplied to hot wire is changed to maintain the temperature of the hot wire as air flow increases. The ECM detects the air flow by means of this current change.

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002954819

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
MAS A/F SE-B1	See EC-755, "Inspection Procedure".		
	 Engine: After warming up Selector lever: P or N Air conditioner switch: OFF No load 	Idle	14% - 33%
CAL/LD VALUE		2,500 rpm	12% - 25%
	 Engine: After warming up Selector lever: P or N Air conditioner switch: OFF No load 	Idle	2.0 - 6.0 g·m/s
MASS AIRFLOW		2,500 rpm	7.0 - 20.0 g·m/s

On Board Diagnosis Logic

INFOID:0000000002954820

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0102 0102	Mass air flow sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.) Intake air leaks Mass air flow sensor
P0103 0103	Mass air flow sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.) Mass air flow sensor

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Detected items	Engine operating condition in fail-safe mode
Mass air flow sensor circuit	Engine speed will not rise more than 2,400 rpm due to the fuel cut.

DTC Confirmation Procedure

INFOID:0000000002954821

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

PROCEDURE FOR DTC P0102

- 1. Start engine and wait at least 5 seconds.
- Check DTC.

DTC P0102, P0103 MAF SENSOR

[VK45DE] < SERVICE INFORMATION >

If DTC is detected, go to EC-817, "Diagnosis Procedure".

PROCEDURE FOR DTC P0103

- 1. Turn ignition switch ON and wait at least 5 seconds.
- 2. Check DTC.
- 3. If DTC is detected, go to EC-817, "Diagnosis Procedure". If DTC is not detected, go to next step.
- 4. Start engine and wait at least 5 seconds.
- 5. Check DTC.
- 6. If DTC is detected, go to EC-817, "Diagnosis Procedure".

EC

Α

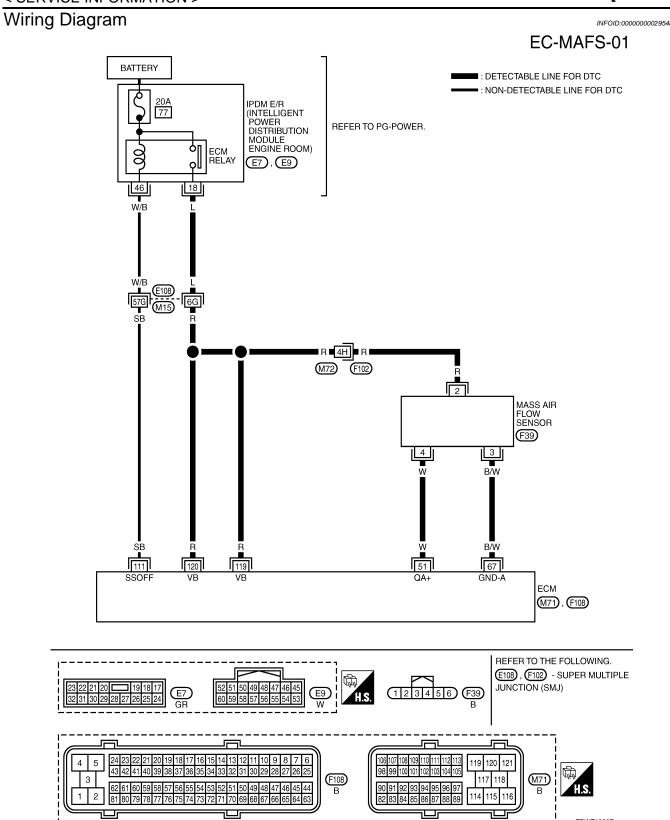
D

Е

F

G

Н


K

L

M

Ν

0

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

INFOID:0000000002954823

Α

EC

D

Е

M

Ν

Ρ

< SERVICE INFORMATION >

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
51	W	Mass air flow sensor	[Engine is running]Warm-up conditionIdle speed	0.9 - 1.2V
31	VV	IVIASS All HOW SETISOF	[Engine is running]Warm-up conditionEngine speed: 2,500 rpm	1.6 - 1.9V
67	B/W	Sensor ground (MAF sensor)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
111	SB	ECM relay (Self shut-off)	[Engine is running] [Ignition switch: OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V
	(Jell Slidt-oll)		[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
119 120	R R	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

Diagnosis Procedure

1. INSPECTION START

Which malfunction (P0102 or P0103) is duplicated?

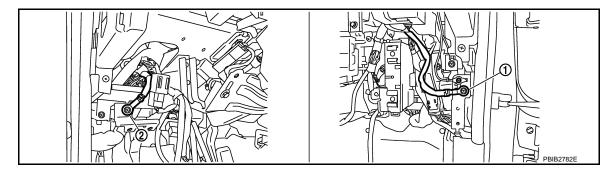
P0102 or P0103

P0102 >> GO TO 2. P0103 >> GO TO 3.

2. CHECK INTAKE SYSTEM

Check the following for connection.

- Air duct
- · Vacuum hoses
- Intake air passage between air duct and intake manifold


OK or NG

OK >> GO TO 3.

NG >> Reconnect the parts.

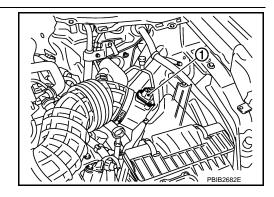
3. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten ground screws on the body. Refer to <u>EC-769</u>, "Ground Inspection".

1. Body ground M70

2. Body ground M16

< SERVICE INFORMATION >

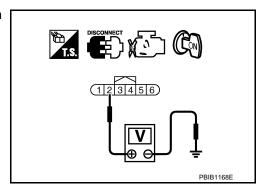

OK or NG

OK >> GO TO 4.

NG >> Repair or replace ground connections.

4. CHECK MAF SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect mass air flow (MAF) sensor (1) harness connector.
- 2. Turn ignition switch ON.



3. Check voltage between MAF sensor terminal 2 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- Harness connectors M72, F102
- · Harness for open or short between mass air flow sensor and ECM
- Harness for open or short between mass air flow sensor and IPDM E/R
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK MAF SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between MAF sensor terminal 3 and ECM terminal 67. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

.CHECK MAF SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between MAF sensor terminal 4 and ECM terminal 51. Refer to Wiring Diagram.

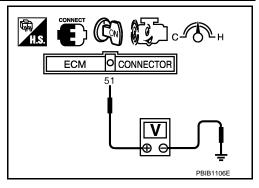
Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

DTC P0102, P0103 MAF SENSOR

[VK45DE] < SERVICE INFORMATION > OK >> GO TO 8. NG >> Repair open circuit or short to ground or short to power in harness or connectors. Α f 8.CHECK MASS AIR FLOW SENSOR Refer to EC-819, "Component Inspection". EC OK or NG OK >> GO TO 9. NG >> Replace mass air flow sensor. 9. CHECK INTERMITTENT INCIDENT Refer to EC-763, "Diagnosis Procedure". D >> INSPECTION END Component Inspection Е INFOID:0000000002954824 MASS AIR FLOW SENSOR F (P) With CONSULT-III Reconnect all harness connectors disconnected. Start engine and warm it up to normal operating temperature. Connect CONSULT-III and select "DATA MONITOR" mode. Select "MAS A/F SE-B1" and check indication under the following conditions. Н MAS A/F SE-B1 (V) Condition Ignition switch ON (Engine stopped.) Approx. 0.4 Idle (Engine is warmed-up to normal 0.9 - 1.2operating temperature.) 2,500 rpm (Engine is warmed-up to 1.6 - 1.9 normal operating temperature.) Idle to about 4,000 rpm 0.9 - 1.2 to Approx. 2.4* *: Check for linear voltage rise in response to engine being increased to about 4,000 rpm. If the voltage is out of specification, proceed the following. Check for the cause of uneven air flow through mass air flow sensor. Refer to following. Crushed air ducts Malfunctioning seal of air cleaner element Uneven dirt of air cleaner element Improper specification of intake air system parts If NG, repair or replace malfunctioning part and perform step 2 to 4 again. If OK, go to next step. Turn ignition switch OFF. N 7. Disconnect mass air flow sensor harness connector and reconnect it again. Perform step 2 to 4 again. If NG, clean or replace mass air flow sensor. Without CONSULT-III 1. Reconnect all harness connectors disconnected. Р Start engine and warm it up to normal operating temperature.


DTC P0102, P0103 MAF SENSOR

< SERVICE INFORMATION >

[VK45DE]

Check voltage between ECM terminal 51 (Mass air flow sensor signal) and ground.

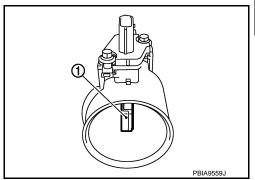
Condition	Voltage V
Ignition switch ON (Engine stopped.)	Approx. 0.4
Idle (Engine is warmed-up to normal operating temperature.)	0.9 - 1.2
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.6 - 1.9
Idle to about 4,000 rpm	0.9 - 1.2 to Approx. 2.4*

- *: Check for linear voltage rise in response to engine being increased to about 4,000 rpm.
- 4. If the voltage is out of specification, proceed the following.
- a. Check for the cause of uneven air flow through mass air flow sensor. Refer to following.
 - · Crushed air ducts
 - Malfunctioning seal of air cleaner element
 - Uneven dirt of air cleaner element
 - Improper specification of intake air system parts
- If NG, repair or replace malfunctioning part and perform step 2 and 3 again.
 If OK, go to next step.
- 5. Turn ignition switch OFF.
- 6. Disconnect mass air flow sensor harness connector and reconnect it again.
- 7. Perform step 2 and 3 again.
- 8. If NG, clean or replace mass air flow sensor.

Removal and Installation

INFOID:0000000002954825

MASS AIR FLOW SENSOR Refer to $\underline{\mathsf{EM-}175}$.


INFOID:0000000002954826

DTC P0112, P0113 IAT SENSOR

Component Description

The intake air temperature sensor is built-into mass air flow sensor (1). The sensor detects intake air temperature and transmits a signal to the ECM.

The temperature sensing unit uses a thermistor which is sensitive to the change in temperature. Electrical resistance of the thermistor decreases in response to the temperature rise.

<Reference data>

Intake air temperature °C (°F)	Voltage* V	Resistance kΩ
25 (77)	3.3	1.800 - 2.200
80 (176)	1.2	0.283 - 0.359

^{*:} This data is reference value and is measured between ECM terminal 34 (Intake air temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

DTC No. DTC detecting condition Possible cause Trouble diagnosis name P0112 Intake air temperature An excessively low voltage from the sensor is Harness or connectors 0112 sensor circuit low input sent to ECM. (The sensor circuit is open or shorted.) P0113 An excessively high voltage from the sensor is Intake air temperature Intake air temperature sensor 0113 sensor circuit high input sent to ECM.

DTC Confirmation Procedure

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

- Turn ignition switch ON and wait at least 5 seconds.
- 2. Check 1st trip DTC.
- If 1st trip DTC is detected, go to EC-822, "Diagnosis Procedure".

Acceptable Resistance kΩ 0.4 0.2 0 20 40 60 80 100 (32) (68) (104) (140) (176) (212) Temperature °C (°F)

Α

EC

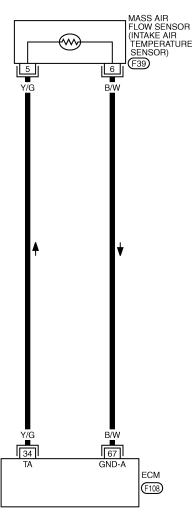
K

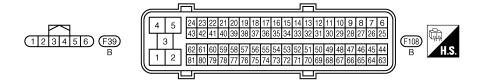
SEF012P

INFOID:0000000002954827

INFOID:0000000002954828

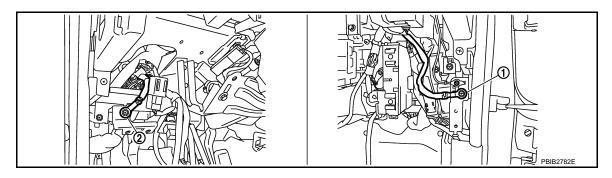
Ν


[VK45DE]


Wiring Diagram

INFOID-0000000002954829

EC-IATS-01


TBWT1017E

Diagnosis Procedure

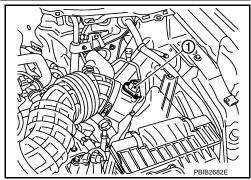
INFOID:0000000002954830

1. CHECK GROUND CONNECTIONS

- Turn ignition switch OFF.
- 2. Loosen and retighten ground screws on the body. Refer to <u>EC-769</u>, "Ground Inspection".

1. Body ground M70

2. Body ground M16

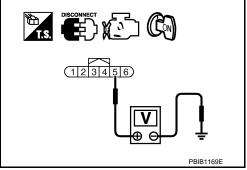

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK INTAKE AIR TEMPERATURE SENSOR POWER SUPPLY CIRCUIT

- Disconnect mass air flow sensor (intake air temperature sensor is built-into) (1) harness connector.
- Turn ignition switch ON.


Check voltage between mass air flow sensor terminal 5 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 3.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

3.check intake air temperature sensor ground circuit for open and short

- Turn ignition switch OFF.
- Disconnect ECM harness connector. 2.
- Check harness continuity between mass air flow sensor terminal 6 and ECM terminal 67. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

>> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK INTAKE AIR TEMPERATURE SENSOR

Refer to EC-824, "Component Inspection".

OK or NG

EC-823 Revision: 2009 February 2008 M35/M45

EC

Α

D

Е

Н

Ν

< SERVICE INFORMATION >

OK >> GO TO 5.

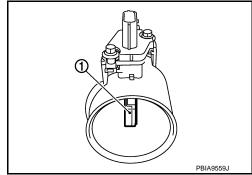
NG >> Replace mass air flow sensor (with intake air temperature sensor).

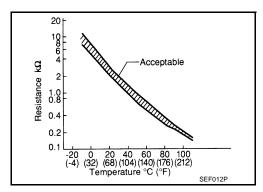
5. CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

>> INSPECTION END

Component Inspection


INFOID:0000000002954831


INTAKE AIR TEMPERATURE SENSOR

1. Check resistance between mass air flow sensor (1) terminals 5 and 6 under the following conditions.

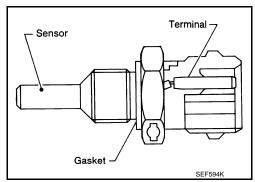
Intake air temperature °C (°F)	Resistance $k\Omega$
25 (77)	1.800 - 2.200

If NG, replace mass air flow sensor (with intake air temperature sensor).

Removal and Installation

INFOID:0000000002954832

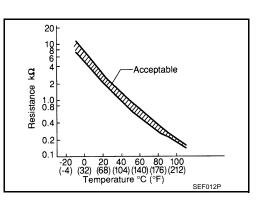
2008 M35/M45


MASS AIR FLOW SENSOR Refer to EM-175.

INFOID:0000000004933348

DTC P0116 ECT SENSOR

Component Description


The engine coolant temperature sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Engine coolant temperature °C (°F)	Voltage* V	Resistance kΩ
-10 (14)	4.4	7.0 - 11.4
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

^{*:} This data is reference value and is measured between ECM terminal 73 (Engine coolant temperature sensor) and ground.

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

NOTE:

If DTC P0116 is displayed with P0117 or P0118, first perform the trouble diagnosis for DTC P0117, P0118. Refer to EC-829, "DTC Confirmation Procedure".

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0116 0116	Engine coolant tempera- ture sensor circuit range/ performance	Engine coolant temperature signal from engine coolant temperature sensor does not fluctuate, even when some time has passed after starting the engine with pre-warming up condition.	Harness or connectors (High or low resistance in the circuit)

DTC Confirmation Procedure

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, do not add fuel.

- Start engine and warm it up to normal operating temperature.
- Rev engine up to 2,000 rpm for more than 10 minutes. 2.
- Move the vehicle to a cool place, then stop engine and turn ignition switch OFF.
- Check resistance between "fuel level sensor unit and fuel pump" terminals 4 and 5.
- Soak the vehicle until the resistance between "fuel level sensor unit and fuel pump" terminals 4 and 5 becomes 0.5 k Ω higher than the value measured before soaking. **CAUTION:**

Never turn ignition switch ON during soaking time.

EC-825 Revision: 2009 February 2008 M35/M45

EC

Α

INFOID:0000000004933336

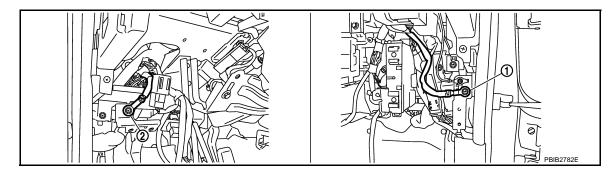
INFOID:0000000004933337

L

< SERVICE INFORMATION >

NOTE:

Soak time changes depending on ambient air temperature. It may take several hours.


- 6. Start engine and let it idle for 5 minutes.
- 7. Check 1st trip DTC.
- 8. If 1st trip DTC is detected, go to EC-826, "Diagnosis Procedure".

Diagnosis Procedure

INFOID:0000000004933338

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws on the body. Refer to <u>EC-769</u>, "Ground Inspection".

1. Body ground M70

2. Body ground M16

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK ENGINE COOLANT TEMPERATURE SENSOR

Refer to EC-826, "Component Inspection".

OK or NG

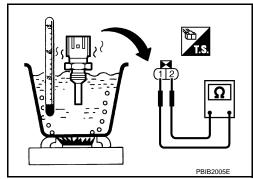
OK >> GO TO 3.

NG >> Replace engine coolant temperature sensor.

3. CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

Refer to EC-830, "Wiring Diagram".


>> INSPECTION END

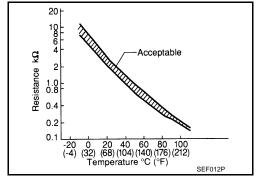
Component Inspection

INFOID:0000000004933349

ENGINE COOLANT TEMPERATURE SENSOR

1. Check resistance between engine coolant temperature sensor terminals 1 and 2 as shown in the figure.

DTC P0116 ECT SENSOR


< SERVICE INFORMATION >

[VK45DE]

<Reference data>

Temperature °C (°F)	Resistance kΩ
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.00
90 (194)	0.236 - 0.260

2. If NG, replace engine coolant temperature sensor.

INFOID:0000000004933350

Removal and Installation

ENGINE COOLANT TEMPERATURE SENSOR Refer to EM-230.

F

Е

D

Α

EC

G

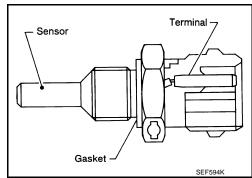
Н

Κ

L

M

Ν


0

INFOID:0000000002954833

DTC P0117, P0118 ECT SENSOR

Component Description

The engine coolant temperature sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Engine coolant temperature °C (°F)	Voltage* V	Resistance kΩ
-10 (14)	4.4	7.0 - 11.4
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

^{*:} This data is reference value and is measured between ECM terminal 73 (Engine coolant temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

INFOID:0000000002954834

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble Diagnosis Name	DTC Detecting Condition	Possible Cause
P0117 0117	Engine coolant temperature sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)
P0118 0118	Engine coolant temperature sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	Engine coolant temperature sensor

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Detected items	Engine operating condition in fail-safe mode		
	Engine coolant temperature will be determined by ECM based on the following conditions. CONSULT-III displays the engine coolant temperature decided by ECM.		
Engine coolant temperature sensor circuit	Condition	Engine coolant temperature decided (CONSULT-III display)	
	Just as ignition switch is turned ON or START	40°C (104°F)	
	Approx. 4 minutes or more after engine starting	80°C (176°F)	
	Except as shown above	40 - 80°C (104 - 176°F) (Depends on the time)	
	When the fail-safe system for engine coolant temperate while engine is running.	ure sensor is activated, the cooling fan operates	

DTC P0117, P0118 ECT SENSOR

< SERVICE INFORMATION >

[VK45DE]

DTC Confirmation Procedure

INFOID:0000000002954835

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

- 1. Turn ignition switch ON and wait at least 5 seconds.
- 2. Check DTC.
- 3. If DTC is detected, go to EC-830, "Diagnosis Procedure".

EC

Α

D

Е

F

G

Н

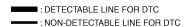
ı

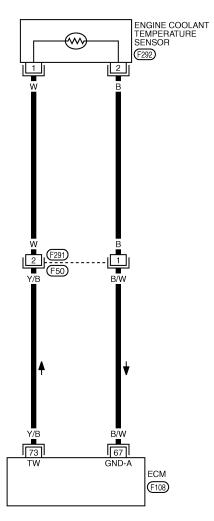
Κ

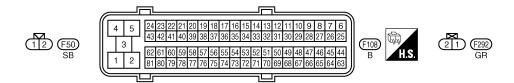
L

M

Ν


0

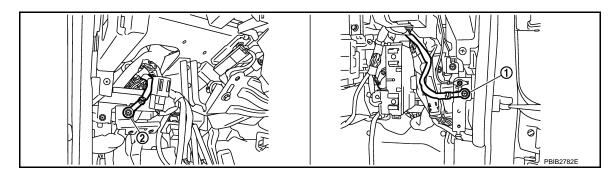

[VK45DE]


Wiring Diagram

INFOID:0000000002954836

EC-ECTS-01

TBWT1018E


Diagnosis Procedure

INFOID:0000000002954837

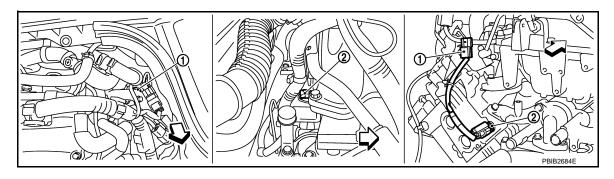
1.CHECK GROUND CONNECTIONS

- Turn ignition switch OFF.
- Loosen and retighten ground screws on the body. Refer to <u>EC-769</u>, "Ground Inspection".

Revision: 2009 February **EC-830** 2008 M35/M45

1. Body ground M70

2. Body ground M16


OK or NG

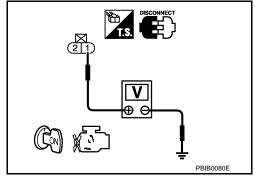
OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. CHECK ECT SENSOR POWER SUPPLY CIRCUIT

1. Disconnect engine coolant temperature (ECT) sensor harness connector.

⟨□ : Vehicle front


- Engine coolant temperature sensor sub-harness connector
- Engine coolant temperature sensor

- Turn ignition switch ON.
- 3. Check voltage between ECT sensor terminal 1 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3.DETECT MALFUNCTIONING RART

Check the following.

- Harness connector F291, F50
- Harness for open or short between ECM and engine coolant temperature sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK ECT SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check harness continuity between ECT sensor terminal 2 and ECM terminal 67. Refer to Wiring Diagram.

Α

EC

C

D

Е

F

G

Н

ı

J

Κ

L

M

N

1

0

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connector F291, F50
- Harness for open and short between ECT sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK ENGINE COOLANT TEMPERATURE SENSOR

Refer to EC-832, "Component Inspection".

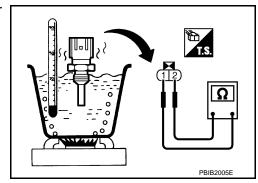
OK or NG

OK >> GO TO 7.

NG >> Replace engine coolant temperature sensor.

7. CHECK INTERMITTENT INCIDENT

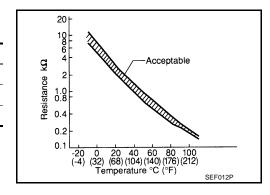
Refer to EC-763, "Diagnosis Procedure".


>> INSPECTION END

Component Inspection

INFOID:0000000002954838

ENGINE COOLANT TEMPERATURE SENSOR


1. Check resistance between engine coolant temperature sensor terminals 1 and 2 as shown in the figure.

<Reference data>

Temperature °C (°F)	Resistance kΩ
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.00
90 (194)	0.236 - 0.260

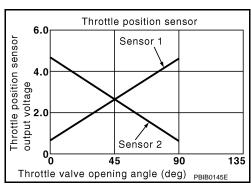
2. If NG, replace engine coolant temperature sensor.

Removal and Installation

INFOID:0000000002954839

ENGINE COOLANT TEMPERATURE SENSOR Refer to EM-230.

[VK45DE]


INFOID:0000000002954840

DTC P0122, P0123 TP SENSOR

Component Description

Electric throttle control actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM

CONDITION

SPECIFICATION

TP SEN 1-B1
TP SEN 2-B1*

• Ignition switch: ON (Engine stopped)
• Selector lever: D

Accelerator pedal: Fully released

Accelerator pedal: Fully depressed

Less than 4.75V

On Board Diagnosis Logic

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0122 0122	Throttle position sensor 2 circuit low input	An excessively low voltage from the TP sensor 2 is sent to ECM.	Harness or connectors (TP sensor 2 circuit is open or shorted.)
P0123 0123	Throttle position sensor 2 circuit high input	An excessively high voltage from the TP sensor 2 is sent to ECM.	 (APP sensor 2 circuit is shorted.) Electric throttle control actuator (TP sensor 2) Accelerator pedal position sensor (APP sensor 2)

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operation condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

DTC Confirmation Procedure

INFOID:0000000002954843

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 8V at idle.

- 1. Start engine and let it idle for 1 second.
- Check DTC.
- If DTC is detected, go to <u>EC-835</u>, "<u>Diagnosis Procedure</u>".

EC

Α

С

INFOID:0000000002954841

F

. .

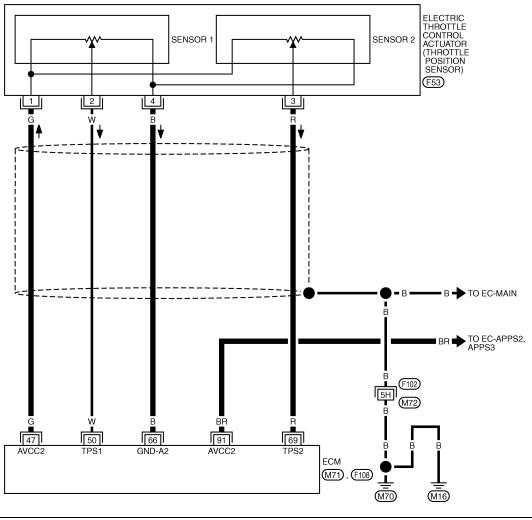
INFOID:0000000002954842

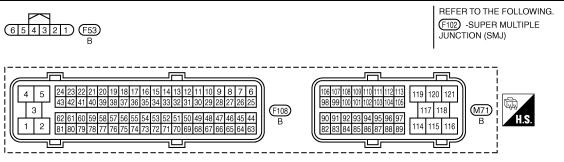
<

M

Ν

942


^{*:} Throttle position sensor 2 signal is converted by ECM internally. Thus, it differs from ECM terminal voltage signal.


Wiring Diagram

INFOID:0000000002954844

EC-TPS2-01

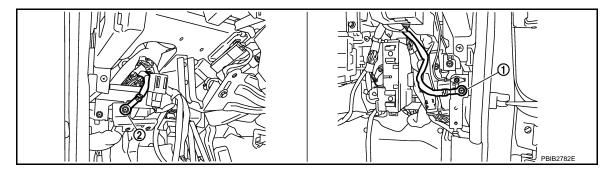
: DETECTABLE LINE FOR DTC
: NON-DETECTABLE LINE FOR DTC

TBWT1491E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
47	G	Sensor power supply (Throt- tle position sensor)	[Ignition switch: ON]	Approximately 5V
50	W	Throttle position concerd	[Ignition switch: ON]Engine: StoppedSelector lever: DAccelerator pedal: Fully released	More than 0.36V
50	VV	Throttle position sensor 1	[Ignition switch: ON] • Engine: Stopped • Selector lever: D • Accelerator pedal: Fully depressed	Less than 4.75V
66	В	Sensor ground (Throttle position sensor)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
69	69 R Throttle position sensor 2		[Ignition switch: ON]Engine: StoppedSelector lever: DAccelerator pedal: Fully released	Less than 4.75V
69 K ITHOLIE POSITION SENSON 2		Throttle position sensor 2	 [Ignition switch: ON] Engine: Stopped Selector lever: D Accelerator pedal: Fully depressed 	More than 0.36V
91	BR	Sensor power supply (APP sensor 2)	[Ignition switch: ON]	Approximately 5V

Diagnosis Procedure

INFOID:0000000002954845

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten ground screws on the body. Refer to <u>EC-769</u>, "<u>Ground Inspection"</u>.

- 1. Body ground M70
- 2. Body ground M16

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK THROTTLE POSITION SENSOR 2 POWER SUPPLY CIRCUIT-I

Revision: 2009 February **EC-835** 2008 M35/M45

EC

Α

D

Е

F

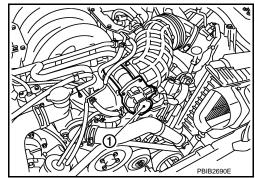
G

Н

K

M

N

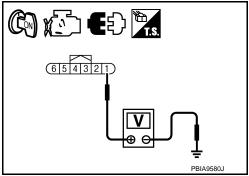

Ν

0

< SERVICE INFORMATION > [VK45DE]

Disconnect electric throttle control actuator (1) harness connector

- Illustration shows the view with intake air duct removed.
- 2. Turn ignition switch ON.



3. Check voltage between electric throttle control actuator terminal 1 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 7. NG >> GO TO 3.

3.CHECK THROTTLE POSITION SENSOR 2 POWER SUPPLY CIRCUIT-II

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between electric throttle control actuator terminal 1 and ECM terminal 47. Refer to Wiring Diagram.

Continuity should exist.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit.

4. CHECK THROTTLE POSITION SENSOR 2 POWER SUPPLY CIRCUIT-III

Check harness for short to power and short to ground, between the following terminals.

ECM terminal	Sensor terminal	Reference Wiring Diagram
47	Electric throttle control actuator terminal 1	EC-834
91	APP sensor terminal 5	EC-1194

OK or NG

OK >> GO TO 5

NG >> Repair short to ground or short to power in harness or connectors.

5. CHECK APP SENSOR

Refer to EC-1198, "Component Inspection".

OK or NG

OK >> GO TO 11. NG >> GO TO 6.

6. REPLACE ACCELERATOR PEDAL ASSEMBLY

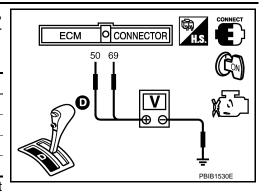
- Replace accelerator pedal assembly.
- Perform <u>EC-706</u>, "Accelerator Pedal Released Position Learning".
- 3. Perform EC-706, "Throttle Valve Closed Position Learning".
- 4. Perform EC-707, "Idle Air Volume Learning".

DTC P0122, P0123 TP SENSOR

< SERVICE INFORMATION > [VK45DE]

$>>$ INSPECTION END $\bf 7.$ CHECK THROTTLE POSITION SENSOR 2 GROUND CIRCUIT FOR OPEN AND SHORT	А
 Turn ignition switch OFF. Disconnect ECM harness connector. Check harness continuity between electric throttle control actuator terminal 4 and ECM terminal 66. Refer to Wiring Diagram. 	EC
Continuity should exist.	С
 Also check harness for short to ground and short to power. OK or NG 	D
OK >> GO TO 8. NG >> Repair open circuit or short to ground or short to power in harness or connectors. 8.CHECK THROTTLE POSITION SENSOR 2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT	Е
 Check harness continuity between ECM terminal 69 and electric throttle control actuator terminal 3. Refer to Wiring Diagram. 	F
Continuity should exist. 2. Also check harness for short to ground and short to power. OK or NG	G
OK >> GO TO 9. NG >> Repair open circuit or short to ground or short to power in harness or connectors. 9.CHECK THROTTLE POSITION SENSOR	Н
Refer to EC-837, "Component Inspection". OK or NG	I
OK $>>$ GO TO 11. NG $>>$ GO TO 10. 10. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR	J
 Replace the electric throttle control actuator. Perform <u>EC-706</u>, "<u>Throttle Valve Closed Position Learning</u>". Perform <u>EC-707</u>, "<u>Idle Air Volume Learning</u>". 	K
>> INSPECTION END 11.CHECK INTERMITTENT INCIDENT	L
Refer to EC-763, "Diagnosis Procedure".	M
>> INSPECTION END	Ν
Component Inspection	1.4
THROTTLE POSITION SENSOR	0
 Reconnect all harness connectors disconnected. Perform <u>EC-706</u>, "<u>Throttle Valve Closed Position Learning</u>". Turn ignition switch ON. Set selector lever to D position. 	Р

Revision: 2009 February **EC-837** 2008 M35/M45


DTC P0122, P0123 TP SENSOR

< SERVICE INFORMATION >

[VK45DE]

Check voltage between ECM terminals 50 (TP sensor 1 signal),
 (TP sensor 2 signal) and ground under the following conditions.

Terminal	Accelerator pedal	Voltage
50	Fully released	More than 0.36V
(Throttle position sensor 1)	Fully depressed	Less than 4.75V
69	Fully released	Less than 4.75V
(Throttle position sensor 2)	Fully depressed	More than 0.36V

- If NG, replace electric throttle control actuator and go to the next step.
- 7. Perform EC-706, "Throttle Valve Closed Position Learning".
- 8. Perform EC-707, "Idle Air Volume Learning".

Removal and Installation

INFOID:0000000002954847

ELECTRIC THROTTLE CONTROL ACTUATOR Refer to $\underline{\mathsf{EM-}177}$.

[VK45DE]

INFOID:0000000002954848

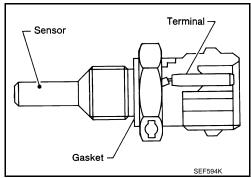
Α

EC

D

Е

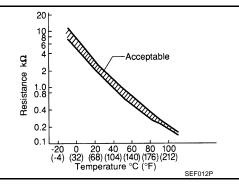
Н


DTC P0125 ECT SENSOR

Component Description

NOTE:

If DTC P0125 is displayed with P0117 or P0118, first perform the trouble diagnosis for DTC P0117 or P0118. Refer to EC-829, "DTC Confirmation Procedure".


The engine coolant temperature sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Engine coolant temperature °C (°F)	Voltage* V	Resistance $k\Omega$
-10 (14)	4.4	7.0 - 11.4
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

^{*:} This data is reference value and is measured between ECM terminal 73 (Engine coolant temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0125 0125	Insufficient engine coolant temperature for closed loop fuel control	 Voltage sent to ECM from the sensor is not practical, even when some time has passed after starting the engine. Engine coolant temperature is insufficient for closed loop fuel control. 	Harness or connectors (High resistance in the circuit) Engine coolant temperature sensor Thermostat

DTC Confirmation Procedure

CAUTION:

Be careful not to overheat engine.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-III

- 1. Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-III.
- Check that "COOLAN TEMP/S" is above 10°C (50°F). If it is above 10°C (50°F), the test result will be OK. If it is below 10°C (50°F), go to following step.

INFOID:0000000002954849

INFOID:0000000002954850

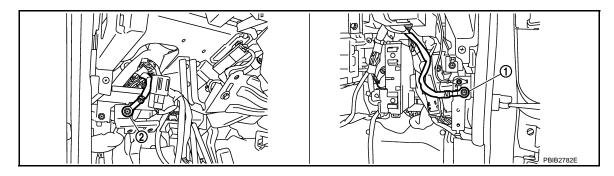
Ν

M

Р

EC-839 Revision: 2009 February 2008 M35/M45

- 4. Start engine and run it for 65 minutes at idle speed.
 - If "COOLAN TEMP/S" increases to more than 10°C (50°F) within 65 minutes, stop engine because the test result will be OK.
- 5. Check 1st trip DTC.
- 6. If 1st trip DTC is detected, go to EC-840, "Diagnosis Procedure".
- WITH GST


Follow the procedure "WITH CONSULT-III" above.

Diagnosis Procedure

INFOID:0000000002954851

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten ground screws on the body. Refer to EC-769, "Ground Inspection".

1. Body ground M70

2. Body ground M16

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK ENGINE COOLANT TEMPERATURE SENSOR

Refer to EC-840, "Component Inspection".

OK or NG

OK >> GO TO 3.

NG >> Replace engine coolant temperature sensor.

3. CHECK THERMOSTAT OPERATION

When the engine is cold [lower than 70°C (158°F)] condition, grasp lower radiator hose and confirm the engine coolant does not flow.

OK or NG

OK >> GO TO 4.

NG >> Repair or replace thermostat. Refer to <u>CO-53</u>.

4. CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

Refer to EC-830, "Wiring Diagram".

>> INSPECTION END

Component Inspection

INFOID:0000000002954852

ENGINE COOLANT TEMPERATURE SENSOR

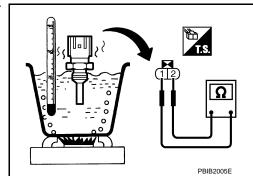
DTC P0125 ECT SENSOR

< SERVICE INFORMATION >

[VK45DE]

Α

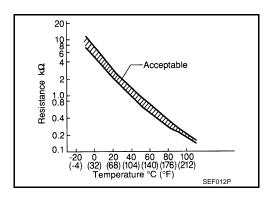
EC


C

D

Е

F


1. Check resistance between engine coolant temperature sensor terminals 1 and 2 as shown in the figure.

<Reference data>

Temperature °C (°F)	Resistance $k\Omega$
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.00
90 (194)	0.236 - 0.260

2. If NG, replace engine coolant temperature sensor.

INFOID:0000000002954853

Removal and Installation

ENGINE COOLANT TEMPERATURE SENSOR Refer to CO-53.

.

Н

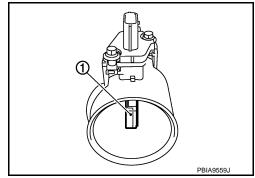
Κ

L

M

Ν

0


INFOID:0000000002954854

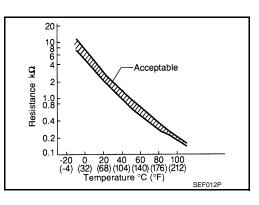
DTC P0127 IAT SENSOR

Component Description

The intake air temperature sensor is built-into mass air flow sensor (1). The sensor detects intake air temperature and transmits a signal to the ECM.

The temperature sensing unit uses a thermistor which is sensitive to the change in temperature. Electrical resistance of the thermistor decreases in response to the temperature rise.

<Reference data>


Intake air temperature °C (°F)	Voltage* V	Resistance kΩ
25 (77)	3.3	1.800 - 2.200
80 (176)	1.2	0.283 - 0.359

^{*:} This data is reference value and is measured between ECM terminal 34 (Intake air temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0127 0127	Intake air temperature too high	Rationally incorrect voltage from the sensor is sent to ECM, compared with the voltage signal from engine coolant temperature sensor.	Harness or connectors (The sensor circuit is open or shorted) Intake air temperature sensor

DTC Confirmation Procedure

INFOID:0000000002954856

INFOID:0000000002954855

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

CAUTION:

Always drive vehicle at a safe speed.

TESTING CONDITION:

This test may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

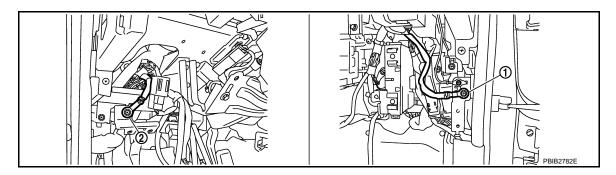
(II) WITH CONSULT-III

- 1. Wait until engine coolant temperature is less than 90°C (194°F)
- Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-III.
- c. Check the engine coolant temperature.
- d. If the engine coolant temperature is not less than 90°C (194°F), turn ignition switch OFF and cool down engine.
 - Perform the following steps before engine coolant temperature is above 90°C (194°F).
- 2. Turn ignition switch ON.

DTC P0127 IAT SENSOR

< SERVICE INFORMATION > [VK45DE] 3. Select "DATA MONITOR" mode with CONSULT-III.

- 4. Start engine.
- 5. Hold vehicle speed at more than 70 km/h (43 MPH) for 100 consecutive seconds.6. Check 1st trip DTC.
- 7. If 1st trip DTC is detected, go to EC-843, "Diagnosis Procedure".


WITH GST

Follow the procedure "WITH CONSULT-III" above.

Diagnosis Procedure

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten ground screws on the body. Refer to EC-769, "Ground Inspection".

1. Body ground M70

2. Body ground M16

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK INTAKE AIR TEMPERATURE SENSOR

Refer to EC-843, "Component Inspection".

OK or NG

OK >> GO TO 3.

NG >> Replace mass air flow sensor (with intake air temperature sensor).

3.check intermittent incident

Refer to EC-763, "Diagnosis Procedure".

Refer to EC-822, "Wiring Diagram".

>> INSPECTION END

Component Inspection

INTAKE AIR TEMPERATURE SENSOR

EC

Α

Е

F

D

INFOID:0000000002954857

G

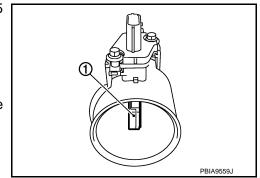
Н

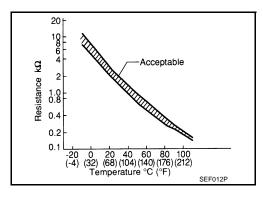
K

M

Ν

Р


INFOID:0000000002954858


Revision: 2009 February

1. Check resistance between mass air flow sensor (1) terminals 5 and 6 under the following conditions.

Intake air temperature °C (°F)	Resistance kΩ
25 (77)	1.800 - 2.200

2. If NG, replace mass air flow sensor (with intake air temperature sensor).

Removal and Installation

MASS AIR FLOW SENSOR Refer to EM-175.

INFOID:0000000002954859

DTC P0128 THERMOSTAT FUNCTION

< SERVICE INFORMATION >

[VK45DE]

DTC P0128 THERMOSTAT FUNCTION

On Board Diagnosis Logic

INFOID:0000000002954860

Engine coolant temperature has not risen enough to open the thermostat even though the engine has run long

This is due to a leak in the seal or the thermostat stuck open.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0128 0128	Thermostat function	The engine coolant temperature does not reach to specified temperature even though the engine has run long enough.	ThermostatLeakage from sealing portion of thermostatEngine coolant temperature sensor

DTC Confirmation Procedure

INFOID:0000000002954861

NOTE:

Check vehicle specifications and VIN, then select the procedure to be performed. (Refer to the table below.)

Vehicle specification	Vehicle serial number	Procedure	
Axle	veriicie seriai riuriibei		
2WD	Up to 500994	А	
ZWD	From 500995	В	
4WD	Up to 551363	A	
400	From 551364	В	

PROCEDURE A

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- For best results, perform at ambient temperature of -10°C (14°F) or higher.
- For best results, perform at engine coolant temperature of −10°C (14°F) to 52°C (126°F).
- Before performing the following procedure, do not fill with the fuel.
- (III) With CONSULT-III
- 1. Turn A/C switch OFF.
- Turn blower fan switch OFF.
- 3. Turn ignition switch ON.
- 4. Select "COOLAN TEMP/S" in "DATA MONITOR" mode with CONSULT-III.
- Check that the "COOLAN TEMP/S" is below 52°C (126°F).

If it is below 52°C (126°F), go to following step.

If it is above 52°C (126°F), cool down the engine to less than 52°C (126°F). Then go to next steps.

Start engine and let it idle for at least 30 minutes.

If "COOLAN TEMP/S" increases to more than 71°C (160°F) within 30 minutes, turn ignition switch OFF because the test result will be OK.

- 7. Check 1st trip DTC.
- If 1st trip DTC is detected, go to EC-846, "Diagnosis Procedure".

With GST

Follow the procedure "With CONSULT-III" above.

PROCEDURE B

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

For best results, perform at ambient temperature of -10°C (14°F) or higher.

EC-845 Revision: 2009 February 2008 M35/M45

EC

Α

D

Е

F

Н

Ν

DTC P0128 THERMOSTAT FUNCTION

< SERVICE INFORMATION >

[VK45DE]

- For best results, perform at engine coolant temperature of -10°C (14°F) to 56°C (133°F).
- Before performing the following procedure, do not fill with the fuel.

(II) With CONSULT-III

- Turn A/C switch OFF.
- Turn blower fan switch OFF.
- 3. Turn ignition switch ON.
- 4. Select "COOLAN TEMP/S" in "DATA MONITOR" mode with CONSULT-III.
- 5. Check that the "COOLAN TEMP/S" is below 56°C (133°F). If it is below 56°C (133°F), go to following step.

 If it is above 56°C (133°F), cool down the engine to less than 56°C (133°F). Then go to next steps.
- 6. Start engine and let it idle for at least 30 minutes.

If "COOLAN TEMP/S" increases to more than 75°C (167°F) within 30 minutes, turn ignition switch OFF because the test result will be OK.

- 7. Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-846</u>, "<u>Diagnosis Procedure</u>".

With GST

Follow the procedure "With CONSULT-III" above.

Diagnosis Procedure

INFOID:0000000002954862

1. CHECK ENGINE COOLANT TEMPERATURE SENSOR

Refer to EC-846, "Component Inspection".

OK or NG

OK >> GO TO 2.

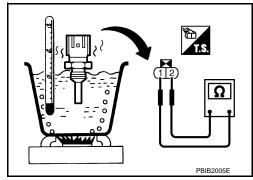
NG >> Replace engine coolant temperature sensor.

2. CHECK THERMOSTAT

Refer to CO-53, "Removal and Installation".

OK or NG

OK >> INSPECTION END


NG >> Replace thermostat.

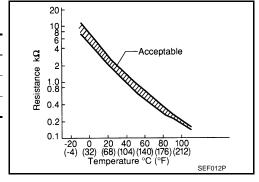
Component Inspection

INFOID:0000000002954863

ENGINE COOLANT TEMPERATURE SENSOR

1. Check resistance between engine coolant temperature sensor terminals 1 and 2 as shown in the figure.

DTC P0128 THERMOSTAT FUNCTION


< SERVICE INFORMATION >

[VK45DE]

P-P	ΔfΔ	ron	2	data>	
< □	HIH			UA14>	

Temperature °C (°F)	Resistance kΩ
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.0
90 (194)	0.236 - 0.260

2. If NG, replace engine coolant temperature sensor.

INFOID:0000000002954864

Removal and Installation

ENGINE COOLANT TEMPERATURE SENSOR Refer to <u>CO-53</u>.

F

Е

D

Α

EC

G

Н

J

K

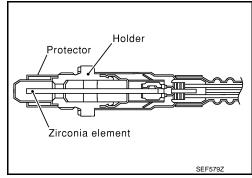
N

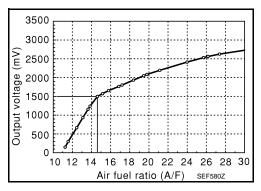
0

INFOID:0000000002954865

DTC P0130, P0150 A/F SENSOR 1

Component Description


The air fuel ratio (A/F) sensor 1 is a planar dual-cell limit current sensor. The sensor element of the A/F sensor 1 is the combination of a Nernst concentration cell (sensor cell) with an oxygen-pump cell,


which transports ions. It has a heater in the element.

The sensor is capable of precise measurement λ = 1, but also in the lean and rich range. Together with its control electronics, the sensor outputs a clear, continuous signal throughout a wide λ range (0.7 < λ < air).

The exhaust gas components diffuse through the diffusion gap at the electrode of the oxygen pump and Nernst concentration cell, where they are brought to thermodynamic balance.

An electronic circuit controls the pump current through the oxygen-pump cell so that the composition of the exhaust gas in the diffusion gap remains constant at λ = 1. Therefore, the A/F sensor 1 is able to indicate air/fuel ratio by this pumping of current. In addition, a heater is integrated in the sensor to ensure the required operating temperature of 700 - 800°C (1,292 - 1,472°F).

CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CO	SPECIFICATION	
A/F SEN1 (B1) A/F SEN1 (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	Fluctuates around 1.5 V

On Board Diagnosis Logic

INFOID:0000000002954867

INFOID:0000000002954866

To judge the malfunction, the diagnosis checks that the A/F signal computed by ECM from the A/F sensor 1 signal fluctuates according to fuel feedback control.

DTC No.	Trouble diagnosis name		DTC detecting condition	Possible Cause
P0130 0130 (Bank 1)	Air fuel ratio (A/F) sensor	A)	The A/F signal computed by ECM from the A/F sensor 1 signal is constantly in the range other than approx. 1.5V.	Harness or connectors [Air fuel ratio (A/F) sensor 1 circuit
P0150 0150 (Bank 2)	1 circuit	B)	The A/F signal computed by ECM from the A/F sensor 1 signal is constantly approx. 1.5V.	is open or shorted.] • Air fuel ratio (A/F) sensor 1

DTC Confirmation Procedure

INFOID:0000000002954868

Perform PROCEDURE FOR MALFUNCTION A first.

If the DTC cannot be confirmed, perform PROCEDURE FOR MALFUNCTION B.

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

PROCEDURE FOR MALFUNCTION A

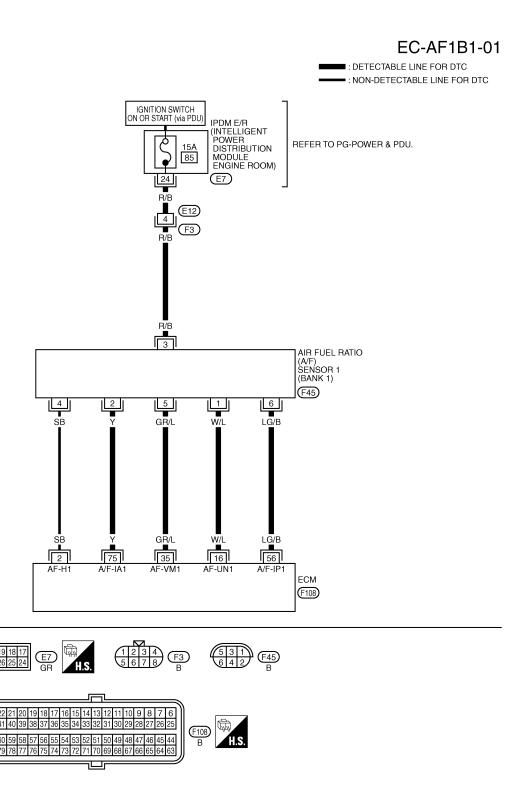
DTC P0130, P0150 A/F SENSOR 1 [VK45DE1 < SERVICE INFORMATION > Start engine and warm it up to normal operating temperature. Α Let engine idle for 2 minutes. Check 1st trip DTC. If 1st trip DTC is detected, go to EC-853, "Diagnosis Procedure". EC PROCEDURE FOR MALFUNCTION B **CAUTION:** Always drive vehicle at a safe speed. WITH CONSULT-III 1. Start engine and warm it up to normal operating temperature. D Select "A/F SEN1 (B1)" or "A/F SEN1 (B2)" in "DATA MONITOR" mode with CONSULT-III. Check "A/F SEN1 (B1)" or "A/F SEN1 (B2)" indication. If the indication is constantly approx. 1.5V and does not fluctuates, go to EC-853, "Diagnosis Procedure". Е If the indication fluctuates around 1.5V, go to next step. Select "A/F SEN1 (B1) P1276" (for DTC P0130) or "A/F SEN1 (B2) P1286" (for DTC P0150) of "A/F SEN1" in "DTC WORK SUPPORT" mode with CONSULT-III. F Touch "START". When the following conditions are met, "TESTING" will be displayed on the CONSULT-III screen. **ENG SPEED** 1,300 - 3,200 rpm VHCL SPEED SE More than 64 km/h (40 MPH) B/FUEL SCHDL 1.0 - 8.0 msec Н Selector lever D position If "TESTING" is not displayed after 20 seconds, retry from step 2. Release accelerator pedal fully. NOTE: Never apply brake during releasing the accelerator pedal. Make sure that "TESTING" changes to "COMPLETED". If "TESTING" changed to "OUT OF CONDITION", retry from step 6. Make sure that "OK" is displayed after touching "SELF-DIAG RESULT". K If "NG" is displayed, go to EC-853, "Diagnosis Procedure". **Overall Function Check** INFOID:0000000002954869 Use this procedure to check the overall function of the A/F sensor 1 circuit. During this check, a 1st trip DTC might not be confirmed. WITH GST M Start engine and warm it up to normal operating temperature.

- 2. Drive the vehicle at a speed of 80 km/h (50 MPH) for a few minutes in the suitable gear position.
- 3. Set D position, then release the accelerator pedal fully until the vehicle speed decreases to 50 km/h (30 MPH).

Ν

Р

NOTE:


Never apply brake during releasing the accelerator pedal.

- Repeat steps 2 to 3 for five times.
- 5. Stop the vehicle and turn ignition switch OFF.
- 6. Wait at least 10 seconds and restart engine.
- 7. Repeat steps 2 to 3 for five times.
- 8. Stop the vehicle and connect GST to the vehicle.
- Make sure that no DTC is displayed.
 If the DTC is displayed, go to <u>EC-853</u>, "<u>Diagnosis Procedure</u>".

Revision: 2009 February **EC-849** 2008 M35/M45

Wiring Diagram

BANK 1

TBWT1046E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III. CAUTION:

3

[VK45DE]

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
2	SB	A/F sensor 1 heater (bank 1)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V★ → 10.0V/Div 10 ms/Div T PBIB1584E
16	W/L			Approximately 3.1V
35	GR/L	A/F sensor 1 (bank 1)	[Engine is running] • Warm-up condition	Approximately 2.6V
56	LG/B		• Idle speed	Approximately 2.3V
75	Υ			Approximately 2.3V

 $[\]bigstar$: Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

EC

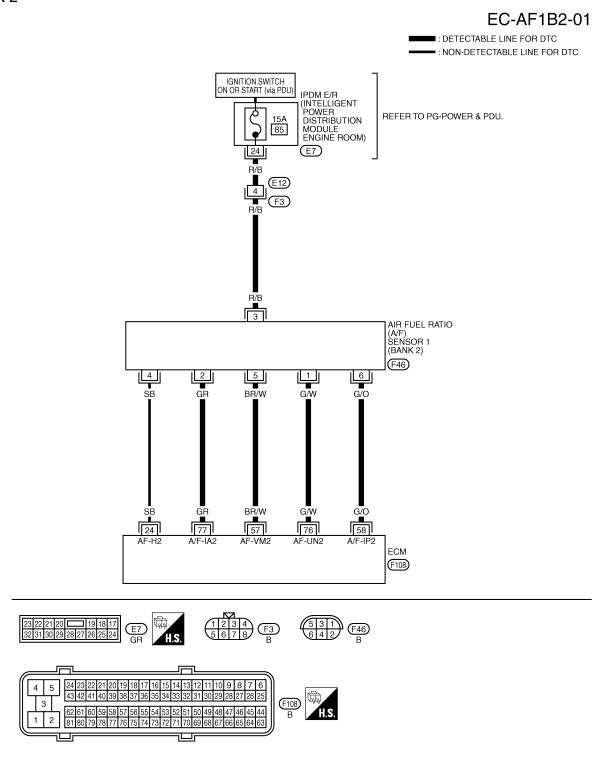
Α

D

Е

F

G


Н

VI

Ν

0

BANK 2

TBWT1047E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

INFOID:0000000002954871

Α

EC

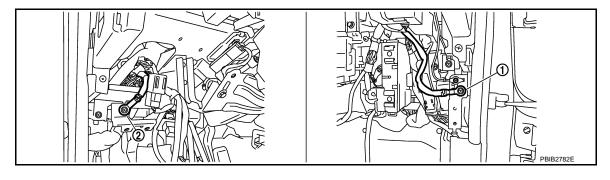
D

Е

Н

M

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
24	SB	A/F sensor 1 heater (bank 2)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V★ → 10.0V/Div 10 ms/Div T PBIB1584E
57	BR/W			Approximately 2.6V
58	G/O	A/F sensor 1 (bank 2)	[Engine is running] • Warm-up condition • Idle speed	Approximately 2.3V
76	G/W			Approximately 3.1V
77	GR			Approximately 2.3V


^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnosis Procedure

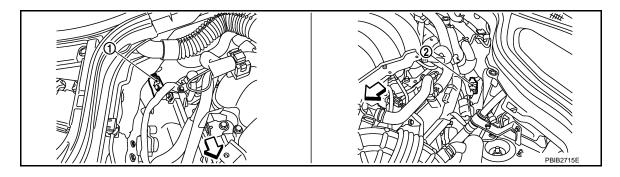
1. CHECK GROUND CONNECTIONS

1. Turn ignition switch OFF.

2. Loosen and retighten ground screws on the body. Refer to <u>EC-769</u>, "Ground Inspection".

1. Body ground M70

2. Body ground M16

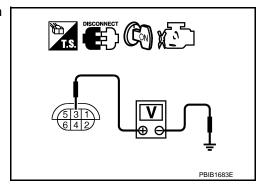

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK AIR FUEL RATIO (A/F) SENSOR 1 POWER SUPPLY CIRCUIT

1. Disconnect air fuel ratio (A/F) sensor 1 harness connector.


- A/F sensor 1 (bank 2) harness connector
- A/F sensor 1 (bank 1) harness connector

- 2. Turn ignition switch ON.
- 3. Check voltage between A/F sensor 1 terminal 3 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E12, F3
- IPDM E/R harness connector E7
- 15A fuse
- Harness for open or short between A/F sensor 1 and fuse

>> Repair or replace harness or connectors.

4. CHECK A/F SENSOR 1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between A/F sensor 1 terminal and ECM terminal as follows. Refer to Wiring Diagram.

	A/F sensor 1 terminal	ECM terminal
	1	16
Bank1	2	75
Danki	5	35
	6	56
	1	76
Bank 2	2	77
Dailk 2	5	57
	6	58

Continuity should exist.

Check harness continuity between the following terminals and ground.
 Refer to Wiring Diagram.

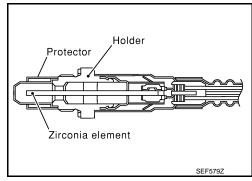
Ba	nk 1	Ba	nk 2
A/F sensor 1 terminal	ECM terminal	A/F sensor 1 terminal	ECM terminal
1	16	1	76
2	75	2	77
5	35	5	57
6	56	6	58

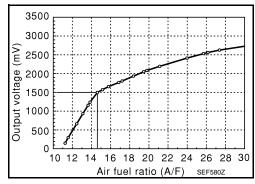
Continuity should not exist.

DTC P0130, P0150 A/F SENSOR 1	
< SERVICE INFORMATION > [VK45DE]	
5. Also check harness for short to power.	
OK or NG OK >> GO TO 5.	1
NG >> Repair open circuit or short to ground or short to power in harness or connectors.	
5. CHECK INTERMITTENT INCIDENT	E
Perform EC-763, "Diagnosis Procedure".	
OK or NG	(
OK >> GO TO 6. NG >> Repair or replace.	
6.REPLACE AIR FUEL RATIO (A/F) SENSOR 1	
Replace malfunctioning air fuel ratio (A/F) sensor 1.	
CAUTION:	
• Discard any A/F sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.	
• Before installing new A/F sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.	
>> INSPECTION END	
Removal and Installation	(
AIR FUEL RATIO (A/F) SENSOR 1	
Refer to EM-181.	

DTC P0131, P0151 A/F SENSOR 1

Component Description


INFOID:0000000002954873


The air fuel ratio (A/F) sensor 1 is a planar dual-cell limit current sensor. The sensor element of the A/F sensor 1 is the combination of a Nernst concentration cell (sensor cell) with an oxygen-pump cell, which transports ions. It has a heater in the element.

The sensor is capable of precise measurement λ = 1, but also in the lean and rich range. Together with its control electronics, the sensor outputs a clear, continuous signal throughout a wide λ range (0.7 < λ < air).

The exhaust gas components diffuse through the diffusion gap at the electrode of the oxygen pump and Nernst concentration cell, where they are brought to thermodynamic balance.

An electronic circuit controls the pump current through the oxygen-pump cell so that the composition of the exhaust gas in the diffusion gap remains constant at λ = 1. Therefore, the A/F sensor 1 is able to indicate air/fuel ratio by this pumping of current. In addition, a heater is integrated in the sensor to ensure the required operating temperature of 700 - 800°C (1,292 - 1,472°F).

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002954874

Specification data are reference values.

MONITOR ITEM	CC	SPECIFICATION	
A/F SEN1 (B1) A/F SEN1 (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	Fluctuates around 1.5 V

On Board Diagnosis Logic

INFOID:0000000002954875

To judge the malfunction, the diagnosis checks that the A/F signal computed by ECM from the A/F sensor 1 signal is not inordinately low.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible Cause
P0131 0131 (Bank 1) P0151 0151 (Bank 2)	Air fuel ratio (A/F) sensor 1 circuit low voltage	The A/F signal computed by ECM from the A/F sensor 1 signal is constantly approx. 0V.	Harness or connectors (The A/F sensor 1 circuit is open or shorted.) A/F sensor 1

DTC Confirmation Procedure

INFOID:0000000002954876

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V at idle.

(II) WITH CONSULT-III

1. Start engine and warm it up to normal operating temperature.

DTC P0131, P0151 A/F SENSOR 1

< SERVICE INFORMATION >

Select "A/F SEN1 (B1)" or "A/F SEN1 (B2)" in "DATA MONITOR" mode with CONSULT-III.

- Check "A/F SEN1 (B1)" or "A/F SEN1 (B2)" indication.
 If the indication is constantly approx. 0V, go to <u>EC-861, "Diagnosis Procedure"</u>.
 If the indication is not constantly approx. 0V, go to next step.
- 4. Turn ignition switch OFF, wait at least 10 seconds and then restart engine.
- 5. Drive and accelerate vehicle to more than 40 km/h (25 MPH) within 20 seconds after restarting engine.
- 6. Maintain the following conditions for about 20 consecutive seconds.

ENG SPEED	1,000 - 3,200 rpm
VHCL SPEED SE	More than 40 km/h (25 MPH)
B/FUEL SCHDL	1.5 - 9.0 msec
Gear position	Suitable position

NOTE:

- Keep the accelerator pedal as steady as possible during the cruising.
- If this procedure is not completed within 1 minute after restarting engine at step 4, return to step 4.
- 7. Check 1st trip DTC.
- 8. If 1st trip DTC is displayed, go to EC-861, "Diagnosis Procedure".
- WITH GST

Follow the procedure "WITH CONSULT-III" above.

EC

Α

[VK45DE]

C

D

Е

F

G

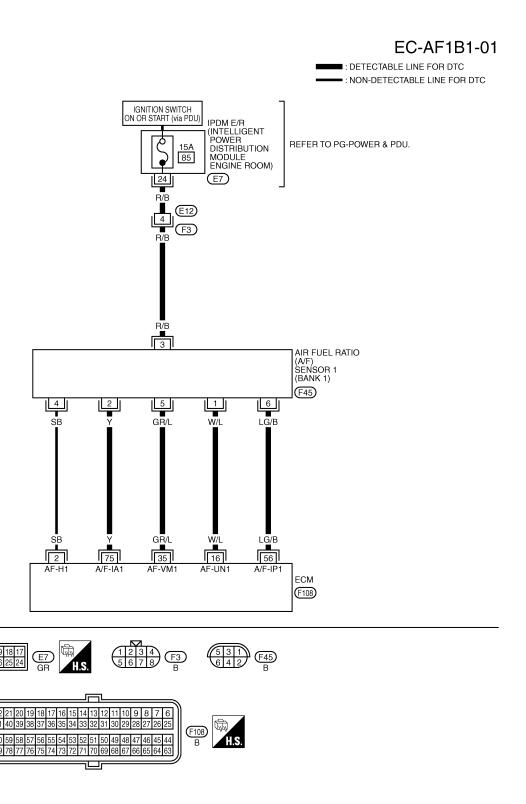
Н

K

L

M

Ν


0

3

[VK45DE]

Wiring Diagram

BANK 1

TBWT1046E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III. CAUTION:

DTC P0131, P0151 A/F SENSOR 1

< SERVICE INFORMATION >

[VK45DE]

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
2	SB	A/F sensor 1 heater (bank 1)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V★ → 10.0V/Div 10 ms/Div T PBIB1584E
16	W/L			Approximately 3.1V
35	GR/L	A/E concer 1 (book 1)	[Engine is running]	Approximately 2.6V
56	56 LG/B A/F sensor 1 (bank 1)	Warm-up conditionIdle speed	Approximately 2.3V	
75	Υ			Approximately 2.3V

 $[\]bigstar$: Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Е

F

D

Α

G

Н

1

,


L

M

Ν

0

BANK 2

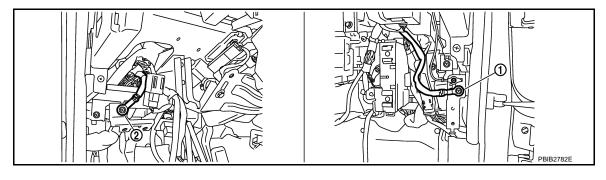
TBWT1047E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
24	SB	A/F sensor 1 heater (bank 2)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V★ → 10.0V/Div 10 ms/Div T PBIB1584E
57	BR/W			Approximately 2.6V
58	G/O	A/F aggregat (/bank 2)	[Engine is running]Warm-up conditionIdle speed	Approximately 2.3V
76	G/W	A/F sensor 1 (bank 2)		Approximately 3.1V
77	GR			Approximately 2.3V


^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnosis Procedure

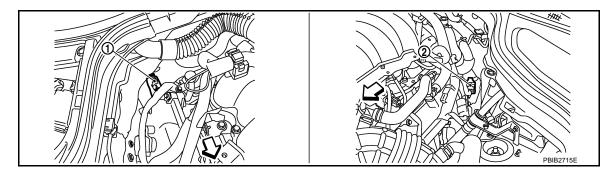
1. CHECK GROUND CONNECTIONS

1. Turn ignition switch OFF.

2. Loosen and retighten ground screws on the body. Refer to <u>EC-769</u>, "Ground Inspection".

1. Body ground M70

2. Body ground M16


OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK AIR FUEL RATIO (A/F) SENSOR 1 POWER SUPPLY CIRCUIT

1. Disconnect air fuel ratio (A/F) sensor 1 harness connector.

Revision: 2009 February **EC-861** 2008 M35/M45

EC

Α

D

Е

F

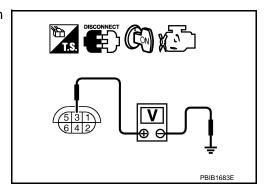
INFOID:00000000002954878

Н

1 \

.

M


- A/F sensor 1 (bank 2) harness connector
- 2. A/F sensor 1 (bank 1) harness connector

- 2. Turn ignition switch ON.
- 3. Check voltage between A/F sensor 1 terminal 3 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E12, F3
- IPDM E/R harness connector E7
- 15A fuse
- Harness for open or short between A/F sensor 1 and fuse

>> Repair or replace harness or connectors.

4. CHECK A/F SENSOR 1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between A/F sensor 1 terminal and ECM terminal as follows. Refer to Wiring Diagram.

	A/F sensor 1 terminal	ECM terminal	
	1	16	
Bank1	2	75	
Danki	5	35	
	6	56	
Bank 2	1	76	
	2	77	
	5	57	
	6	58	

Continuity should exist.

Check harness continuity between the following terminals and ground.
 Refer to Wiring Diagram.

Bank 1		Bank 2	
A/F sensor 1 terminal	ECM terminal	A/F sensor 1 terminal	ECM terminal
1	16	1	76
2	75	2	77
5	35	5	57
6	56	6	58

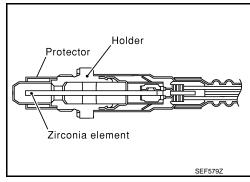
Continuity should not exist.

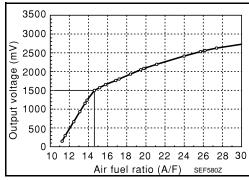
DTC P0131, P0151 A/F SENSOR 1	
< SERVICE INFORMATION > [VK45DE]	
5. Also check harness for short to power.	Δ.
OK or NG	Α
OK >> GO TO 5. NG >> Repair open circuit or short to ground or short to power in harness or connectors.	
5. CHECK INTERMITTENT INCIDENT	EC
Perform EC-763, "Diagnosis Procedure".	
OK or NG	С
OK >> GO TO 6.	
NG >> Repair or replace.	
6.REPLACE AIR FUEL RATIO (A/F) SENSOR 1	D
Replace malfunctioning air fuel ratio (A/F) sensor 1. CAUTION:	
• Discard any A/F sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a	Е
hard surface such as a concrete floor; use a new one. • Before installing new A/F sensor, clean exhaust system threads using Oxygen Sensor Thread	
Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.	F
>> INSPECTION END	0
Removal and Installation	G
AIR FUEL RATIO (A/F) SENSOR 1	
Refer to <u>EM-181</u> .	Н
	J
	0
	K
	L
	M
	Ν
	0
	Р

INFOID:0000000002954880

DTC P0132, P0152 A/F SENSOR 1

Component Description


The air fuel ratio (A/F) sensor 1 is a planar dual-cell limit current sensor. The sensor element of the A/F sensor 1 is the combination of a


which transports ions. It has a heater in the element. The sensor is capable of precise measurement λ = 1, but also in the lean and rich range. Together with its control electronics, the sensor outputs a clear, continuous signal throughout a wide λ range (0.7 < λ < air).

Nernst concentration cell (sensor cell) with an oxygen-pump cell,

The exhaust gas components diffuse through the diffusion gap at the electrode of the oxygen pump and Nernst concentration cell, where they are brought to thermodynamic balance.

An electronic circuit controls the pump current through the oxygen-pump cell so that the composition of the exhaust gas in the diffusion gap remains constant at λ = 1. Therefore, the A/F sensor 1 is able to indicate air/fuel ratio by this pumping of current. In addition, a heater is integrated in the sensor to ensure the required operating temperature of 700 - 800°C (1,292 - 1,472°F).

CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
A/F SEN1 (B1) A/F SEN1 (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	Fluctuates around 1.5 V

On Board Diagnosis Logic

INFOID:0000000002954882

INFOID:0000000000295488

To judge the malfunction, the diagnosis checks that the A/F signal computed by ECM from the A/F sensor 1 signal is not inordinately high.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible Cause
P0132 0132 (Bank 1)	Air fuel ratio (A/F) sensor 1	The A/F signal computed by ECM from the A/F	Harness or connectors (The A/F sensor 1 circuit is open or
P0152 0152 (Bank 2)	circuit high voltage	sensor 1 signal is constantly approx. 5V.	shorted.) • A/F sensor 1

DTC Confirmation Procedure

INFOID:0000000002954883

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V at idle.

(II) WITH CONSULT-III

1. Start engine and warm it up to normal operating temperature.

DTC P0132, P0152 A/F SENSOR 1

< SERVICE INFORMATION >

2. Select "A/F SEN1 (B1)" or "A/F SEN1 (B2)" in "DATA MONITOR" mode with CONSULT-III.

- Check "A/F SEN1 (B1)" or "A/F SEN1 (B2)" indication.
 If the indication is constantly approx. 5V, go to <u>EC-869</u>, "<u>Diagnosis Procedure</u>".
 If the indication is not constantly approx. 5V, go to next step.
- 4. Turn ignition switch OFF, wait at least 10 seconds and then restart engine.
- 5. Drive and accelerate vehicle to more than 40 km/h (25 MPH) within 20 seconds after restarting engine.
- 6. Maintain the following conditions for about 20 consecutive seconds.

ENG SPEED	1,000 - 3,200 rpm
VHCL SPEED SE	More than 40 km/h (25 MPH)
B/FUEL SCHDL	1.5 - 9.0 msec
Gear position	Suitable position

NOTE:

- · Keep the accelerator pedal as steady as possible during the cruising.
- If this procedure is not completed within 1 minute after restarting engine at step 4, return to step 4.
- 7. Check 1st trip DTC.
- 8. If 1st trip DTC is displayed, go to EC-869, "Diagnosis Procedure".
- WITH GST

Follow the procedure "WITH CONSULT-III" above.

EC

Α

[VK45DE]

C

D

Е

F

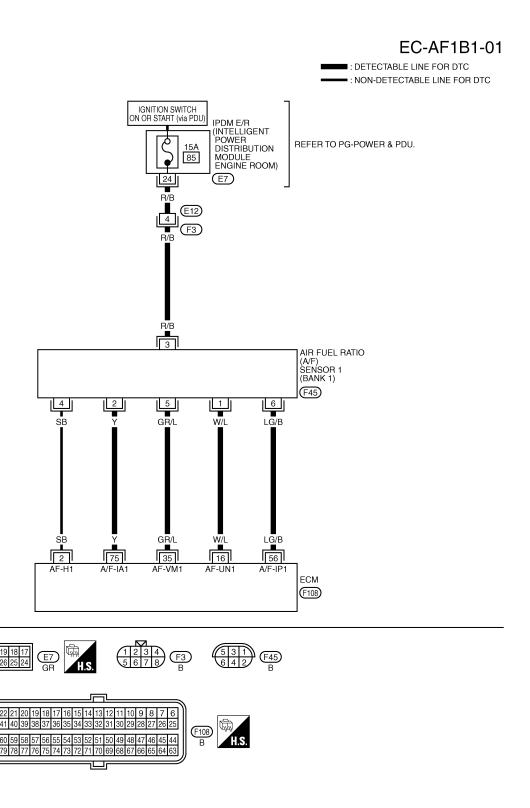
G

Н

Κ

L

M


Ν

O

Wiring Diagram

INFOID:0000000002954884

BANK 1

TBWT1046E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III. CAUTION:

3

DTC P0132, P0152 A/F SENSOR 1

< SERVICE INFORMATION >

[VK45DE]

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
2	SB	A/F sensor 1 heater (bank 1)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V★ → 10.0V/Div 10 ms/Div T PBIB1584E
16	W/L			Approximately 3.1V
35	GR/L		[Engine is running]	Approximately 2.6V
56	LG/B	A/F sensor 1 (bank 1)	Warm-up condition Idle speed	Approximately 2.3V
75	Υ			Approximately 2.3V

 $[\]bigstar$: Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

А

D

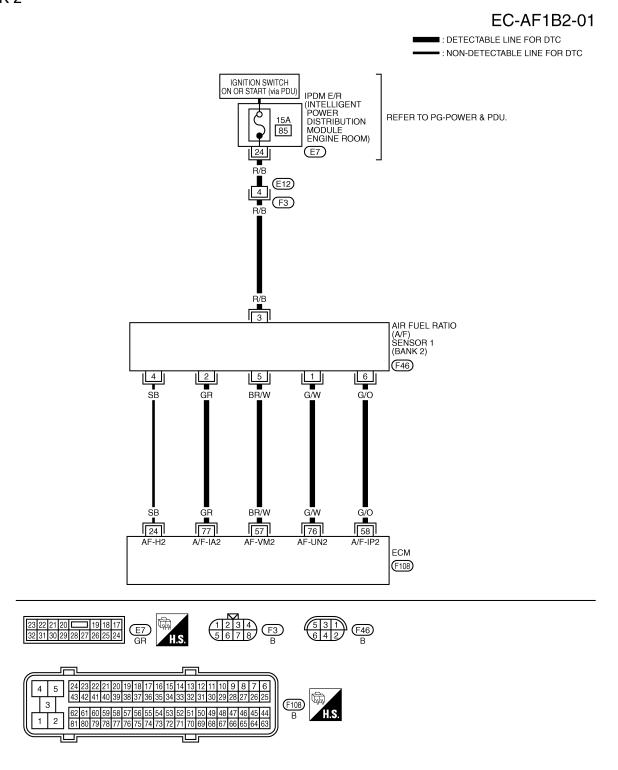
Е

F

G

Н

<


L

VI

Ν

0

BANK 2

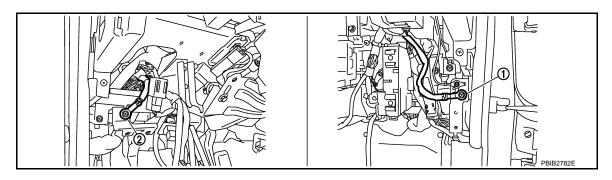
TBWT1047E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
24	SB	A/F sensor 1 heater (bank 2)	[Engine is running]Warm-up conditionIdle speed	Approximately 5V★ → 10.0V/Div 10 ms/Div T PBIB1584E
57	BR/W			Approximately 2.6V
58	G/O	A/F sensor 1 (bank 2)	[Engine is running]	Approximately 2.3V
76	G/W	All School I (Dalik 2)	Warm-up condition Idle speed	Approximately 3.1V
77	GR			Approximately 2.3V


^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnosis Procedure

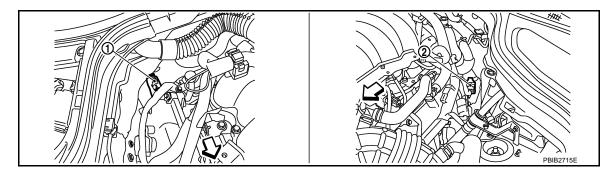
1. CHECK GROUND CONNECTIONS

1. Turn ignition switch OFF.

2. Loosen and retighten ground screws on the body. Refer to <u>EC-769</u>, "Ground Inspection".

1. Body ground M70

2. Body ground M16


OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK AIR FUEL RATIO (A/F) SENSOR 1 POWER SUPPLY CIRCUIT

1. Disconnect air fuel ratio (A/F) sensor 1 harness connector.

Revision: 2009 February **EC-869** 2008 M35/M45

EC

Α

D

Е

F

INFOID:00000000002954885

Н

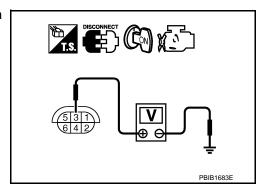
r\

L

M

IN

0


- A/F sensor 1 (bank 2) harness connector
- 2. A/F sensor 1 (bank 1) harness connector

- 2. Turn ignition switch ON.
- 3. Check voltage between A/F sensor 1 terminal 3 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E12, F3
- IPDM E/R harness connector E7
- 15A fuse
- Harness for open or short between A/F sensor 1 and fuse

>> Repair or replace harness or connectors.

4. CHECK A/F SENSOR 1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between A/F sensor 1 terminal and ECM terminal as follows. Refer to Wiring Diagram.

	A/F sensor 1 terminal	ECM terminal
	1	16
Bank1	2	75
Baliki	5	35
	6	56
	1	76
Bank 2	2	77
Dalik 2	5	57
	6	58

Continuity should exist.

Check harness continuity between the following terminals and ground.
 Refer to Wiring Diagram.

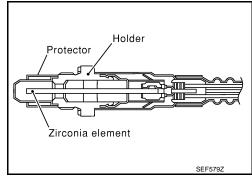
Bank 1		Bai	nk 2
A/F sensor 1 terminal	ECM terminal	A/F sensor 1 terminal	ECM terminal
1	16	1	76
2	75	2	77
5	35	5	57
6	56	6	58

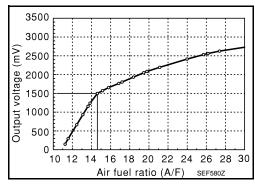
Continuity should not exist.

DTC P0132, P0152 A/F SENSOR 1	
< SERVICE INFORMATION > [VK45DE]	
5. Also check harness for short to power.	А
<u>OK or NG</u> OK >> GO TO 5.	\wedge
NG >> Repair open circuit or short to ground or short to power in harness or connectors.	
5. CHECK INTERMITTENT INCIDENT	EC
Perform EC-763, "Diagnosis Procedure".	
OK or NG	С
OK >> GO TO 6. NG >> Repair or replace.	
6. REPLACE AIR FUEL RATIO (A/F) SENSOR 1	D
Replace malfunctioning air fuel ratio (A/F) sensor 1.	
• Discard any A/F sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a	Е
hard surface such as a concrete floor; use a new one.	
• Before installing new A/F sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.	F
>> INSPECTION END	
Removal and Installation	G
AIR FUEL RATIO (A/F) SENSOR 1	
Refer to EM-181.	Н
	J
	K
	L
	M
	IVI
	Ν
	0
	Р

INFOID:0000000002954887

DTC P0133, P0153 A/F SENSOR 1


Component Description


The air fuel ratio (A/F) sensor 1 is a planar dual-cell limit current sensor. The sensor element of the A/F sensor 1 is the combination of a Nernst concentration cell (sensor cell) with an oxygen-pump cell, which transports ions. It has a heater in the element.

The sensor is capable of precise measurement λ = 1, but also in the lean and rich range. Together with its control electronics, the sensor outputs a clear, continuous signal throughout a wide λ range (0.7 < λ < air).

The exhaust gas components diffuse through the diffusion gap at the electrode of the oxygen pump and Nernst concentration cell, where they are brought to thermodynamic balance.

An electronic circuit controls the pump current through the oxygen-pump cell so that the composition of the exhaust gas in the diffusion gap remains constant at λ = 1. Therefore, the A/F sensor 1 is able to indicate air/fuel ratio by this pumping of current. In addition, a heater is integrated in the sensor to ensure the required operating temperature of 700 - 800°C (1,292 - 1,472°F).

CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
A/F SEN1 (B1) A/F SEN1 (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	Fluctuates around 1.5 V

On Board Diagnosis Logic

INFOID:0000000002954889

INFOID:0000000002954888

To judge the malfunction of A/F sensor 1, this diagnosis measures response time of the A/F signal computed by ECM from the A/F sensor 1 signal. The time is compensated by engine operating (speed and load), fuel feedback control constant, and the A/F sensor 1 temperature index. Judgment is based on whether the compensated time (the A/F signal cycling time index) is inordinately long or not.

DTC No. Trouble dia	agnosis name	DTC detecting condition	Possible Cause
P0133 0133 (Bank 1) Air fuel ratio circuit slow of the circuit sl	(A/F) sensor 1 response	The response of the A/F signal computed by ECM from A/F sensor 1 signal takes more than the specified time.	Harness or connectors (The A/F sensor 1 circuit is open or shorted.) A/F sensor 1 A/F sensor 1 heater Fuel pressure Fuel injector Intake air leaks Exhaust gas leaks PCV Mass air flow sensor

DTC Confirmation Procedure

INFOID:0000000002954890

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

DTC P0133, P0153 A/F SENSOR 1

[VK45DE] < SERVICE INFORMATION >

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

WITH CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- Let engine idle for 1 minute.
- Select "A/F SEN1(B1) P1278/P1279" (for DTC P0133) or "A/F SEN1(B2) P1288/P1289" (for DTC P0153) of "A/F SEN1" in "DTC WORK SUPPORT" mode with CONSULT-III.
- Touch "START".
 - If "COMPLETED" appears on CONSULT-III screen, go to step 10.
 - If "COMPLETED" does not appear on CONSULT-III screen, go to the following step.
- 7. After perform the following procedure, "TESTING" will be displayed on the CONSULT-III screen.
- Increase the engine speed up to 4,000 to 5,000 rpm and keep it for 10 seconds.
- Fully release accelerator pedal and then let engine idle for about 10 seconds. If "TESTING" is not displayed after 10 seconds, refer to EC-755, "Inspection Procedure".
- 8. Wait for about 20 seconds at idle at under the condition that "TESTING" is displayed on the CONSULT-III screen.
- Make sure that "TESTING" changes to "COMPLETED". If "TESTING" changed to "OUT OF CONDITION", refer to EC-755, "Inspection Procedure".
- 10. Make sure that "OK" is displayed after touching "SELF-DIAG RESULT". If "NG" is displayed, go to EC-877, "Diagnosis Procedure".

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- Select Service \$01 with GST.
- 3. Calculate the total value of "Short term fuel trim" and "Long term fuel trim" indications.

Make sure that the total percentage should be within $\pm 15\%$.

If OK, go to the following step.

- If NG, check the following.
- Intake air leaks
- Exhaust gas leaks
- Incorrect fuel pressure
- Lack of fuel
- Fuel injector
- Incorrect PCV hose connection
- PCV valve
- Mass air flow sensor
- Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- Let engine idle for 1 minute.
- 7. Increase the engine speed up to 4,000 to 5,000 rpm and keep it for 10 seconds.
- 8. Fully release accelerator pedal and then let engine idle for about 1 minute.
- Check 1st trip DTC.
- 10. If 1st trip DTC is displayed, go to EC-877, "Diagnosis Procedure".

EC

Α

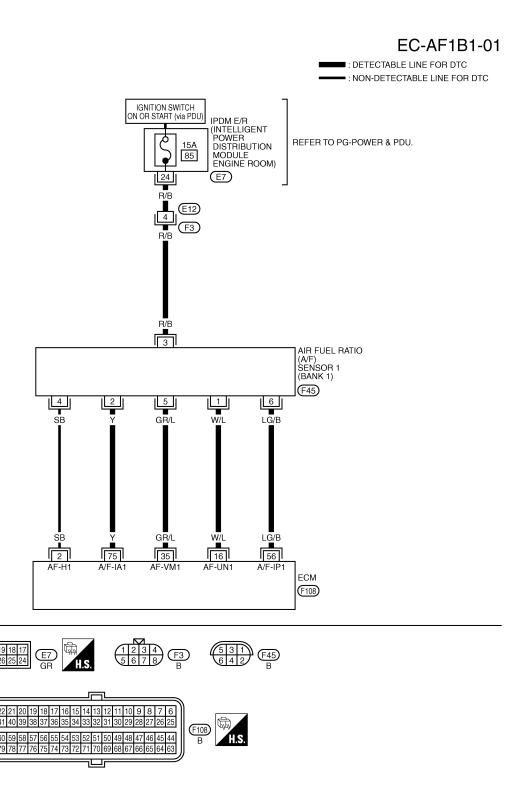
D

Е

F

Н

L


M

Ν

Wiring Diagram

INFOID:0000000002954891

BANK 1

TBWT1046E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III. CAUTION:

3

[VK45DE]

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
2	SB	A/F sensor 1 heater (bank 1)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V★ → 10.0V/Div 10 ms/Div T PBIB1584E
16	W/L			Approximately 3.1V
35	GR/L	A/F sensor 1 (bank 1)	[Engine is running] • Warm-up condition	Approximately 2.6V
56	LG/B	ANT SELISOF I (DATIK I)	Idle speed	Approximately 2.3V
75	Υ			Approximately 2.3V

 $[\]bigstar$: Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

EC

Α

Е

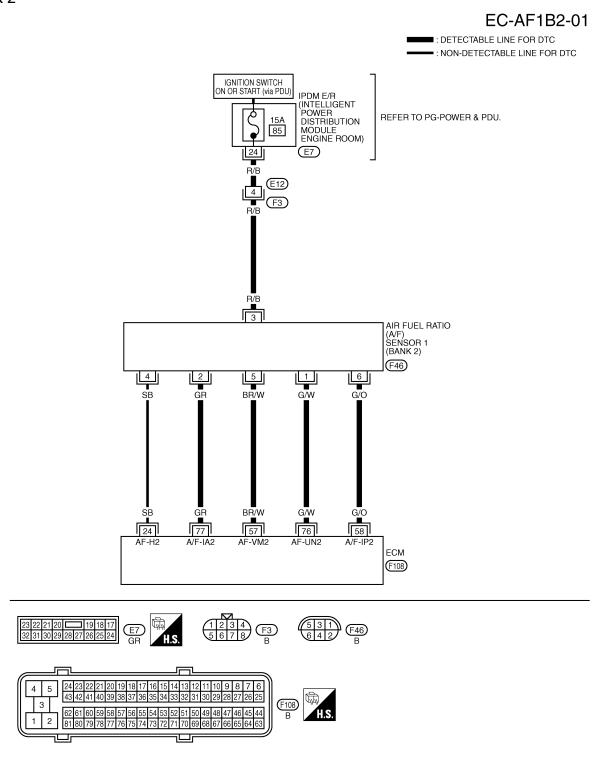
D

F

G

Н

K


L

VI

Ν

0

BANK 2

TBWT1047E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

INFOID:0000000002954892

Α

EC

D

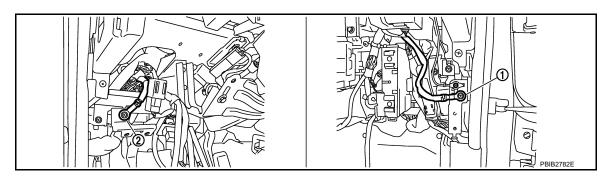
Е

F

Н

M

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
24	SB	A/F sensor 1 heater (bank 2)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V★ → 10.0V/Div 10 ms/Div T PBIB1584E
57	BR/W			Approximately 2.6V
58	G/O	A/F sensor 1 (bank 2)	[Engine is running]	Approximately 2.3V
76	G/W	AVE SELISOL I (DALIK 2)	Warm-up condition Idle speed	Approximately 3.1V
77	GR			Approximately 2.3V


^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnosis Procedure

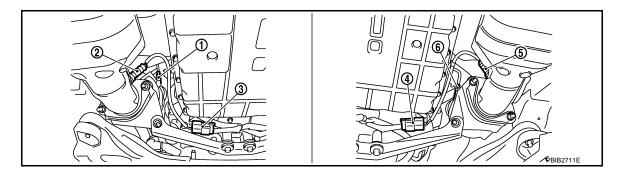
1. CHECK GROUND CONNECTIONS

1. Turn ignition switch OFF.

2. Loosen and retighten ground screws on the body. Refer to <u>EC-769</u>, "Ground Inspection".

1. Body ground M70

2. Body ground M16


OK or NG

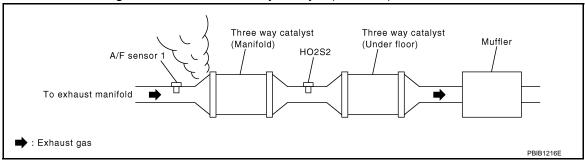
OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.RETIGHTEN AIR FUEL RATIO (A/F) SENSOR 1

1. Loosen and retighten the air fuel ratio (A/F) sensor 1.

- 1. A/F sensor 1 (bank 1)
- 2. Heated oxygen sensor 2 (bank 1)
- Heated oxygen sensor 2 (bank 1) harness connector


- 4. Heated oxygen sensor 2 (bank 2) harness connector
- 5. Heated oxygen sensor 2 (bank 2)
- 6. A/F sensor 1 (bank 2)

Tightening torque: 50 N-m (5.1 kg-m, 37 ft-lb)

>> GO TO 3.

3. CHECK EXHAUST GAS LEAK

- 1. Start engine and run it at idle.
- Listen for an exhaust gas leak before three way catalyst (manifold).

OK or NG

OK >> GO TO 4.

NG >> Repair or replace.

4. CHECK FOR INTAKE AIR LEAK

Listen for an intake air leak after the mass air flow sensor.

OK or NG

OK >> GO TO 5.

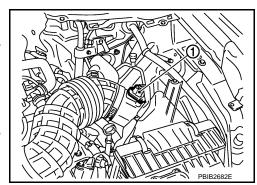
NG >> Repair or replace.

5.CLEAR THE SELF-LEARNING DATA

With CONSULT-III

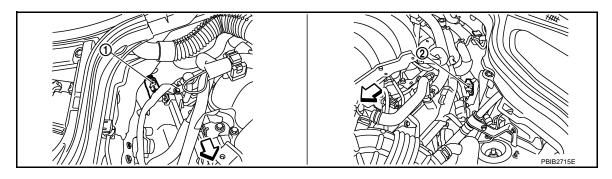
- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-III.
- Clear the self-learning control coefficient by touching "CLEAR" or "START".
- 4. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0171, P172, P0174 or P0175 detected? Is it difficult to start engine?


Without CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF.
- Disconnect mass air flow sensor (1) harness connector.
- Restart engine and let it idle for at least 5 seconds.
- Stop engine and reconnect mass air flow sensor harness connector.
- 6. Make sure DTC P0102 is displayed.
- 7. Erase the DTC.
- 8. Make sure DTC P0000 is displayed.
- Run engine for at least 10 minutes at idle speed.
 Is the 1st trip DTC P0171, P0172, P0174 or P0175 detected?
 Is it difficult to start engine?

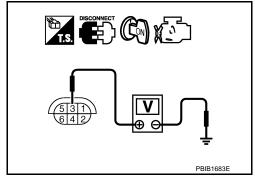
Yes or No


Yes >> Perform trouble diagnosis for DTC P0171, P0174 or P0172, P0175. Refer to <u>EC-918</u>. "<u>Diagnosis Procedure</u>" or <u>EC-929</u>. "<u>Diagnosis Procedure</u>".

No >> GO TO 6.

6. CHECK A/F SENSOR 1 POWER SUPPLY CIRCUIT

1. Disconnect A/F sensor 1 harness connector.


- A/F sensor 1 (bank 2) harness connector
- 2. A/F sensor 1 (bank 1) harness connector

- 2. Turn ignition switch ON.
- 3. Check voltage between A/F sensor 1 terminal 3 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E12, F3
- IPDM E/R harness connector E7
- 15A fuse
- Harness for open or short between A/F sensor 1 and fuse

>> Repair or replace harness or connectors.

$8.\mathsf{CHECK}$ A/F SENSOR 1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between A/F sensor 1 terminal and ECM terminal as follows. Refer to Wiring Diagram.

	A/F sensor 1 terminal	ECM terminal
	1	16
Bank1	2	75
Danki	5	35
	6	56
	1	76
Bank 2	2	77
Dalik 2	5	57
	6	58

Continuity should exist.

EC

C

D

Е

F

G

Н

Κ

_

M

Ν

C

< SERVICE INFORMATION >

 Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

Ba	nk 1	Ba	nk 2
A/F sensor 1 terminal	ECM terminal	A/F sensor 1 terminal	ECM terminal
1	16	1	76
2	75	2	77
5	35	5	57
6	56	6	58

Continuity should not exist.

5. Also check harness for short to power.

OK or NG

OK >> GO TO 9.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

9.CHECK AIR FUEL RATIO (A/F) SENSOR 1 HEATER

Refer to EC-791, "Component Inspection".

OK or NG

OK >> GO TO 10. NG >> GO TO 13.

10. CHECK MASS AIR FLOW SENSOR

Refer to EC-812, "Component Inspection".

OK or NG

OK >> GO TO 11.

NG >> Replace mass air flow sensor.

11. CHECK PCV VALVE

Refer to EC-673, "Component Inspection".

OK or NG

OK >> GO TO 12.

NG >> Repair or replace PCV valve.

12. CHECK INTERMITTENT INCIDENT

Perform EC-763, "Diagnosis Procedure".

OK or NG

OK >> GO TO 13.

NG >> Repair or replace.

13.REPLACE AIR FUEL RATIO (A/F) SENSOR 1

Replace malfunctioning air fuel ratio (A/F) sensor 1.

CAUTION:

- Discard any A/F sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new A/F sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

>> INSPECTION END

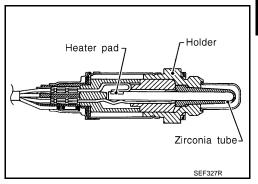
Removal and Installation

emoval and installation

AIR FUEL RATIO (A/F) SENSOR 1 Refer to EM-181.

INFOID:0000000002954894

DTC P0137, P0157 HO2S2


Component Description

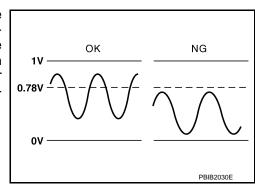
The heated oxygen sensor 2, after three way catalyst (manifold), monitors the oxygen level in the exhaust gas on each bank.

Even if switching characteristics of the air fuel ratio (A/F) sensor 1 are shifted, the air-fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 is not used for engine control operation.

INFOID:0000000002954895


CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
HO2S2 (B1) HO2S2 (B2)	Revving engine from idle to 3,000 rpm quickly after the following conditions are met.	0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S2 MNTR (B1) HO2S2 MNTR (B2)	 Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	LEAN ←→ RICH

On Board Diagnosis Logic

The heated oxygen sensor 2 has a much longer switching time between rich and lean than the air fuel ratio (A/F) sensor 1. The oxygen storage capacity of the three way catalyst (manifold) causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2, ECM monitors whether the maximum voltage of the sensor is sufficiently high during the various driving condition such as fuel-cut.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0137 0137 (Bank 1)	Heated oxygen sensor 2	The maximum voltage from the sensor is not	Harness or connectors (The sensor circuit is open or shorted) Heated oxygen sensor 2
P0157 0157 (Bank 2)	circuit low voltage	reached to the specified voltage.	Fuel pressureFuel injectorIntake air leaks

DTC Confirmation Procedure

NOTE:

If DTC confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

WITH CONSULT-III

TESTING CONDITION:

For better results, perform "DTC WORK SUPPORT" at a temperature of 0 to 30 °C (32 to 86 °F).

1. Start engine and warm it up to the normal operating temperature.

Revision: 2009 February **EC-881** 2008 M35/M45

D

Α

EC

Е

F

G

1

INFOID:0000000002954896

J

K

Ν

0

INFOID:0000000002954897

< SERVICE INFORMATION >

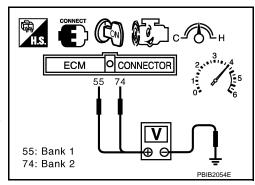
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Select "COOLAN TEMP/S" in "DATA MONITOR" mode with CONSULT-III.
- 6. Make sure that "COOLAN TEMP/S" indicates more than 70°C (158°F).

 If not, warm up engine and go to next step when "COOLAN TEMP/S" indication reaches to 70°C (158°F).
- 7. Open engine hood.
- Select "HO2S2 (B1) P1147" (for DTC P0137) or "HO2S2 (B2) P1167" (for DTC P0157) of "HO2S2" in "DTC WORK SUPPORT" mode with CONSULT-III.
- 9. Follow the instruction of CONSULT-III.

NOTE:

It will take at most 10 minutes until "COMPLETED" is displayed.

- 10. Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS".
 - If "NG" is displayed, refer to EC-886, "Diagnosis Procedure".
 - If "CAN NOT BE DIAGNOSED" is displayed, perform the following.
- a. Turn ignition switch OFF and leave the vehicle in a cool place (soak the vehicle).
- b. Return to step 1.

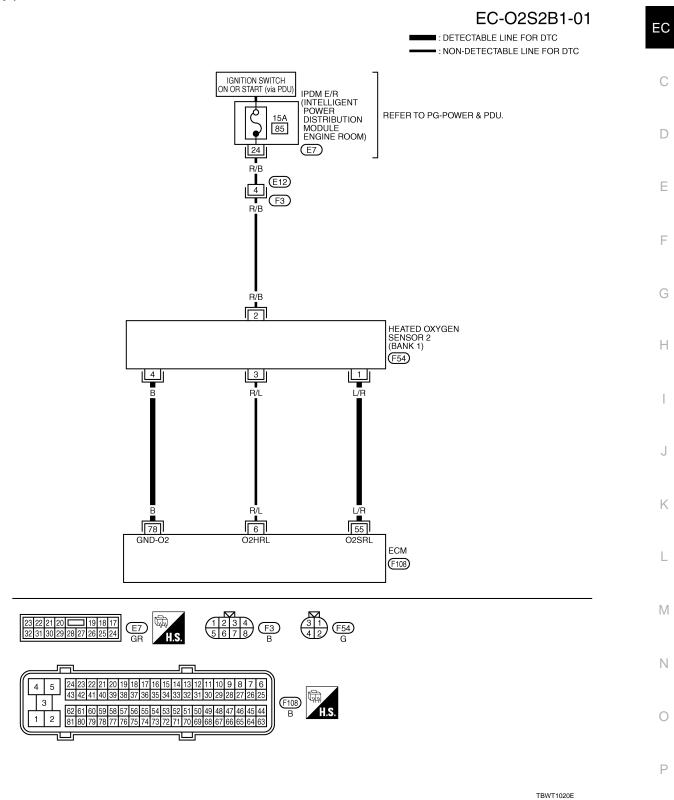

Overall Function Check

INFOID:0000000002954898

Use this procedure to check the overall function of the heated oxygen sensor 2 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Set voltmeter probes between ECM terminal 55 [HO2S2 (B1) signal] or 74 [HO2S2 (B2) signal] and ground.
- Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be above 0.78V at least once during this procedure.
 - If the voltage can be confirmed in step 6, step 7 is not necessary.
- Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position.
 - The voltage should be above 0.78V at least once during this procedure.
- 8. If NG, go to EC-886, "Diagnosis Procedure".



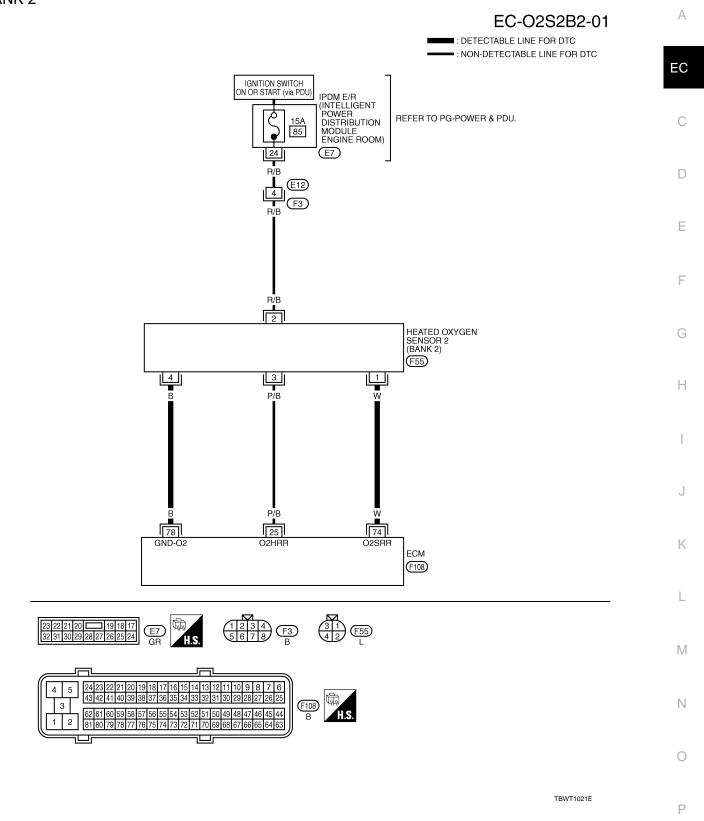
[VK45DE]

Α

Wiring Diagram

BANK 1

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

< SERVICE INFORMATION >

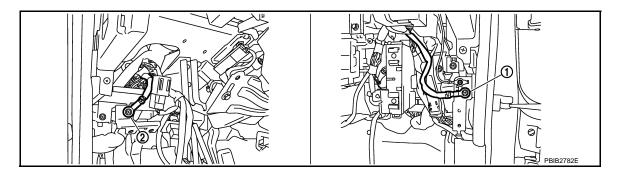
TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
6	R/L	Heated oxygen sensor 2 heater (bank 1)	 [Engine is running] Engine speed: Below 3,600 rpm after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - 1.0V
		 [Ignition switch: ON] Engine: Stopped [Engine is running] Engine speed: Above 3,600 rpm 	BATTERY VOLTAGE (11 - 14V)	
55	L/R	Heated oxygen sensor 2 (bank 1)	 [Engine is running] Revving engine from idle to 3,000 rpm quickly after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V
78	В	Sensor ground (Heated oxygen sensor 2)	[Engine is running]Warm-up conditionIdle speed	Approximately 0V

[VK45DE]

BANK 2

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
25	P/B	Heated oxygen sensor 2 heater (bank 2)	 [Engine is running] Engine speed: Below 3,600 rpm after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - 1.0V
			[Ignition switch: ON] • Engine: Stopped [Engine is running] • Engine speed: Above 3,600 rpm	BATTERY VOLTAGE (11 - 14V)
74	W	Heated oxygen sensor 2 (bank 2)	 [Engine is running] Revving engine from idle to 3,000 rpm quickly after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V
78	В	Sensor ground (Heated oxygen sensor 2)	[Engine is running]Warm-up conditionIdle speed	Approximately 0V

Diagnosis Procedure

INFOID:0000000002954900

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten ground screws on the body. Refer to EC-769, "Ground Inspection".

- 1. Body ground M70
- 2. Body ground M16

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CLEAR THE SELF-LEARNING DATA

(II) With CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-III.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 or P0174 detected? Is it difficult to start engine?

⊗ Without CONSULT-III

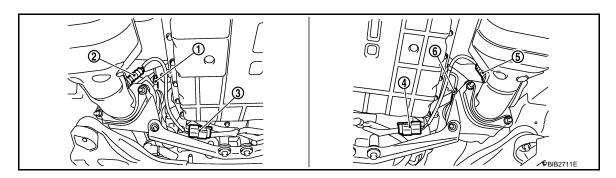
1. Start engine and warm it up to normal operating temperature.

< SERVICE INFORMATION >

- Turn ignition switch OFF.
- Disconnect mass air flow sensor (1) harness connector, and 3. restart and run engine for at least 5 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure DTC P0102 is displayed.
- Erase DTC.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0171 or P0174 detected? Is it difficult to start engine?

Yes or No


Yes >> Perform trouble diagnosis for DTC P0171 or P0174. Refer to EC-918, "Diagnosis Procedure".

No >> GO TO 3.

3.CHECK HO2S2 GROUND CIRCUIT FOR OPEN AND SHORT

Turn ignition switch OFF.

Disconnect heated oxygen sensor 2 harness connector.

- 1. Air fuel ratio (A/F) sensor 1 (bank 1) 2. Heated oxygen sensor 2 (bank 1)
- 3. Heated oxygen sensor 2 (bank 1) harness connector

- Heated oxygen sensor 2 (bank 2) harness connector
- Heated oxygen sensor 2 (bank 2)
- 6. Air fuel ratio (A/F) sensor 1 (bank 2)

- Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 78 and HO2S2 terminal 4. Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

$oldsymbol{4}.$ CHECK HO2S2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Check harness continuity between ECM terminal and HO2S2 terminal as follows. Refer to Wiring Diagram.

DTC	Tern	Bank	
ы	ECM	Sensor	Dank
P0137	55	1	1
P0157	74	1	2

Continuity should exist.

Check harness continuity between the following terminals and ground.

EC

Α

D

Е

F

Н

Ν

INFOID:0000000002954901

Refer to Wiring Diagram.

DTC	Tern	Bank		
ыс	ECM	Sensor	Dank	
P0137	55	1	1	
P0157	74	1	2	

Continuity should not exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK HEATED OXYGEN SENSOR 2

Refer to EC-888, "Component Inspection".

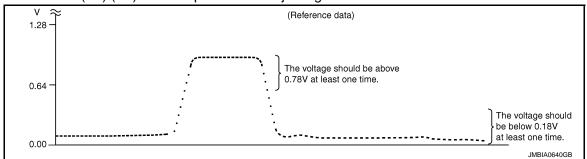
OK or NG

OK >> GO TO 6.

NG >> Replace malfunctioning heated oxygen sensor 2.

6. CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".


>> INSPECTION END

Component Inspection

HEATED OXYGEN SENSOR 2

(P) With CONSULT-III

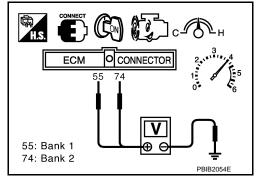
- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSULT-III.
- Check "HO2S2 (B1)/(B2)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

"HO2S2 (B1)/(B2)" should be above 0.78V at least once when the "FUEL INJECTION" is +25%. "HO2S2 (B1)/(B2)" should be below 0.18V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

- 1. Start engine and warm it up to the normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Set voltmeter probes between ECM terminal 55 [HO2S2 (B1) signal] or 74 [HO2S2 (B2) signal] and ground.
- Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be above 0.78V at least once during this procedure.
 - If the voltage is above 0.78V at step 6, step 7 is not necessary.
- Keep vehicle at idling for 10 minutes, then check voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position.
 - The voltage should be below 0.18V at least once during this procedure.
- 8. If NG, replace heated oxygen sensor 2.


CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

HEATED OXYGEN SENSOR 2

Refer to EX-3.

EC

Α

C

D

Е

Н

INFOID:0000000002954902

J

K

M

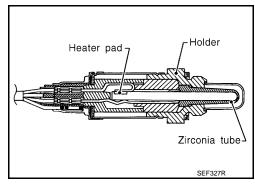
L

Ν

0

INFOID:0000000002954903

DTC P0138, P0158 HO2S2


Component Description

The heated oxygen sensor 2, after three way catalyst (manifold), monitors the oxygen level in the exhaust gas on each bank.

Even if switching characteristics of the air fuel ratio (A/F) sensor 1 are shifted, the air-fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

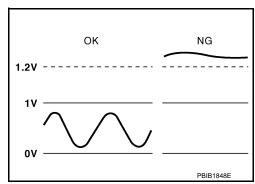
Under normal conditions the heated oxygen sensor 2 is not used for engine control operation.

INFOID:0000000002954904

CONSULT-III Reference Value in Data Monitor Mode

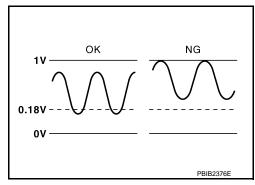
Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
HO2S2 (B1) HO2S2 (B2)	Revving engine from idle to 3,000 rpm quickly after the following conditions are met.	0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S2 MNTR (B1) HO2S2 MNTR (B2)	 Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	$LEAN \longleftrightarrow RICH$


On Board Diagnosis Logic

INFOID:0000000002954905

The heated oxygen sensor 2 has a much longer switching time between rich and lean than the air fuel ratio (A/F) sensor 1. The oxygen storage capacity of the three way catalyst (manifold) causes the longer switching time.


MALFUNCTION A

To judge the malfunctions of heated oxygen sensor 2, ECM monitors whether the voltage is unusually high during the various driving condition such as fuel-cut.

MALFUNCTION B

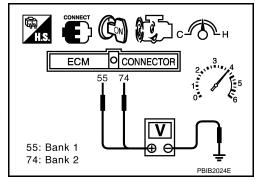
To judge the malfunctions of heated oxygen sensor 2, ECM monitors whether the minimum voltage of sensor is sufficiently low during the various driving condition such as fuel-cut.

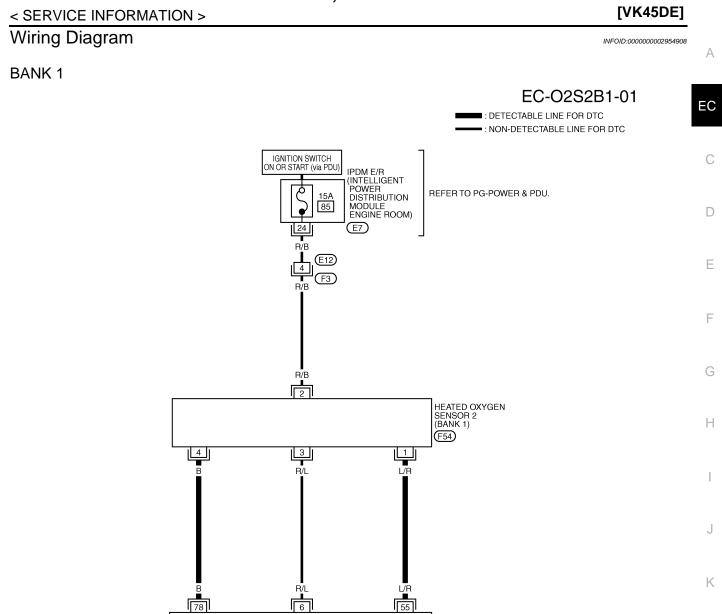
Р

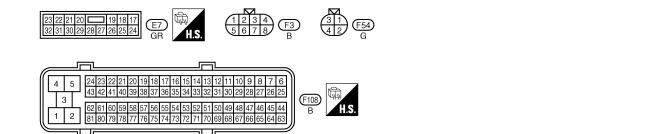
INFOID:0000000002954907

DTC No.	Trouble diagnosis name		DTC detecting condition	Possible cause	А
P0138 0138 (Bank 1)		A)	An excessively high voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted) Heated oxygen sensor 2 	EC
P0158 0158 (Bank 2)	Heated oxygen sensor 2 circuit high voltage	В)	The minimum voltage from the sensor is not reached to the specified voltage.	 Harness or connectors (The sensor circuit is open or shorted) Heated oxygen sensor 2 Fuel pressure Fuel injector 	С
OTC Cor	nfirmation Proced	lure		INFOID:000000002954906	D
lf 1st trip [NOTE:		med	, perform PROCEDURE FOR MALI		Е
	conds before conduct		peen previously conducted, always to ne next test.	urn ignition switch OFF and wait at	
PROCEDI	JRE FOR MALFUN	CTIC	ON A		F
2. Turn ig 3. Start e	nition switch OFF and ngine and keep the en	l wait gine	e normal operating temperature. at least 10 seconds. speed between 3,500 and 4,000 rpm	for at least 1 minute under no load.	G
4. Let engine idle for 2 minutes. 5. Check 1st trip DTC.				Н	
6. If 1st tr	rip DTC is detected, go	o to E	EC-896, "Diagnosis Procedure".		
PROCEDI	JRE FOR MALFUN	CTIC	ON B		ı
With CO	NSULT-III CONDITION:				
For better I. Start e	results, perform "DT ngine and warm it up t	to the	ORK SUPPORT" at a temperature normal operating temperature.	of 0 to 30 °C (32 to 86 °F).	J
_	inition switch OFF and		at least 10 seconds. speed between 3,500 and 4,000 rpm	for at least 1 minute under no load	K
	gine idle for 1 minute.	girie	speed between 3,300 and 4,000 ipin	Tot at least 1 milliate under no load.	11
			ATA MONITOR" mode with CONSUL		L
			'S" indicates more than 70°C (158°F) next step when "COOLAN TEMP/S"		_
•	engine hood.				M
	"HO2S2 (B1) P1146" NORK SUPPORT" mo		DTC P0138) or "HO2S2 (B2) P116 vith CONSULT-III.	6" (for DTC P0158) of "HO2S2" in	IVI
NOTE:			T-III. il "COMPLETED" is displayed.		Ν
I0. Make s If "NG"	sure that "OK" is displating the last sure that "OK" is displayed, refer to l	ayed EC-8	after touching "SELF-DIAG RESULT 96, "Diagnosis Procedure". displayed, perform the following.	S".	0
			e the vehicle in a cool place (soak th	e vehicle).	
					-

Overall Function Check


Return to step 1.


PROCEDURE FOR MALFUNCTION B


Use this procedure to check the overall function of the heated oxygen sensor 2 circuit. During this check, a 1st trip DTC might not be confirmed.

With GST

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Set voltmeter probes between ECM terminal 55 [HO2S2 (B1) signal] or 74 [HO2S2 (B2) signal] and ground.
- 6. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.)
 The voltage should be below 0.18V at least once during this procedure.
 - If the voltage can be confirmed in step 6, step 7 is not necessary.
- 7. Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position.
 - The voltage should be below 0.18V at least once during this procedure.
- 8. If NG, go to EC-896. "Diagnosis Procedure".

ECM (F108)

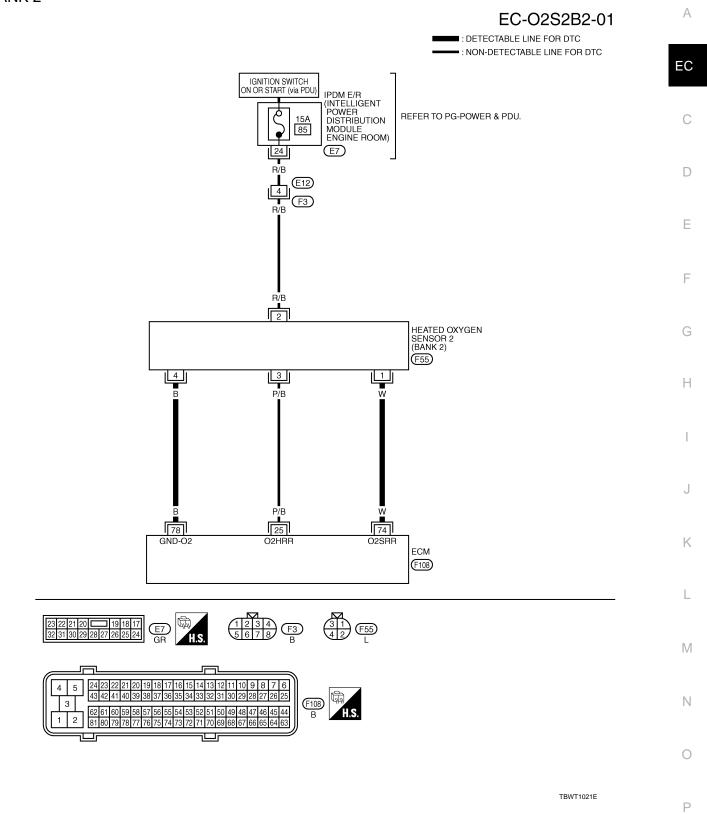
TBWT1020E

M

Ν

Ρ

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

< SERVICE INFORMATION >

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
6	R/L	Heated oxygen sensor 2 heater (bank 1)	 [Engine is running] Engine speed: Below 3,600 rpm after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - 1.0V
		 [Ignition switch: ON] Engine: Stopped [Engine is running] Engine speed: Above 3,600 rpm 	BATTERY VOLTAGE (11 - 14V)	
55	L/R	Heated oxygen sensor 2 (bank 1)	 [Engine is running] Revving engine from idle to 3,000 rpm quickly after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V
78	В	Sensor ground (Heated oxygen sensor 2)	[Engine is running]Warm-up conditionIdle speed	Approximately 0V

[VK45DE]

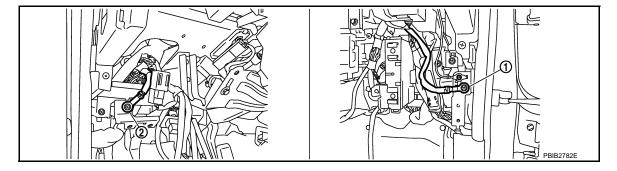
BANK 2

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
25	P/B	Heated oxygen sensor 2 heater (bank 2)	 [Engine is running] Engine speed: Below 3,600 rpm after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - 1.0V
		[Ignition switch: ON] • Engine: Stopped [Engine is running] • Engine speed: Above 3,600 rpm	BATTERY VOLTAGE (11 - 14V)	
74	W	Heated oxygen sensor 2 (bank 2)	 [Engine is running] Revving engine from idle to 3,000 rpm quickly after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V
78	В	Sensor ground (Heated oxygen sensor 2)	[Engine is running]Warm-up conditionIdle speed	Approximately 0V


Diagnosis Procedure

INFOID:0000000002954909

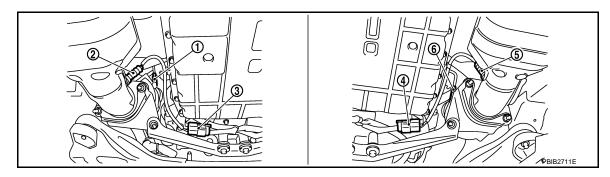
PROCEDURE FOR MALFUNCTION A

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten ground screws on the body. Refer to <u>EC-769</u>, "Ground Inspection".

1. Body ground M70

2. Body ground M16


OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK HO2S2 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect heated oxygen sensor 2 harness connector.

- Air fuel ratio (A/F) sensor 1 (bank 1) 2.
- Heated oxygen sensor 2 (bank 1)
- Heated oxygen sensor 2 (bank 1) harness connector

- 4. Heated oxygen sensor 2 (bank 2) harness connector
- Heated oxygen sensor 2 (bank 2)
- 6. Air fuel ratio (A/F) sensor 1 (bank 2)

- Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 78 and HO2S2 terminal 4. Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 3.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

3.CHECK HO2S2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Check harness continuity between ECM terminal and HO2S2 terminal as follows. Refer to Wiring Diagram.

DTC	Tern	Bank	
ыс	ECM	Sensor	Dalik
P0138	55	1	1
P0158	74	1	2

Continuity should exist.

Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

DTC	Tern	Bank	
ыс	ECM	Sensor	Dalik
P0138	55	1	1
P0158	74	1	2

Continuity should not exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK HO2S2 CONNECTOR FOR WATER

Check connectors for water.

Water should not exist.

EC-897 Revision: 2009 February 2008 M35/M45

EC

Α

D

Е

F

Н

Ν

< SERVICE INFORMATION >

OK or NG

OK >> GO TO 5.

NG >> Repair or replace harness or connectors.

5.CHECK HEATED OXYGEN SENSOR 2

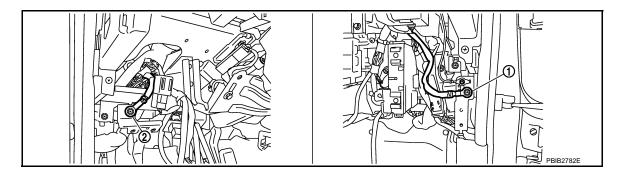
Refer to EC-900, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace malfunctioning heated oxygen sensor 2.

6. CHECK INTERMITTENT INCIDENT


Refer to EC-763, "Diagnosis Procedure".

>> INSPECTION END

PROCEDURE FOR MALFUNCTION B

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten ground screws on the body. Refer to EC-769, "Ground Inspection".

1. Body ground M70

2. Body ground M16

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CLEAR THE SELF-LEARNING DATA

(I) With CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "ŠELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-III.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0172 or P0175 detected? Is it difficult to start engine?

⋈ Without CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.

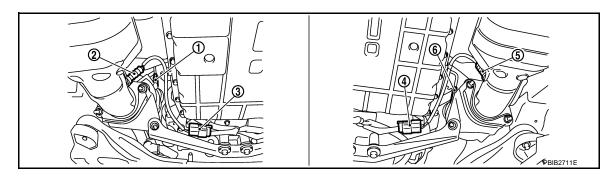
[VK45DE] < SERVICE INFORMATION >

Disconnect mass air flow sensor (1) harness connector, and restart and run engine for at least 5 seconds at idle speed.

- Stop engine and reconnect mass air flow sensor harness connector.
- Make sure DTC P0102 is displayed.
- Erase the DTC.
- Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0172 or P0175 detected?

Is it difficult to start engine?

Yes or No


Yes >> Perform trouble diagnosis for DTC P0172, P0175. Refer to EC-929, "Diagnosis Procedure".

No >> GO TO 3.

3.CHECK HO2S2 GROUND CIRCUIT FOR OPEN AND SHORT

Turn ignition switch OFF.

2. Disconnect heated oxygen sensor 2 harness connector.

- Air fuel ratio (A/F) sensor 1 (bank 1) Heated oxygen sensor 2 (bank 1)
 - 5. Heated oxygen sensor 2 (bank 2)
- 3. Heated oxygen sensor 2 (bank 1) harness connector
 - 6. Air fuel ratio (A/F) sensor 1 (bank 2)

Disconnect ECM harness connector.

4. Heated oxygen sensor 2 (bank 2)

harness connector

Check harness continuity between ECM terminal 78 and HO2S2 terminal 4. Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

f 4.CHECK HO2S2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Check harness continuity between ECM terminal and HO2S2 terminal as follows. Refer to Wiring Diagram.

DTC	Terminals		Bank
	ECM	Sensor	Dank
P0138	55	1	1
P0158	74	1	2

Continuity should exist.

Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

EC

Α

D

Е

Ν

DTC	Terminals		Bank
	ECM	Sensor	Dalik
P0138	55	1	1
P0158	74	1	2

Continuity should not exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK HEATED OXYGEN SENSOR 2

Refer to EC-900, "Component Inspection".

OK or NG

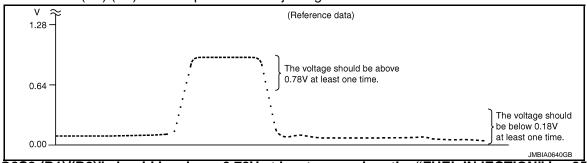
OK >> GO TO 6.

NG >> Replace malfunctioning heated oxygen sensor 2.

6.CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

>> INSPECTION END


Component Inspection

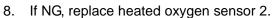
INFOID:0000000002954910

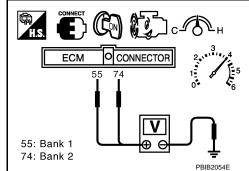
HEATED OXYGEN SENSOR 2

(P) With CONSULT-III

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- Let engine idle for 1 minute.
- Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSULT-III.
- Check "HO2S2 (B1)/(B2)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

"HO2S2 (B1)/(B2)" should be above 0.78V at least once when the "FUEL INJECTION" is +25%. "HO2S2 (B1)/(B2)" should be below 0.18V at least once when the "FUEL INJECTION" is -25%.


CAUTION


- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

₩ Without CONSULT-III

1. Start engine and warm it up to the normal operating temperature.

- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Set voltmeter probes between ECM terminal 55 [HO2S2 (B1) signal] or 74 [HO2S2 (B2) signal] and ground.
- 6. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be above 0.78V at least once during this procedure.
 - If the voltage is above 0.78V at step 6, step 7 is not necessary.
- Keep vehicle at idling for 10 minutes, then check voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position.
 - The voltage should be below 0.18V at least once during this procedure.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation

INFOID:0000000002954911

EC

D

Е

F

K

L

M

Ν

Р

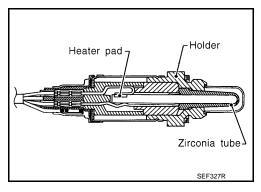
HEATED OXYGEN SENSOR 2

Refer to EX-3.

Revision: 2009 February EC-901

INFOID:0000000002954912

DTC P0139, P0159 HO2S2


Component Description

The heated oxygen sensor 2, after three way catalyst (manifold), monitors the oxygen level in the exhaust gas on each bank.

Even if switching characteristics of the air fuel ratio (A/F) sensor 1 are shifted, the air-fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 is not used for engine control operation.

INFOID:0000000002954913

CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
HO2S2 (B1) HO2S2 (B2)	Revving engine from idle up to 3,000 rpm quickly after the following conditions are met.	0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S2 MNTR (B1) HO2S2 MNTR (B2)	 Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	$LEAN \longleftrightarrow RICH$

On Board Diagnosis Logic

INFOID:0000000002954914

The heated oxygen sensor 2 has a much longer switching time between rich and lean than the air fuel ratio (A/F) sensor 1. The oxygen storage capacity of the three way catalyst (manifold) causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2, ECM monitors whether the switching response of the sensor's voltage is faster than specified during the various driving condition such as fuel-cut.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0139 0139 (Bank 1)	Heated oxygen sensor 2	It takes more time for the sensor to respond be-	Harness or connectors (The sensor circuit is open or shorted) Heated oxygen sensor 2
P0159 0159 (Bank 2)	circuit slow response	tween rich and lean than the specified time.	Fuel pressureFuel injectorIntake air leaks

DTC Confirmation Procedure

INFOID:0000000002954915

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

WITH CONSULT-III

TESTING CONDITION:

For better results, perform "DTC WORK SUPPORT" at a temperature of 0 to 30 °C (32 to 86 °F).

1. Start engine and warm it up to the normal operating temperature.

< SERVICE INFORMATION > [VK45DE]

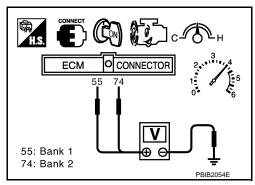
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Select "COOLAN TEMP/S" in "DATA MONITOR" mode with CONSULT-III.
- Make sure that "COOLAN TEMP/S" indicates more than 70°C (158°F).
 If not, warm up engine and go to next step when "COOLAN TEMP/S" indication reaches to 70°C (158°F).
- 7. Open engine hood.
- 8. Select "HO2S2 (B1) P0139" or "HO2S2 (B2) P0159" of "HO2S2" in "DTC WORK SUPPORT" mode with CONSULT-III.
- Follow the instruction of CONSULT-III.

NOTE:

It will take at most 10 minutes until "COMPLETED" is displayed.

- Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS".
 If "NG" is displayed, refer to <u>EC-907</u>, "<u>Diagnosis Procedure</u>".
 If "CAN NOT BE DIAGNOSED" is displayed, perform the following.
- a. Turn ignition switch OFF and leave the vehicle in a cool place (soak the vehicle).
- b. Return to step 1.

Overall Function Check


Use this procedure to check the overall function of the heated oxygen sensor 2 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- Set voltmeter probes between ECM terminal 55 [HO2S2 (B1) signal] or 74 [HO2S2 (B2) signal] and ground.
- Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.)

 A change of voltage should be more than 0.12V for 1 sec-
 - ond during this procedure.

 If the voltage can be confirmed in step 6, step 7 is not nec-
 - essary.
- Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position.
 - A change of voltage should be more than 0.12V for 1 second during this procedure.
- 8. If NG, go to EC-907, "Diagnosis Procedure".

EC

D

Е

F

INFOID:0000000002954916

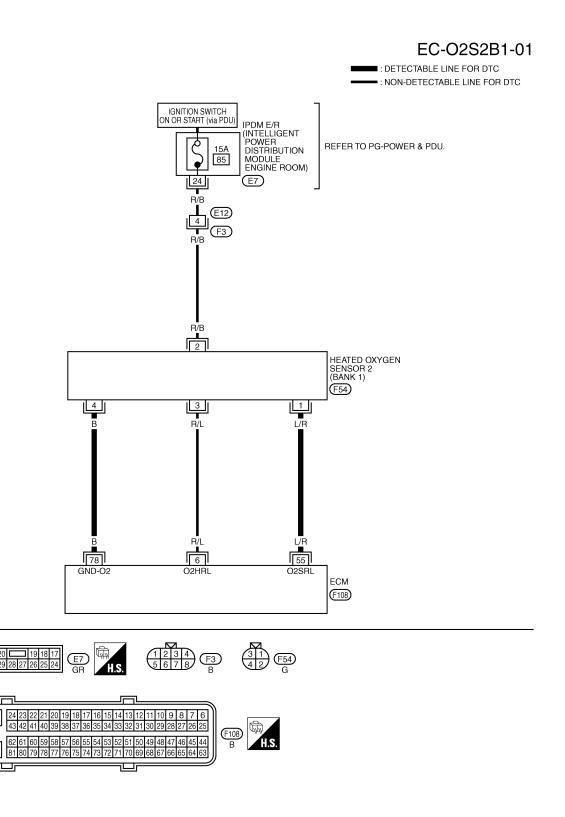
Н

J

.

M

Ν


Р

Wiring Diagram

3

INFOID:0000000002954917

BANK 1

TBWT1020E

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

DTC P0139, P0159 HO2S2

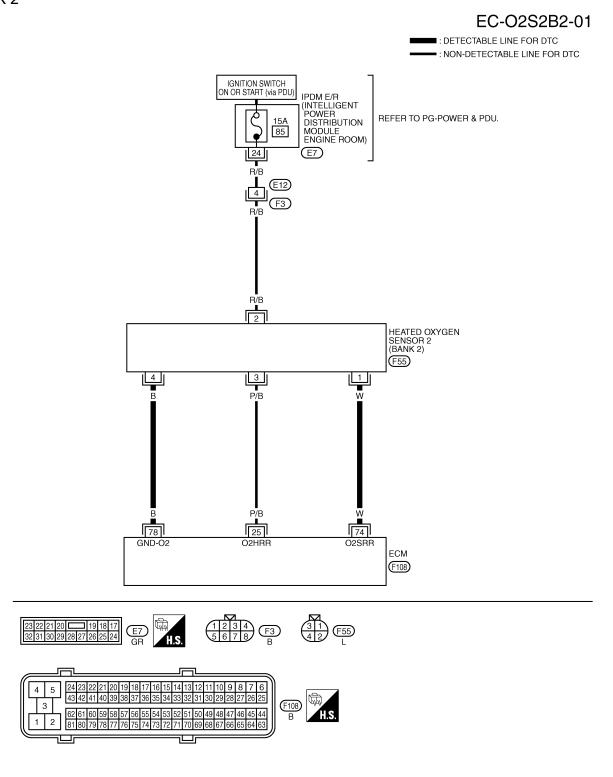
< SERVICE INFORMATION >

[VK45DE]

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	А
6	R/L	Heated oxygen sensor 2 heater (bank 1)	 [Engine is running] Engine speed: Below 3,600 rpm after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - 1.0V	C
			[Ignition switch: ON] • Engine: Stopped [Engine is running] • Engine speed: Above 3,600 rpm	BATTERY VOLTAGE (11 - 14V)	D E
55	L/R	Heated oxygen sensor 2 (bank 1)	 [Engine is running] Revving engine from idle to 3,000 rpm quickly after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V	F
78	В	Sensor ground (Heated oxygen sensor 2)	[Engine is running]Warm-up conditionIdle speed	Approximately 0V	Н

Κ

L


M

Ν

0

Ρ

BANK 2

TBWT1021E

Specification data are reference values and are measured between each terminal and ground.

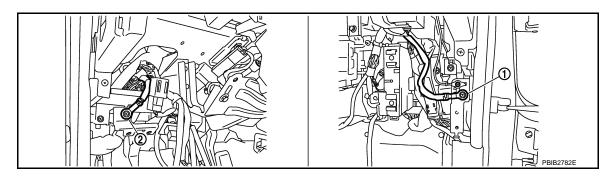
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

Α

D

Е


TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
25	P/B	Heated oxygen sensor 2 heater (bank 2)	 [Engine is running] Engine speed: Below 3,600 rpm after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - 1.0V
			[Ignition switch: ON] • Engine: Stopped [Engine is running] • Engine speed: Above 3,600 rpm	BATTERY VOLTAGE (11 - 14V)
74	w	Heated oxygen sensor 2 (bank 2)	 [Engine is running] Revving engine from idle to 3,000 rpm quickly after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V
78	В	Sensor ground (Heated oxygen sensor 2)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V

Diagnosis Procedure

1. CHECK GROUND CONNECTIONS

Turn ignition switch OFF.

Loosen and retighten ground screws on the body. Refer to EC-769, "Ground Inspection".

1. Body ground M70

2. Body ground M16

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CLEAR THE SELF-LEARNING DATA

(P) With CONSULT-III

- Start engine and warm it up to normal operating temperature.
- Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-III. 2.
- Clear the self-learning control coefficient by touching "CLEAR".
- Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171, P0172, P0174 or P0175 detected? Is it difficult to start engine?
- Without CONSULT-Ⅲ
- Start engine and warm it up to normal operating temperature.

EC-907 Revision: 2009 February 2008 M35/M45

F

INFOID:0000000002954918

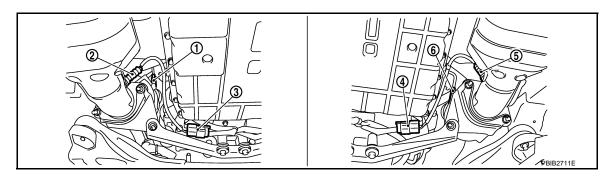
Р

Ν

< SERVICE INFORMATION >

- Turn ignition switch OFF.
- Disconnect mass air flow sensor (1) harness connector, and restart and run engine for at least 5 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure DTC P0102 is displayed.
- Erase the DTC.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171, P0172, P0174 or P0175 detected?

Is it difficult to start engine?



Yes >> Perform trouble diagnosis for DTC P0171, P0174 or P0172, P0175. Refer to EC-918, "Diagnosis Procedure" or EC-929, "Diagnosis Procedure".

No >> GO TO 3.

- Turn ignition switch OFF.
- Disconnect heated oxygen sensor 2 harness connector.

1. Air fuel ratio (A/F) sensor 1 (bank 1) 2. Heated oxygen sensor 2 (bank 1)

4. Heated oxygen sensor 2 (bank 2)

harness connector

- 5. Heated oxygen sensor 2 (bank 2)
- 3. Heated oxygen sensor 2 (bank 1) harness connector
- 6. Air fuel ratio (A/F) sensor 1 (bank 2)

- Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 78 and HO2S2 terminal 4. Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4.CHECK HO2S2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

1. Check harness continuity between ECM terminal and HO2S2 terminal as follows. Refer to Wiring Diagram.

DTC	Terminals		Bank
ыс	ECM	Sensor	Dalik
P0139	55	1	1
P0159	74	1	2

Continuity should exist.

Check harness continuity between the following terminals and ground.

< SERVICE INFORMATION >

Refer to Wiring Diagram.

DTC	Tern	Bank	
ыс	ECM	Sensor	Dank
P0139	55	1	1
P0159	74	1	2

EC

D

Е

F

M

N

Р

Α

Continuity should not exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK HEATED OXYGEN SENSOR 2

Refer to EC-909, "Component Inspection".

OK or NG

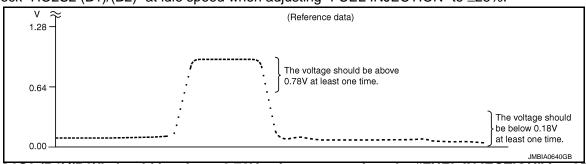
OK >> GO TO 6.

NG >> Replace malfunctioning heated oxygen sensor 2.

6.CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

>> INSPECTION END


Component Inspection

INFOID:0000000002954919

HEATED OXYGEN SENSOR 2

(P) With CONSULT-III

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSULT-III.
- Check "HO2S2 (B1)/(B2)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

"HO2S2 (B1)/(B2)" should be above 0.78V at least once when the "FUEL INJECTION" is +25%. "HO2S2 (B1)/(B2)" should be below 0.18V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

(R) Without CONSULT-III

CONNECTOR

ECM

55: Bank 1 74: Bank 2

< SERVICE INFORMATION >

- 1. Start engine and warm it up to the normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Set voltmeter probes between ECM terminal 55 [HO2S2 (B1) signal] or 74 [HO2S2 (B2) signal] and ground.
- 6. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be above 0.78V at least once during this procedure.
 - If the voltage is above 0.78V at step 6, step 7 is not necessary.
- Keep vehicle at idling for 10 minutes, then check voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position.
 - The voltage should be below 0.18V at least once during this procedure.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation

INFOID:0000000002954920

PBIB2054E

HEATED OXYGEN SENSOR 2 Refer to EX-3.

< SERVICE INFORMATION >

[VK45DE]

INFOID:0000000002954921

DTC P0171, P0174 FUEL INJECTION SYSTEM FUNCTION

On Board Diagnosis Logic

With the Air/Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the theoretical mixture ratio based on the mixture ratio feedback signal from the A/F sensors 1. The ECM calculates the necessary compensation to correct the offset between the actual and the theoretical ratios.

In case the amount of the compensation value is extremely large (The actual mixture ratio is too lean.), the ECM judges the condition as the fuel injection system malfunction and lights up the MIL (2 trip detection logic).

Sensor	Input signal to ECM	ECM function	Actuator
A/F sensor 1	Density of oxygen in exhaust gas (Mixture ratio feedback signal)	Fuel injection control	Fuel injector

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0171 0171 (Bank 1)		Fuel injection system does not operate properly.	Intake air leaks A/F sensor 1 Fuel injector
P0174 0174 (Bank 2)	Fuel injection system too lean	The amount of mixture ratio compensation is too large. (The mixture ratio is too lean.)	 Exhaust gas leaks Incorrect fuel pressure Lack of fuel Mass air flow sensor Incorrect PCV hose connection

DTC Confirmation Procedure

NOTE:

Check vehicle specifications and VIN, then select the procedure to be performed. (Refer to the table below.)

Vehicle specification	Vehicle serial number	Procedure
Axle	venicle senai number	
2WD	Up to 500994	A
2000	From 500995	В
4WD	Up to 551363	A
400	From 551364	В

PROCEDURE A

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) With CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON and select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CON-SULT-III.
- 4. Clear the self-learning control coefficient by touching "CLEAR".
- Start engine.

If it is difficult to start engine, the fuel injection system has a malfunction. Performing the following procedure is advised.

- a. Crank engine while depressing accelerator pedal.
- b. If engine starts, go to EC-918, "Diagnosis Procedure". If engine does not starts, check exhaust and intake air leak visually.
- 6. Keep engine at idle for at least 10 minutes.
- Check 1st trip DTC.
- 8. If 1st trip DTC is detected, go to EC-918. "Diagnosis Procedure".

EC

Α

D

Е

F

INFOID:0000000002954922

J

L

M

Ν

 \cap

0

Р

2008 M35/M45

< SERVICE INFORMATION >

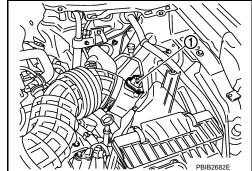
[VK45DE]

If 1st trip DTC is not detected, performing the following procedure is advised.

- a. Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and drive the vehicle under the similar conditions to (1st trip) Freeze Frame Data for 10 minutes. Refer to the table below.

Hold the accelerator pedal as steady as possible.

The similar conditions to (1st trip) Freeze Frame Data means the vehicle operation that the following conditions should be satisfied at the same time.


Engine speed	Engine speed in the freeze frame data $\pm400~\text{rpm}$	
Vehicle speed	Vehicle speed in the freeze frame data \pm 10 km/h (6 MPH)	
Engine coolant temperature (T)	When the freeze frame data shows lower than 70 °C (158 °F), T should be lower than 70 °C (158 °F).	
condition	When the freeze frame data shows higher than or equal to 70 °C (158 °F), T should be higher than or equal to 70 °C (158 °F).	

- Check 1st trip DTC.
- If 1st rip DTC is detected, go to <u>EC-918</u>. "<u>Diagnosis Procedure</u>".
- With GST
- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Disconnect mass air flow sensor (1) harness connector.
- Restart engine and let it idle for at least 5 seconds.
- Stop engine and reconnect mass air flow sensor harness connector.
- Select Service \$03 with GST and make sure DTC P0102 is detected.
- 7. Select Service \$04 with GST and erase the DTC P0102.
- 8. Start engine.
 - If it is difficult to start engine, the fuel injection system has a malfunction.
 - Performing the following procedure is advised.
- a. Crank engine while depressing accelerator pedal.
- b. If engine starts, go to EC-918, "Diagnosis Procedure". If engine does not starts, check exhaust and intake air leak visually.
- 9. Keep engine at idle for at least 10 minutes.
- 10. Check 1st trip DTC.
- 11. If 1st trip DTC is detected, go to <u>EC-918</u>, "<u>Diagnosis Procedure</u>". If 1st trip DTC is not detected, performing the following procedure is advised.
- a. Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and drive the vehicle under the similar conditions to (1st trip) Freeze Frame Data for 10 minutes. Refer to the table below.

Hold the accelerator pedal as steady as possible.

The similar conditions to (1st trip) Freeze Frame Data means the vehicle operation that the following conditions should be satisfied at the same time.

Engine speed	Engine speed in the freeze frame data \pm 400 rpm
Vehicle speed	Vehicle speed in the freeze frame data \pm 10 km/h (6 MPH)
Engine coolant temperature (T)	When the freeze frame data shows lower than 70 °C (158 °F), T should be lower than 70 °C (158 °F).
condition	When the freeze frame data shows higher than or equal to 70 °C (158 °F), T should be higher than or equal to 70 °C (158 °F).

[VK45DE] < SERVICE INFORMATION >

- 12. Check 1st trip DTC.
- 13. If 1st rip DTC is detected, go to <u>EC-918, "Diagnosis Procedure".</u>

PROCEDURE B

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) With CONSULT-III

- Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON and select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CON-SULT-III.
- Clear the self-learning control coefficient by touching "CLEAR".
- Start engine.

If it is difficult to start engine, the fuel injection system has a malfunction.

Performing the following procedure is advised.

- a. Crank engine while depressing accelerator pedal.
- If engine starts, go to EC-918, "Diagnosis Procedure". If engine does not starts, check exhaust and intake air leak visually.
- Keep engine at idle for at least 5 minutes.
- 7. Check 1st trip DTC.
- If 1st trip DTC is detected, go to EC-918, "Diagnosis Procedure". If 1st trip DTC is not detected, performing the following procedure is advised.
- a. Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and drive the vehicle under the similar conditions to (1st trip) Freeze Frame Data for 5 minutes. Refer to the table below.

Hold the accelerator pedal as steady as possible.

The similar conditions to (1st trip) Freeze Frame Data means the vehicle operation that the following conditions should be satisfied at the same time.

Engine speed	Engine speed in the freeze frame data ± 400 rpm	
Vehicle speed	Vehicle speed in the freeze frame data \pm 10 km/h (6 MPH)	
Engine coolant temperature (T)	When the freeze frame data shows lower than 70 °C (158 °F), T should be lower than 70 °C (158 °F).	
condition	When the freeze frame data shows higher than or equal to 70 °C (158 °F), T should be higher than or equal to 70 °C (158 °F).	

- Check 1st trip DTC.
- 10. If 1st rip DTC is detected, go to EC-918, "Diagnosis Procedure".

With GST

- 1. Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 3. Disconnect mass air flow sensor (1) harness connector.
- Restart engine and let it idle for at least 5 seconds.
- Stop engine and reconnect mass air flow sensor harness connector.
- 6. Select Service \$03 with GST and make sure DTC P0102 is detected.
- Select Service \$04 with GST and erase the DTC P0102.
- Start engine. If it is difficult to start engine, the fuel injection system has a malfunction.

EC

Α

Е

F

Н

K

Ν

Р

EC-913 Revision: 2009 February 2008 M35/M45

< SERVICE INFORMATION >

[VK45DE]

Performing the following procedure is advised.

- a. Crank engine while depressing accelerator pedal.
- b. If engine starts, go to EC-918, "Diagnosis Procedure". If engine does not starts, check exhaust and intake air leak visually.
- 9. Keep engine at idle for at least 5 minutes.
- 10. Check 1st trip DTC.
- 11. If 1st trip DTC is detected, go to <u>EC-918</u>, "<u>Diagnosis Procedure</u>". If 1st trip DTC is not detected, performing the following procedure is advised.
- a. Turn ignition switch OFF and wait at least 10 seconds.
- b. Start engine and drive the vehicle under the similar conditions to (1st trip) Freeze Frame Data for 5 minutes. Refer to the table below.

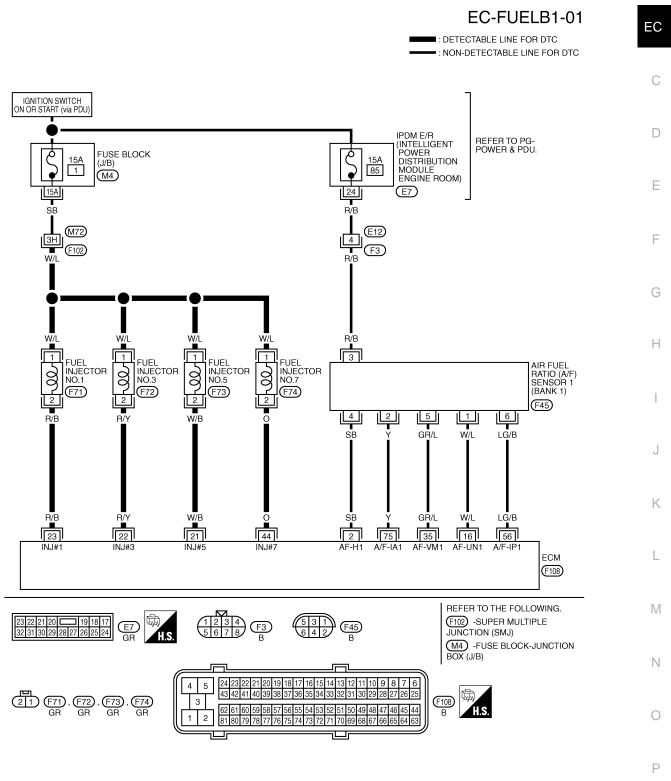
Hold the accelerator pedal as steady as possible.

The similar conditions to (1st trip) Freeze Frame Data means the vehicle operation that the following conditions should be satisfied at the same time.

Engine speed in the freeze frame data ± 400 rpm	
Vehicle speed in the freeze frame data ± 10 km/h (6 MPH)	
Engine coolant temperature (T) condition	When the freeze frame data shows lower than 70 °C (158 °F), T should be lower than 70 °C (158 °F).
	When the freeze frame data shows higher than or equal to 70 °C (158 °F), T should be higher than or equal to 70 °C (158 °F).

^{12.} Check 1st trip DTC.

13. If 1st rip DTC is detected, go to EC-918, "Diagnosis Procedure".


< SERVICE INFORMATION >

[VK45DE]

Α

Wiring Diagram

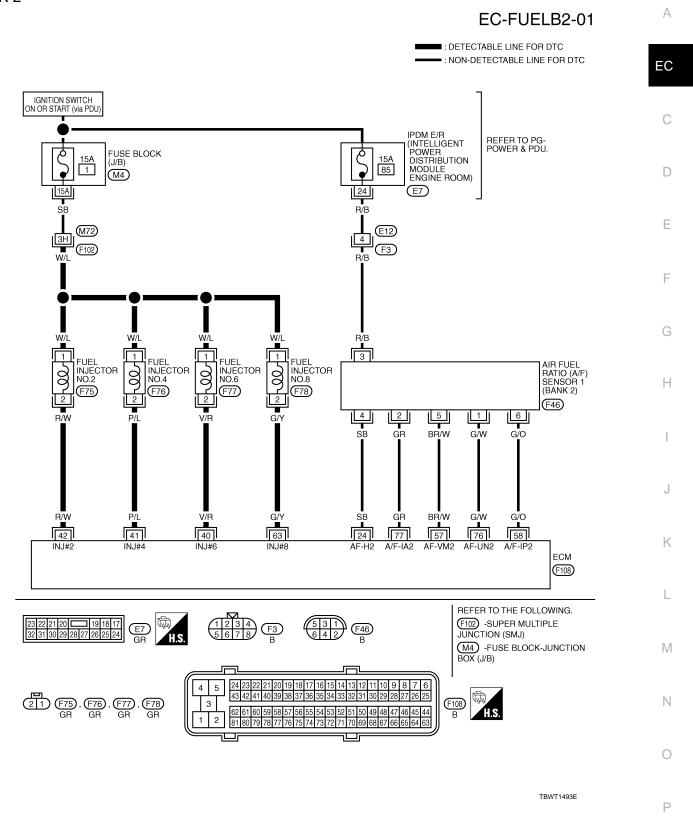
BANK 1

TBWT1492E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

CAUTION:

< SERVICE INFORMATION >


[VK45DE]

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
2	SB	A/F sensor 1 heater (bank 1)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V★ → 10.0V/Div 10 ms/Div T PBIB1584E
16	W/L			Approximately 3.1V
35	GR/L	A/F sensor 1 (bank 1)	[Engine is running]Warm-up conditionIdle speed	Approximately 2.6V
56	LG/B	Ari selisor i (balik i)		Approximately 2.3V
75	Υ			Approximately 2.3V
21 22	W/B R/Y	Fuel injector No. 5 Fuel injector No. 3	[Engine is running] • Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle	BATTERY VOLTAGE (11 - 14V)★ → 10.0V/Div 50 ms/Div PBIB0042E
23 44	23 R/B Fuel injector No. 1	[Engine is running]Warm-up conditionEngine speed: 2,000 rpm	BATTERY VOLTAGE (11 - 14V)★ → 10.0V/Div 50 ms/Div PBIB0043E	

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

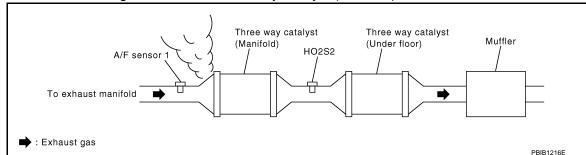
BANK 2

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
24	SB	A/F sensor 1 heater (bank 2)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V★ ≥ 10.0V/Div 10 ms/Div T PBIB1584E
40 41	V/R P/L	[Engine is running] • Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle Fuel injector No. 4 Fuel injector No. 2 Fuel injector No. 8 [Engine is running] • Warm-up condition • Engine speed: 2,000 rpm	 Warm-up condition Idle speed NOTE: The pulse cycle changes depending on rpm 	BATTERY VOLTAGE (11 - 14V)★ Discrete State St
42 R/W 63 G/Y			BATTERY VOLTAGE (11 - 14V)★ → 10.0V/Div 50 ms/Div PBIB0043E	
57	BR/W			Approximately 2.6V
58	G/O	- 	[Engine is running]	Approximately 2.3V
76	G/W	A/F sensor 1 (bank 2)	Warm-up condition Idle speed	Approximately 3.1V
77	GR			Approximately 2.3V


^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnosis Procedure

INFOID:0000000002954924

1. CHECK EXHAUST GAS LEAK

- 1. Start engine and run it at idle.
- Listen for an exhaust gas leak before three way catalyst (manifold).

OK or NG

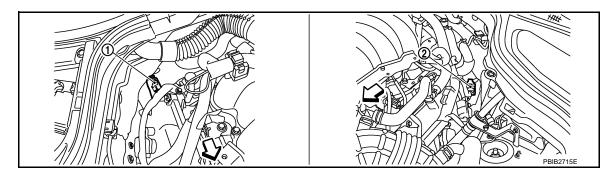
OK >> GO TO 2.

NG >> Repair or replace.

2.CHECK FOR INTAKE AIR LEAK

< SERVICE INFORMATION >

- 1. Listen for an intake air leak after the mass air flow sensor.
- Check PCV hose connection.


OK or NG

OK >> GO TO 3.

NG >> Repair or replace.

3.CHECK AIR FUEL RATIO (A/F) SENSOR 1 INPUT SIGNAL CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect corresponding air fuel ratio (A/F) sensor 1 harness connector.

⟨
⇒ : Vehicle front

- 1. A/F sensor 1 (bank 2) harness connector
- 2. A/F sensor 1 (bank 1) harness connector

- Disconnect ECM harness connector.
- 4. Check harness continuity between the following terminals. Refer to Wiring Diagram.

	A/F sensor 1 terminal	ECM terminal
	1	16
Bank 1	2	75
Dalik i	5	35
	6	56
	1	76
Bank 2	2	77
Dallk 2	5	57
	6	58

Continuity should exist.

5. Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

Bank 1		Bank 2	
A/F sensor 1 terminal	ECM terminal	A/F sensor 1 terminal	ECM terminal
1	16	1	76
2	75	2	77
5	35	5	57
6	56	6	58

Continuity should not exist.

6. Also check harness for short to power.

OK or NG

OK >> GO TO 4.

Revision: 2009 February

cion: 2000, Echruany EC-919

EC

Α

[VK45DE]

C

D

Е

F

G

Н

.

Ν

(

Р

2008 M35/M45

< SERVICE INFORMATION >

[VK45DE]

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK FUEL PRESSURE

- 1. Release fuel pressure to zero. Refer to EC-708, "Fuel Pressure Check".
- Install fuel pressure gauge and check fuel pressure. Refer to <u>EC-708</u>, "Fuel Pressure Check".

At idling: Approximately 350 kPa (3.57 kg/cm², 51 psi)

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Fuel pump and circuit (Refer to EC-1239, "Diagnosis Procedure".)
- Fuel pressure regulator (Refer to EC-708, "Fuel Pressure Check".)
- Fuel lines
- Fuel filter for clogging

>> Repair or replace.

6. CHECK MASS AIR FLOW SENSOR

With CONSULT-III

- Install all removed parts.
- Start engine and warm it up to normal operating temperature.
- 3. Check "MASS AIR FLOW" in "DATA MONITOR" mode with CONSULT-III.

2.0 - 6.0 g·m/sec: at idling 7.0 - 20.0 g·m/sec: at 2,500 rpm

With GST

- 1. Install all removed parts.
- Start engine and warm it up to normal operating temperature.
- 3. Check mass air flow sensor signal in Service \$01 with GST.

2.0 - 6.0 g·m/sec: at idling 7.0 - 20.0 g·m/sec: at 2,500 rpm

OK or NG

OK (With CONSULT-III)>>GO TO 7.

OK (Without CONSULT-III)>>GO TO 8.

NG >> Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or grounds. Refer to EC-810, "Diagnosis Procedure".

7. CHECK FUNCTION OF FUEL INJECTOR

(P) With CONSULT-III

- 1. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-III.
- 2. Make sure that each circuit produces a momentary engine speed drop.

OK or NG

OK >> GO TO 9.

NG >> Perform trouble diagnosis for fuel injector, refer to EC-1234, "Diagnosis Procedure".

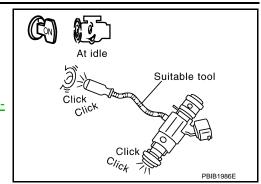
$oldsymbol{\delta}.$ CHECK FUNCTION OF FUEL INJECTOR

⋈ Without CONSULT-III

< SERVICE INFORMATION >

[VK45DE]

Listen to each fuel injector operating sound.

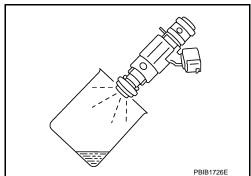

Operating sound should exist.

OK or NG

OK >> GO TO 9.

NG >> Perform

>> Perform trouble diagnosis for fuel injector, refer to <u>EC-1234</u>, "Diagnosis Procedure".


9. CHECK FUEL INJECTOR

- Turn ignition switch OFF.
- 2. Confirm that the engine is cooled down and there are no fire hazards near the vehicle.
- 3. Disconnect all fuel injector harness connectors.
- 4. Remove fuel tube assembly. Refer to EM-192.
- Keep fuel hose and all fuel injectors connected to fuel tube.

 5. For DTC P0171, reconnect fuel injector harness connectors on bank 1.
 - For DTC P0174, reconnect fuel injector harness connectors on bank 2.
- 6. Disconnect all ignition coil harness connectors.
- 7. Prepare pans or saucers under each fuel injector.
- 8. Crank engine for about 3 seconds.

For DTC P0171, make sure that fuel sprays out from fuel injectors on bank 1

For DTC P0174, make sure that fuel sprays out from fuel injectors on bank 2.

Fuel should be sprayed evenly for each fuel injector.

OK or NG

OK >> GO TO 10.

NG >> Replace fuel injectors from which fuel does not spray out. Always replace O-ring with new ones.

10. CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

>> INSPECTION END

EC

Α

0

Е

D

F

C

.1

Ν

0

Р

< SERVICE INFORMATION >

[VK45DE]

INFOID:0000000002954925

DTC P0172, P0175 FUEL INJECTION SYSTEM FUNCTION

On Board Diagnosis Logic

With the Air/Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the theoretical mixture ratio based on the mixture ratio feedback signal from the A/F sensors 1. The ECM calculates the necessary compensation to correct the offset between the actual and the theoretical ratios.

In case the amount of the compensation value is extremely large (The actual mixture ratio is too rich.), the ECM judges the condition as the fuel injection system malfunction and lights up the MIL (2 trip detection logic).

Sensor	Input signal to ECM	ECM function	Actuator
A/F sensor 1	Density of oxygen in exhaust gas (Mixture ratio feedback signal)	Fuel injection control	Fuel injector

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0172 0172 (Bank 1) P0175 0175 (Bank 2)	Fuel injection system too rich	Fuel injection system does not operate properly. The amount of mixture ratio compensation is too large. (The mixture ratio is too rich.)	A/F sensor 1 Fuel injector Exhaust gas leaks Incorrect fuel pressure Mass air flow sensor

DTC Confirmation Procedure

INFOID:0000000002954926

NOTE:

Check vehicle specifications and VIN, then select the procedure to be performed. (Refer to the table below.)

Vehicle specification	Vehicle serial number	Procedure
Axle	venicle serial number	
2WD	Up to 500994	А
	From 500995	В
4WD	Up to 551363	A
	From 551364	В

PROCEDURE A

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) With CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON and select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CON-SULT-III.
- 4. Clear the self-learning control coefficient by touching "CLEAR".
- Start engine.

If it is difficult to start engine, the fuel injection system has a malfunction. Performing the following procedure is advised.

- a. Crank engine while depressing accelerator pedal.
- b. If engine starts, go to <u>EC-929, "Diagnosis Procedure"</u>.
 If engine does not starts, remove spark plugs and check for fouling, etc.
- 6. Keep engine at idle for at least 10 minutes.
- 7. Check 1st trip DTC.
- 8. If 1st trip DTC is detected, go to <u>EC-929, "Diagnosis Procedure"</u>. If 1st trip DTC is not detected, performing the following procedure is advised.

< SERVICE INFORMATION >

- Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and drive the vehicle under the similar conditions to (1st trip) Freeze Frame Data for 10 minutes. Refer to the table below.

Hold the accelerator pedal as steady as possible.

The similar conditions to (1st trip) Freeze Frame Data means the vehicle operation that the following conditions should be satisfied at the same time.

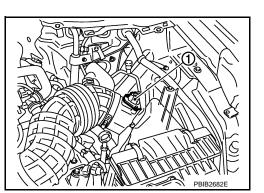
Engine speed in the freeze frame data \pm 400 rpm	
Vehicle speed in the freeze frame data ± 10 km/h (6 MPH)	
Engine coolant temperature (T) condition	When the freeze frame data shows lower than 70 °C (158 °F), T should be lower than 70 °C (158 °F).
	When the freeze frame data shows higher than or equal to 70 °C (158 °F), T should be higher than or equal to 70 °C (158 °F).

- Check 1st trip DTC.
- 10. If 1st rip DTC is detected, go to EC-929, "Diagnosis Procedure".
- With GST
- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Disconnect mass air flow sensor (1) harness connector. Then restart and run engine for at least 5 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Select Service \$03 with GST and make sure DTC P0102 is detected.
- Select Service \$04 with GST and erase the DTC P0102.
- 7. Start engine.

If it is difficult to start engine, the fuel injection system has a malfunction.

Performing the following procedure is advised.

- a. Crank engine while depressing accelerator pedal.
- If engine starts, go to EC-929, "Diagnosis Procedure". If engine does not starts, remove spark plugs and check for fouling, etc.
- 8. Keep engine at idle for at least 10 minutes.
- 9. Check 1st trip DTC.
- 10. If 1st trip DTC is detected, go to EC-929, "Diagnosis Procedure". If 1st trip DTC is not detected, performing the following procedure is advised.
- Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and drive the vehicle under the similar conditions to (1st trip) Freeze Frame Data for 10 minutes. Refer to the table below.


Hold the accelerator pedal as steady as possible.

The similar conditions to (1st trip) Freeze Frame Data means the vehicle operation that the following conditions should be satisfied at the same time.

Engine speed	Engine speed in the freeze frame data \pm 400 rpm	
Vehicle speed in the freeze frame data \pm 10 km/h (6 MPH)		
Engine coolant temperature (T) condition	When the freeze frame data shows lower than 70 °C (158 °F), T should be lower than 70 °C (158 °F).	
	When the freeze frame data shows higher than or equal to 70 °C (158 °F), T should be higher than or equal to 70 °C (158 °F).	

11. Check 1st trip DTC.

Revision: 2009 February

[VK45DE1

EC

Е

Н

Ν

Р

EC-923

< SERVICE INFORMATION >

[VK45DE]

12. If 1st rip DTC is detected, go to EC-929, "Diagnosis Procedure".

PROCEDURE B

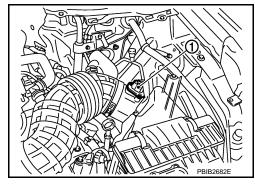
NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) With CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON and select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CON-SULT-III.
- 4. Clear the self-learning control coefficient by touching "CLEAR".
- Start engine.
 - If it is difficult to start engine, the fuel injection system has a malfunction.
 - Performing the following procedure is advised.
- a. Crank engine while depressing accelerator pedal.
- b. If engine starts, go to <u>EC-929, "Diagnosis Procedure"</u>.
 If engine does not starts, remove spark plugs and check for fouling, etc.
- 6. Keep engine at idle for at least 5 minutes.
- Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-929, "Diagnosis Procedure"</u>.
 If 1st trip DTC is not detected, performing the following procedure is advised.
- a. Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and drive the vehicle under the similar conditions to (1st trip) Freeze Frame Data for 5 minutes. Refer to the table below.

Hold the accelerator pedal as steady as possible.


The similar conditions to (1st trip) Freeze Frame Data means the vehicle operation that the following conditions should be satisfied at the same time.

Engine speed Engine speed in the freeze frame data ± 400 rpm	
Vehicle speed in the freeze frame data \pm 10 km/h (6 MPH)	
Engine coolant temperature (T) condition	When the freeze frame data shows lower than 70 °C (158 °F), T should be lower than 70 °C (158 °F).
	When the freeze frame data shows higher than or equal to 70 °C (158 °F), T should be higher than or equal to 70 °C (158 °F).

- Check 1st trip DTC.
- 10. If 1st rip DTC is detected, go to EC-929. "Diagnosis Procedure".

With GST

- 1. Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 3. Disconnect mass air flow sensor (1) harness connector. Then restart and run engine for at least 5 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- Select Service \$03 with GST and make sure DTC P0102 is detected.
- 6. Select Service \$04 with GST and erase the DTC P0102.
- 7. Start engine.
 - If it is difficult to start engine, the fuel injection system has a malfunction.
 - Performing the following procedure is advised.

< SERVICE INFORMATION >

- Crank engine while depressing accelerator pedal.
- b. If engine starts, go to <u>EC-929, "Diagnosis Procedure"</u>.
 If engine does not starts, remove spark plugs and check for fouling, etc.
- 8. Keep engine at idle for at least 5 minutes.
- 9. Check 1st trip DTC.
- 10. If 1st trip DTC is detected, go to <u>EC-929, "Diagnosis Procedure"</u>. If 1st trip DTC is not detected, performing the following procedure is advised.
- a. Turn ignition switch OFF and wait at least 10 seconds.
- b. Start engine and drive the vehicle under the similar conditions to (1st trip) Freeze Frame Data for 5 minutes. Refer to the table below.

Hold the accelerator pedal as steady as possible.

The similar conditions to (1st trip) Freeze Frame Data means the vehicle operation that the following conditions should be satisfied at the same time.

Engine speed	Engine speed in the freeze frame data \pm 400 rpm	
Vehicle speed in the freeze frame data ± 10 km/h (6 MPH)		
Engine coolant temperature (T) condition	When the freeze frame data shows lower than 70 °C (158 °F), T should be lower than 70 °C (158 °F).	
	When the freeze frame data shows higher than or equal to 70 °C (158 °F), T should be higher than or equal to 70 °C (158 °F).	

11. Check 1st trip DTC.

12. If 1st rip DTC is detected, go to EC-929. "Diagnosis Procedure".

EC

Α

[VK45DE]

. .

D

Е

F

G

Н

Κ

L

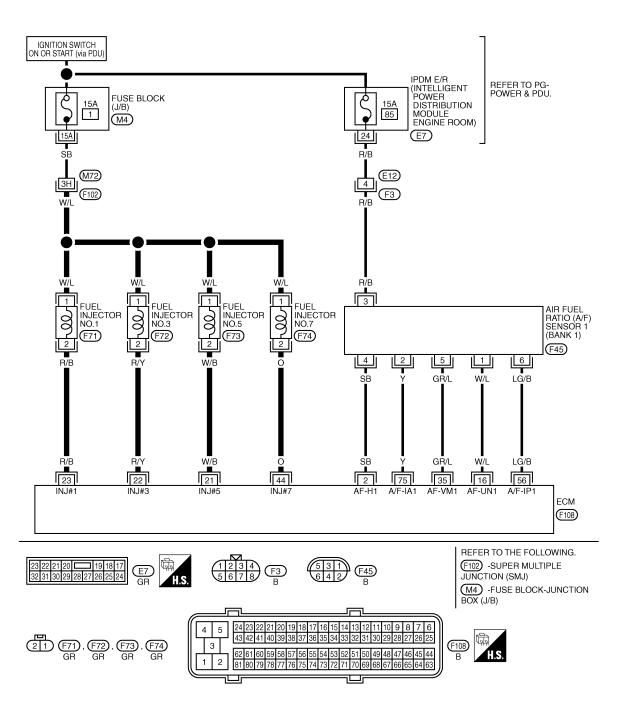
M

Ν

0

Ρ

[VK45DE]


Wiring Diagram

INFOID:0000000002954927

BANK 1

EC-FUELB1-01

: DETECTABLE LINE FOR DTC
: NON-DETECTABLE LINE FOR DTC

TBWT1492E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

CAUTION:

< SERVICE INFORMATION >

[VK45DE]

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

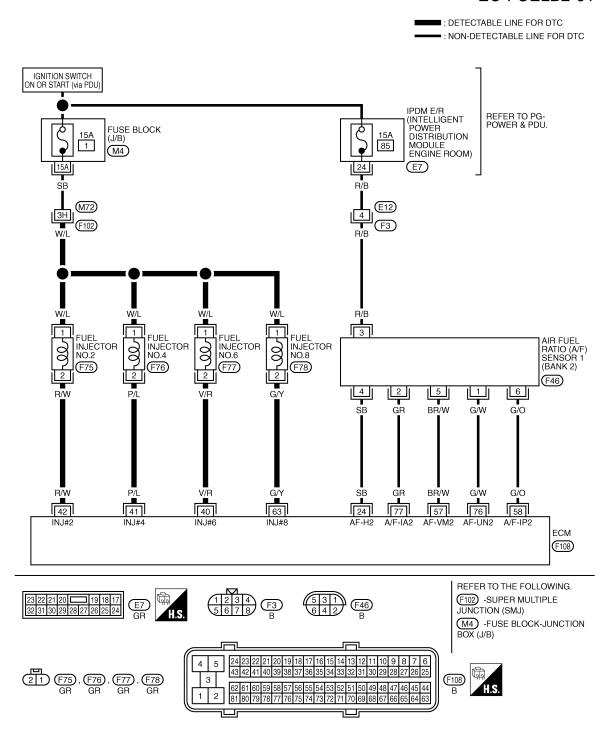
TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
2	SB	A/F sensor 1 heater (bank 1)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V*	C
			idio opeca	>> 10.0V/Div 10 ms/Div T PBIB1584E	E
16	W/L			Approximately 3.1V	
35	GR/L	A/F sensor 1 (bank 1)	[Engine is running] • Warm-up condition	Approximately 2.6V	
56	LG/B	All Selisor (Dalik I)	Idle speed	Approximately 2.3V	F
75	Υ			Approximately 2.3V	
	W/B Fuel injector No. 5 R/Y Fuel injector No. 3 R/B Fuel injector No. 1	BATTERY VOLTAGE (11 - 14V)★	G		
		Fuel injector No. 3 Fuel injector No. 1	• Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle 0. 5 0. 3		Н
21 22				>> 10.0V/Div 50 ms/Div PBIB0042E	I
23 44				BATTERY VOLTAGE	
44			doi injuster No. 7	(11 - 14V)★	J
			Warm-up condition	>> 10.0V/Div 50 ms/Div	K
				PBIB0043E	L

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Revision: 2009 February **EC-927** 2008 M35/M45

M

Ν


0

Р

[VK45DE]

BANK 2

EC-FUELB2-01

TBWT1493E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

< SERVICE INFORMATION >

[VK45DE]

Α

D

Е

F

Н

K

M

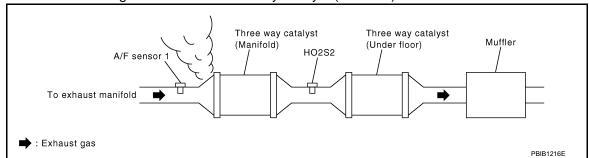
Ν

0

Р

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
24	SB	A/F sensor 1 heater (bank 2)	[Engine is running]Warm-up conditionIdle speed	Approximately 5V★ → 10.0V/Div 10 ms/Div T PBIB1584E
40 41	V/R P/L	Fuel injector No. 6 Fuel injector No. 4 Fuel injector No. 2 Fuel injector No. 8	[Engine is running] • Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle	BATTERY VOLTAGE (11 - 14V)★ → 10.0V/Div 50 ms/Div PBIB0042E
42 63	R/W G/Y		[Engine is running]Warm-up conditionEngine speed: 2,000 rpm	BATTERY VOLTAGE (11 - 14V)★ → 10.0V/Div 50 ms/Div PBIB0043E
57	BR/W	- A/F sensor 1 (bank 2)		Approximately 2.6V
58	G/O		[Engine is running]	Approximately 2.3V
76	G/W		Warm-up condition Idle speed	Approximately 3.1V
77	GR			Approximately 2.3V

★: Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)


Diagnosis Procedure

INFOID:0000000002954928

1. CHECK EXHAUST GAS LEAK

Start engine and run it at idle.

Listen for an exhaust gas leak before three way catalyst (manifold).

OK or NG

OK >> GO TO 2.

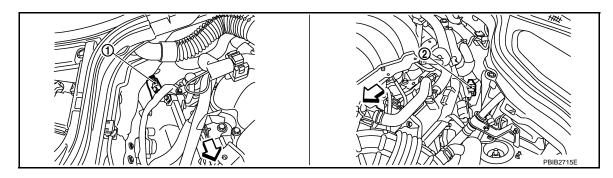
NG >> Repair or replace.

2.CHECK FOR INTAKE AIR LEAK

< SERVICE INFORMATION >

[VK45DE]

Listen for an intake air leak after the mass air flow sensor.


OK or NG

OK >> GO TO 3.

NG >> Repair or replace.

3.check air fuel ratio (a/f) sensor 1 input signal circuit

- 1. Turn ignition switch OFF.
- 2. Disconnect corresponding air fuel ratio (A/F) sensor 1 harness connector.

: Vehicle front

- 1. A/F sensor 1 (bank 2) harness connector
- 2. A/F sensor 1 (bank 1) harness connector

- 3. Disconnect ECM harness connector.
- 4. Check harness continuity between the following terminals. Refer to Wiring Diagram.

	A/F sensor 1 terminal	ECM terminal
	1	16
Bank 1	2	75
Dalik i	5	35
	6	56
	1	76
Bank 2	2	77
Dailk 2	5	57
	6	58

Continuity should exist.

Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

Bai	nk 1	Bank 2		
A/F sensor 1 terminal	ECM terminal	A/F sensor 1 terminal	ECM terminal	
1	16	1	76	
2	75	2	77	
5	35	5	57	
6	56	6	58	

Continuity should not exist.

6. Also check harness for short to power.

OK or NG

OK >> GO TO 4.

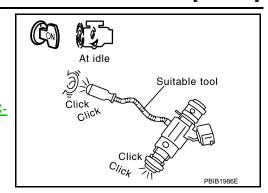
NG >> Repair open circuit or short to ground or short to power in harness or connectors.

[VK45DE] < SERVICE INFORMATION > 4. CHECK FUEL PRESSURE Release fuel pressure to zero. Refer to EC-708, "Fuel Pressure Check". Install fuel pressure gauge and check fuel pressure. Refer to EC-708, "Fuel Pressure Check". EC At idling: Approximately 350 kPa (3.57 kg/cm², 51 psi) OK or NG OK >> GO TO 6. NG >> GO TO 5. ${f 5.}$ DETECT MALFUNCTIONING PART Check the following. Fuel pump and circuit (Refer to <u>EC-1239, "Diagnosis Procedure"</u>.) • Fuel pressure regulator (Refer to EC-708, "Fuel Pressure Check".) Е >> Repair or replace. O.CHECK MASS AIR FLOW SENSOR (P) With CONSULT-III 1. Install all removed parts. Start engine and warm it up to normal operating temperature. Check "MASS AIR FLOW" in "DATA MONITOR" mode with CONSULT-III. 2.0 - 6.0 g·m/sec: at idling 7.0 - 20.0 g·m/sec: at 2,500 rpm With GST Install all removed parts. Start engine and warm it up to normal operating temperature. Check mass air flow sensor signal in Service \$01 with GST. 2.0 - 6.0 g·m/sec: at idling 7.0 - 20.0 g·m/sec: at 2,500 rpm K OK or NG OK (With CONSULT-III)>>GO TO 7. OK (Without CONSULT-III)>>GO TO 8. NG >> Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or grounds. Refer to EC-810, "Diagnosis Procedure". .CHECK FUNCTION OF FUEL INJECTOR With CONSULT-III Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-III. Make sure that each circuit produces a momentary engine speed drop. N OK or NG OK >> GO TO 9. NG >> Perform trouble diagnosis for fuel injector, refer to EC-1234, "Diagnosis Procedure". 8.CHECK FUNCTION OF FUEL INJECTOR

Without CONSULT-III

< SERVICE INFORMATION >

[VK45DE]


Listen to fuel injector operating sound.

Operating sound should exist.

OK or NG

OK >> GO TO 9.

NG >> Perform trouble diagnosis for fuel injector, refer to <u>EC-1234, "Diagnosis Procedure"</u>.

9. CHECK FUEL INJECTOR

- Remove fuel tube assembly. Refer to <u>EM-192</u>. Keep fuel hose and all fuel injectors connected to fuel tube.
- 2. Confirm that the engine is cooled down and there are no fire hazards near the vehicle.
- 3. Disconnect all fuel injector harness connectors.
- 4. Disconnect all ignition coil harness connectors.
- 5. Prepare pans or saucers under each fuel injectors.
- Crank engine for about 3 seconds.Make sure fuel does not drip from fuel injector.

OK or NG

OK (Does not drip.)>>GO TO 10.

NG (Drips.)>>Replace the fuel injectors from which fuel is dripping. Always replace O-ring with new one.

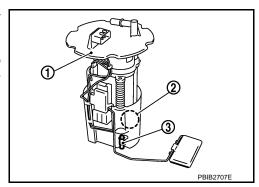
10. CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

>> INSPECTION END

INFOID:0000000002954929

Α


EC

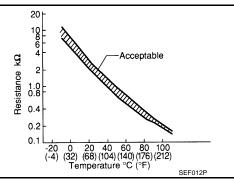
DTC P0181 FTT SENSOR

Component Description

The fuel tank temperature sensor (3) is used to detect the fuel temperature inside the fuel tank. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the fuel temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

- Fuel level sensor unit and fuel pump (1)
- Fuel pressure regulator (2)

<Reference data>


Fluid temperature °C (°F)	Voltage* V	Resistance kΩ
20 (68)	3.5	2.3 - 2.7
50 (122)	2.2	0.79 - 0.90

^{*:} This data is reference value and is measured between ECM terminal 107 (Fuel tank temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0181 0181	Fuel tank temperature sensor circuit range/per-formance	Rationally incorrect voltage from the sensor is sent to ECM, compared with the voltage signals from engine coolant temperature sensor and intake air temperature sensor.	Harness or connectors (The sensor circuit is open or shorted) Fuel tank temperature sensor

DTC Confirmation Procedure

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

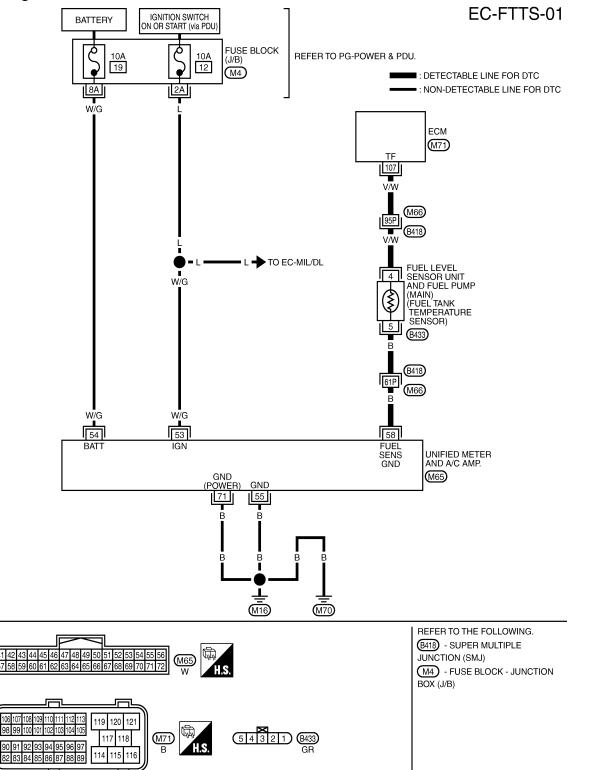
(P) WITH CONSULT-III

- 1. Turn ignition switch ON and wait at least 10 seconds...
- 2. Check 1st trip DTC.
- If 1st trip DTC is detected, go to EC-934, "Diagnosis Procedure". If 1st trip DTC is not detected, go to the following step.
- Select "COOLAN TEMP/S" in "DATA MONITOR" mode with CONSULT-III.
- Check "COOLAN TEMP/S" value. If "COOLAN TEMP/S" is less than 60°C (140°F), the result will be OK. If "COOLAN TEMP/S" is above 60°C (140°F), go to the following step.
- Cool engine down until "COOLAN TEMP/S" is less than 60°C (140°F).
- Wait at least 10 seconds.
- Check 1st trip DTC.
- If 1st trip DTC is detected, go to EC-934, "Diagnosis Procedure".

INFOID:0000000002954930

INFOID:0000000002954931

N


Р

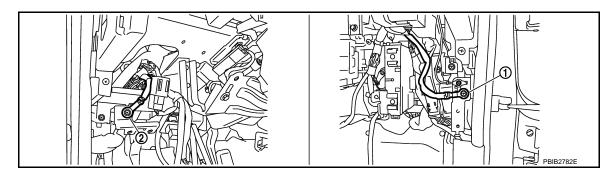
EC-933 Revision: 2009 February 2008 M35/M45 **WITH GST**

Follow the procedure "WITH CONSULT-III" above.

Wiring Diagram

INFOID:0000000002954932

Diagnosis Procedure


INFOID:0000000002954933

TBWT1989E

1. CHECK GROUND CONNECTIONS

< SERVICE INFORMATION > [VK45DE]

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten ground screws on the body. Refer to <u>EC-769</u>, "Ground Inspection".

1. Body ground M70

2. Body ground M16

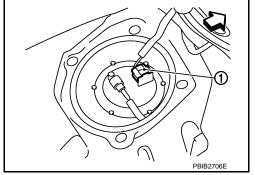
OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK DTC WITH "UNIFIED METER AND A/C AMP."

Refer to DI-27, "CONSULT-III Function (METER/M&A)".

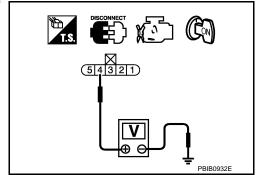

OK or NG

OK >> GO TO 3.

NG >> Go to DI-22, "Fuel Level Sensor Signal Inspection".

${f 3.}$ CHECK FUEL TANK TEMPERATURE SENSOR POWER SUPPLY CIRCUIT

- Turn ignition switch OFF.
- 2. Disconnect "fuel level sensor unit and fuel pump" harness connector (1).
- Illustration shows the view with rear seat cushion and inspection hole cover (RH) removed.
- <□: Vehicle front
- 3. Turn ignition switch ON.



 Check voltage between "fuel level sensor unit and fuel pump" terminal 4 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M66, B418
- Harness for open or short between ECM and "fuel level sensor unit and fuel pump"

>> Repair open circuit or short to ground or short to power in harness or connector.

EC

Α

D

Е

F

G

Н

- 1

J

Κ

M

Ν

< SERVICE INFORMATION >

5.CHECK FUEL TANK TEMPERATURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect "unified meter and A/C amp." harness connector.
- Check harness continuity between "fuel level sensor unit and fuel pump" terminal 5 and "unified meter and A/C amp." terminal 58.

Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M66, B418
- Harness for open or short between "fuel level sensor unit and fuel pump" and "unified meter and A/C amp."
 - >> Repair open circuit or short to ground or short to power in harness or connector.

7. CHECK FUEL TANK TEMPERATURE SENSOR

Refer to EC-936, "Component Inspection".

OK or NG

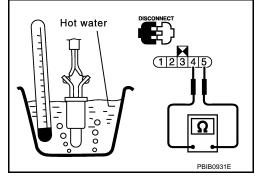
OK >> GO TO 8.

NG >> Replace "fuel level sensor unit and fuel pump".

8. CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

>> INSPECTION END


Component Inspection

INFOID:0000000002954934

FUEL TANK TEMPERATURE SENSOR

- 1. Remove fuel level sensor unit.
- Check resistance between "fuel level sensor unit and fuel pump" terminals 4 and 5 by heating with hot water or heat gun as shown in the figure.

Temperature °C (°F)	Resistance $k\Omega$
20 (68)	2.3 - 2.7
50 (122)	0.79 - 0.90

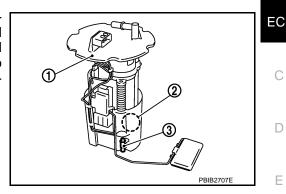
......

Removal and Installation

FUEL TANK TEMPERATURE SENSOR Refer to FL-4.

INFOID:0000000002954936

Α


D

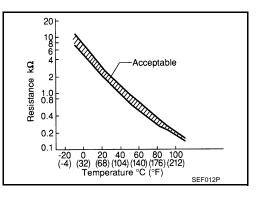
DTC P0182, P0183 FTT SENSOR

Component Description

The fuel tank temperature sensor (3) is used to detect the fuel temperature inside the fuel tank. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the fuel temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

- Fuel level sensor unit and fuel pump (1)
- Fuel pressure regulator (2)

<Reference data>


Fluid temperature °C (°F)	Voltage* V	Resistance kΩ
20 (68)	3.5	2.3 - 2.7
50 (122)	2.2	0.79 - 0.90

^{*:} This data is reference value and is measured between ECM terminal 107 (Fuel tank temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

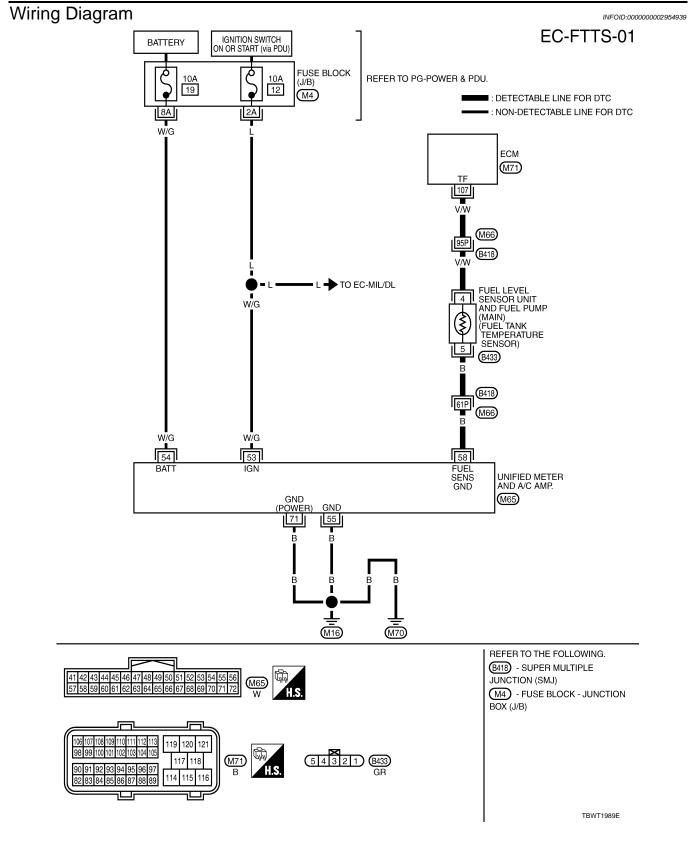
On Board Diagnosis Logic

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0182 0182	Fuel tank temperature sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)
P0183 0183	Fuel tank temperature sensor circuit high input	An excessively high voltage from the sensor is sent to FCM.	

DTC Confirmation Procedure

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

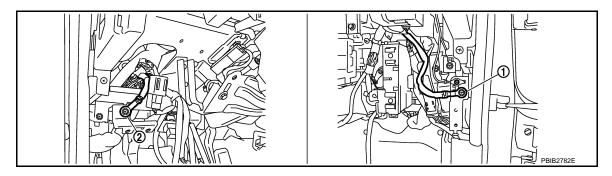

- 1. Turn ignition switch ON and wait at least 5 seconds.
- Check 1st trip DTC.
- If 1st trip DTC is detected, go to EC-938, "Diagnosis Procedure".

K

INFOID:0000000002954938

INFOID:0000000002954937

Ν



Diagnosis Procedure

INFOID:0000000002954940

1. CHECK GROUND CONNECTIONS

- Turn ignition switch OFF.
- Loosen and retighten ground screws on the body. Refer to <u>EC-769</u>, "Ground Inspection".

- 1. Body ground M70
- 2. Body ground M16

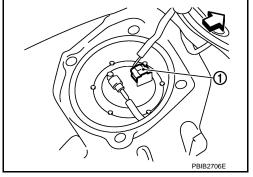
OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK DTC WITH "UNIFIED METER AND A/C AMP."

Refer to DI-27, "CONSULT-III Function (METER/M&A)".

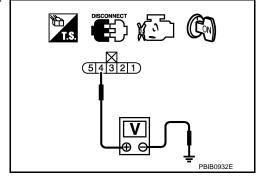

OK or NG

OK >> GO TO 3.

NG >> Go to DI-22, "Fuel Level Sensor Signal Inspection".

3.CHECK FUEL TANK TEMPERATURE SENSOR POWER SUPPLY CIRCUIT

- Turn ignition switch OFF.
- 2. Disconnect "fuel level sensor unit and fuel pump" harness con-
- Illustration shows the view with rear seat cushion and inspection hole cover (RH) removed.
- ⟨□: Vehicle front
- 3. Turn ignition switch ON.



Check voltage between "fuel level sensor unit and fuel pump" terminal 4 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M66, B418
- Harness for open or short between ECM and "fuel level sensor unit and fuel pump"
 - >> Repair open circuit or short to ground or short to power in harness or connector.

$oldsymbol{5}.$ CHECK FUEL TANK TEMPERATURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

Turn ignition switch OFF.

EC

Α

D

Е

Н

K

M

Ν

< SERVICE INFORMATION >

- 2. Disconnect "unified meter and A/C amp." harness connector.
- Check harness continuity between "fuel level sensor unit and fuel pump" terminal 5 and "unified meter and A/C amp." terminal 58.
 Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M66, B418
- Harness for open or short between "fuel level sensor unit and fuel pump" and "unified meter and A/C amp."
 - >> Repair open circuit or short to ground or short to power in harness or connector.

7. CHECK FUEL TANK TEMPERATURE SENSOR

Refer to EC-940, "Component Inspection".

OK or NG

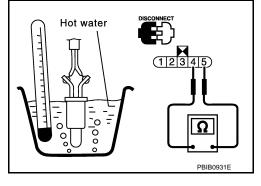
OK >> GO TO 8.

NG >> Replace "fuel level sensor unit and fuel pump".

8. CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

>> INSPECTION END


Component Inspection

INFOID:0000000002954941

FUEL TANK TEMPERATURE SENSOR

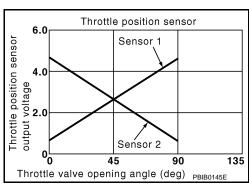
- 1. Remove fuel level sensor unit.
- 2. Check resistance between "fuel level sensor unit and fuel pump" terminals 4 and 5 by heating with hot water or heat gun as shown in the figure.

Temperature °C (°F)	Resistance $k\Omega$
20 (68)	2.3 - 2.7
50 (122)	0.79 - 0.90

Removal and Installation

INFOID:0000000002954942

FUEL TANK TEMPERATURE SENSOR Refer to FL-4.


INFOID:0000000002954943

DTC P0222, P0223 TP SENSOR

Component Description

Electric throttle control actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM CONDITION **SPECIFICATION** Ignition switch: ON Accelerator pedal: Fully released More than 0.36V TP SEN 1-B1 (Engine stopped) TP SEN 2-B1* Accelerator pedal: Fully depressed Less than 4.75V Selector lever: D

On Board Diagnosis Logic

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0222 0222	Throttle position sensor 1 circuit low input	An excessively low voltage from the TP sensor 1 is sent to ECM.	Harness or connectors (TP sensor 1 circuit is open or shorted.)
P0223 0223	Throttle position sensor 1 circuit high input	An excessively high voltage from the TP sensor 1 is sent to ECM.	 (APP sensor 2 circuit is shorted.) Electric throttle control actuator (TP sensor 1) Accelerator pedal position sensor (APP sensor 2)

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operation condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

DTC Confirmation Procedure

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 8V at idle.

- 1. Start engine and let it idle for 1 second.
- 2. Check DTC.
- If DTC is detected, go to EC-943, "Diagnosis Procedure".

EC

Α

Е

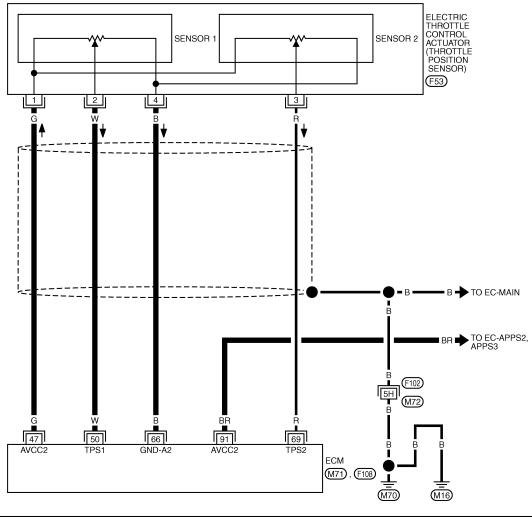
INFOID:00000000002954944

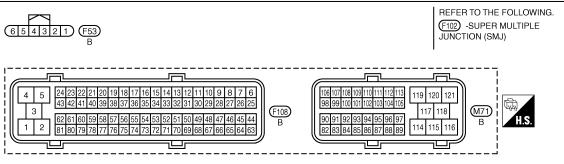
INFOID:0000000002954945

M

N

INFOID:0000000002954946


^{*:} Throttle position sensor 2 signal is converted by ECM internally. Thus, it differs from ECM terminal voltage signal.


Wiring Diagram

INFOID:0000000002954947

EC-TPS1-01

: DETECTABLE LINE FOR DTC
: NON-DETECTABLE LINE FOR DTC

TBWT1494E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

Α

D

Е

F

Н

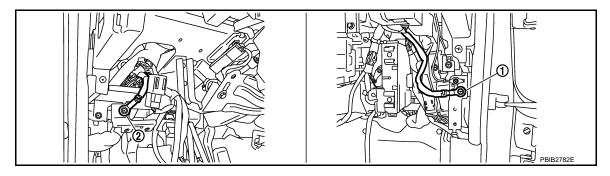
K

Ν

0

Р

2008 M35/M45


TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
47	G	Sensor power supply (Throt- tle position sensor)	[Ignition switch: ON]	Approximately 5V
50	10/	Throttle position concerd	[Ignition switch: ON]Engine: StoppedSelector lever: DAccelerator pedal: Fully released	More than 0.36V
50	W	Throttle position sensor 1	 [Ignition switch: ON] Engine: Stopped Selector lever: D Accelerator pedal: Fully depressed 	Less than 4.75V
66	В	Sensor ground (Throttle position sensor)	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
69	R	Throttle position concer?	[Ignition switch: ON]Engine: StoppedSelector lever: DAccelerator pedal: Fully released	Less than 4.75V
09	K	Throttle position sensor 2	 [Ignition switch: ON] Engine: Stopped Selector lever: D Accelerator pedal: Fully depressed 	More than 0.36V
91	BR	Sensor power supply (APP sensor 2)	[Ignition switch: ON]	Approximately 5V

Diagnosis Procedure

INFOID:0000000002954948

1. CHECK GROUND CONNECTIONS

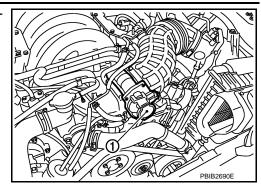
- 1. Turn ignition switch OFF.
- 2. Loosen and retighten ground screws on the body. Refer to <u>EC-769</u>, "<u>Ground Inspection"</u>.

- 1. Body ground M70
- 2. Body ground M16

OK or NG

OK >> GO TO 2.

Revision: 2009 February

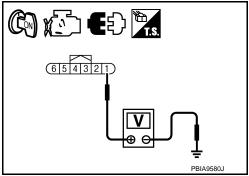

NG >> Repair or replace ground connections.

2.CHECK THROTTLE POSITION SENSOR 1 POWER SUPPLY CIRCUIT-I

EC-943

< SERVICE INFORMATION >

- Disconnect electric throttle control actuator (1) harness connector.
- Illustration shows the view with intake air duct removed.
- 2. Turn ignition switch ON.



3. Check voltage between electric throttle control actuator terminal 1 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 7. NG >> GO TO 3.

3.check throttle position sensor 1 power supply circuit-ii

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between electric throttle control actuator terminal 1 and ECM terminal 47. Refer to Wiring Diagram.

Continuity should exist.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit.

4. CHECK THROTTLE POSITION SENSOR 1 POWER SUPPLY CIRCUIT-III

Check harness for short to power and short to ground, between the following terminals.

ECM terminal	Sensor terminal	Reference Wiring Diagram
47	Electric throttle control actuator terminal 1	<u>EC-942</u>
91	APP sensor terminal 5	EC-1194

OK or NG

OK >> GO TO 5.

NG >> Repair short to ground or short to power in harness or connectors.

5. CHECK APP SENSOR

Refer to EC-1198, "Component Inspection".

OK or NG

OK >> GO TO 11. NG >> GO TO 6.

6.REPLACE ACCELERATOR PEDAL ASSEMBLY

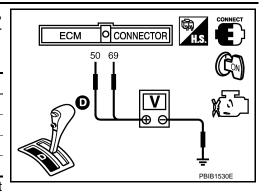
- 1. Replace accelerator pedal assembly.
- 2. Perform EC-706, "Accelerator Pedal Released Position Learning".
- 3. Perform EC-706, "Throttle Valve Closed Position Learning".
- 4. Perform EC-707, "Idle Air Volume Learning".

DTC P0222, P0223 TP SENSOR

< SERVICE INFORMATION > [VK45DE]

>> INSPECTION END	А
.CHECK THROTTLE POSITION SENSOR 1 GROUND CIRCUIT FOR OPEN AND SHORT	
 Turn ignition switch OFF. Disconnect ECM harness connector. Check harness continuity between electric throttle control actuator terminal 4 and ECM terminal 66. 	EC
Refer to Wiring Diagram.	С
Continuity should exist.	
4. Also check harness for short to ground and short to power.	D
OK or NG OK >> GO TO 8.	
NG >> Repair open circuit or short to ground or short to power in harness or connectors.	Е
8. CHECK THROTTLE POSITION SENSOR 1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT	_
Check harness continuity between ECM terminal 50 and electric throttle control actuator terminal 2. Refer to Wiring Diagram.	F
Continuity should exist.	
2. Also check harness for short to ground and short to power.	G
OK or NG	
OK >> GO TO 9. NG >> Repair open circuit or short to ground or short to power in harness or connectors.	Н
9.CHECK THROTTLE POSITION SENSOR	_
Refer to EC-945, "Component Inspection".	- 1
OK or NG OK >> GO TO 11.	
NG >> GO TO 11.	J
10. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR	
 Replace the electric throttle control actuator. Perform <u>EC-706</u>. "Throttle Valve Closed Position Learning". Perform <u>EC-707</u>. "Idle Air Volume Learning". 	K
>> INSPECTION END	L
11. CHECK INTERMITTENT INCIDENT	
Refer to EC-763, "Diagnosis Procedure".	M
>> INSPECTION END	N.I.
Component Inspection	N
THROTTLE POSITION SENSOR	0
Reconnect all harness connectors disconnected.	
2. Perform EC-706, "Throttle Valve Closed Position Learning".	
3. Turn ignition switch ON. 4. Set selector lever to D position	Р
4. Set selector lever to D position.	

Revision: 2009 February **EC-945** 2008 M35/M45


DTC P0222, P0223 TP SENSOR

< SERVICE INFORMATION >

[VK45DE]

Check voltage between ECM terminals 50 (TP sensor 1 signal),
 69 (TP sensor 2 signal) and ground under the following conditions.

Terminal	Accelerator pedal	Voltage
50	Fully released	More than 0.36V
(Throttle position sensor 1)	Fully depressed	Less than 4.75V
69	Fully released	Less than 4.75V
(Throttle position sensor 2)	Fully depressed	More than 0.36V

- If NG, replace electric throttle control actuator and go to the next step.
- 7. Perform EC-706, "Throttle Valve Closed Position Learning".
- 8. Perform EC-707, "Idle Air Volume Learning".

Removal and Installation

INFOID:0000000002954950

ELECTRIC THROTTLE CONTROL ACTUATOR Refer to EM-177.

DTC P0300 - P0308 MULTIPLE CYLINDER MISFIRE, NO. 1 - 8 CYLINDER MISFIRE

< SERVICE INFORMATION >

[VK45DE]

DTC P0300 - P0308 MULTIPLE CYLINDER MISFIRE, NO. 1 - 8 CYLINDER MISFIRE

On Board Diagnosis Logic

INFOID:0000000002954951

When a misfire occurs, engine speed will fluctuate. If the engine speed fluctuates enough to cause the crankshaft position (CKP) sensor (POS) signal to vary, ECM can determine that a misfire is occurring.

Sensor	Input signal to ECM	ECM function
Crankshaft position sensor (POS)	Engine speed	On board diagnosis of misfire

The misfire detection logic consists of the following two conditions.

1. One Trip Detection Logic (Three Way Catalyst Damage)

On the 1st trip that a misfire condition occurs that can damage the three way catalyst (TWC) due to overheating, the MIL will blink.

When a misfire condition occurs, the ECM monitors the CKP sensor signal every 200 engine revolutions for a change.

When the misfire condition decreases to a level that will not damage the TWC, the MIL will turn off. If another misfire condition occurs that can damage the TWC on a second trip, the MIL will blink. When the misfire condition decreases to a level that will not damage the TWC, the MIL will remain on. If another misfire condition occurs that can damage the TWC, the MIL will begin to blink again.

2. Two Trip Detection Logic (Exhaust quality deterioration)

For misfire conditions that will not damage the TWC (but will affect vehicle emissions), the MIL will only light when the misfire is detected on a second trip. During this condition, the ECM monitors the CKP sensor signal every 1,000 engine revolutions.

A misfire malfunction can be detected on any one cylinder or on multiple cylinders.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0300 0300	Multiple cylinder misfire detected	Multiple cylinder misfire.	
P0301 0301	No.1 cylinder misfire detected	No. 1 cylinder misfires.	
P0302 0302	No. 2 cylinder misfire detected	No. 2 cylinder misfires.	Improper spark plug Insufficient compression
P0303 0303	No. 3 cylinder misfire detected	No. 3 cylinder misfires.	Incorrect fuel pressure The fuel injector circuit is open or shorted Fuel injector
P0304 0304	No. 4 cylinder misfire detected	No. 4 cylinder misfires.	Intake air leak The ignition signal circuit is open or short-
P0305 0305	No. 5 cylinder misfire detected	No. 5 cylinder misfires.	ed • Lack of fuel • Signal plate
P0306 0306	No. 6 cylinder misfire detected	No. 6 cylinder misfires.	A/F sensor 1 Incorrect PCV hose connection
P0307 0307	No. 7 cylinder misfire detected	No. 7 cylinder misfires.	
P0308 0308	No. 8 cylinder misfire detected	No. 8 cylinder misfires.	

DTC Confirmation Procedure

VEOID:00000000002954952

CAUTION

Always drive vehicle in safe manner according to traffic conditions and obey all traffic laws when driving.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.

Revision: 2009 February **EC-947** 2008 M35/M45

EC

Α

D

Е

F

_

Н

M

Ν

Р

DTC P0300 - P0308 MULTIPLE CYLINDER MISFIRE, NO. 1 - 8 CYLINDER MIS-

[VK45DE] < SERVICE INFORMATION >

- Restart engine and let it idle for about 15 minutes.
- 4. Check 1st trip DTC.
- If 1st trip DTC is detected, go to EC-948, "Diagnosis Procedure".

If 1st trip DTC is not detected during above procedure, performing the following procedure is advised.

- Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and drive the vehicle under the similar conditions to (1st trip) Freeze Frame Data for a certain time. Refer to the table below.

Hold the accelerator pedal as steady as possible.

The similar conditions to (1st trip) Freeze Frame Data means the vehicle operation that the following conditions should be satisfied at the same time.

Engine speed	Engine speed in the freeze frame data \pm 400 rpm	
Vehicle speed in the freeze frame data \pm 10 km/h (6 MPH)		
Engine coolant temperature (T)	When the freeze frame data shows lower than 70 °C (158 °F), T should be lower than 70 °C (158 °F).	
condition	When the freeze frame data shows higher than or equal to 70 °C (158 °F), T should be higher than or equal to 70 °C (158 °F).	

The time to driving varies according to the engine speed in the freeze frame data.

Engine speed	Time
Around 1,000 rpm	Approximately 10 minutes
Around 2,000 rpm	Approximately 5 minutes
More than 3,000 rpm	Approximately 3.5 minutes

Diagnosis Procedure

INFOID:000000002954953

1. CHECK FOR INTAKE AIR LEAK AND PCV HOSE

- Start engine and run it at idle speed.
- Listen for the sound of the intake air leak.
- Check PCV hose connection.

OK or NG

OK >> GO TO 2.

NG >> Discover air leak location and repair.

2.CHECK FOR EXHAUST SYSTEM CLOGGING

Stop engine and visually check exhaust tube, three way catalyst and muffler for dents.

OK or NG

OK (With CONSULT-III)>>GO TO 3.

OK (Without CONSULT-III>>GO TO 4.

>> Repair or replace it. NG

3.PERFORM POWER BALANCE TEST

(P) With CONSULT-III

- Start engine and warm it up to normal operating temperature.
- Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-III.
- Is there any cylinder which does not produces a momentary engine speed drop?

Yes or No

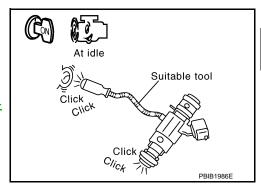
Yes >> GO TO 4. >> GO TO 9. No

4. CHECK FUNCTION OF FUEL INJECTOR

DTC P0300 - P0308 MULTIPLE CYLINDER MISFIRE, NO. 1 - 8 CYLINDER MISFIRE

< SERVICE INFORMATION > [VK45DE]

Without CONSULT-III


- 1. Start engine and warm it up to normal operating temperature.
- 2. Listen to fuel injector operating sound.

Operating sound should exist.

OK or NG

OK >> GO TO 5.

NG >> Perform trouble diagnosis for fuel injector, refer to <u>EC-1234</u>, "Diagnosis Procedure".

5. CHECK FUNCTION OF IGNITION COIL-I

CAUTION:

Do the following procedure in the place where ventilation is good without the combustible.

- 1. Turn ignition switch OFF.
- Remove fuel pump fuse (1) in IPDM E/R (2) to release fuel pressure.

NOTE:

Do not use CONSULT-III to release fuel pressure, or fuel pressure applies again during the following procedure.

- 3. Start engine.
- After engine stalls, crank it two or three times to release all fuel pressure.
- Turn ignition switch OFF.
- 6. Remove all ignition coil harness connectors to avoid the electrical discharge from the ignition coils.
- Remove ignition coil and spark plug of the cylinder to be checked.
- 8. Crank engine for 5 seconds or more to remove combustion gas in the cylinder.
- 9. Connect spark plug and harness connector to ignition coil.
- 10. Fix ignition coil using a rope etc. with gap of 13 17 mm between the edge of the spark plug and grounded metal portion as shown in the figure.
- 11. Crank engine for about 3 seconds, and check whether spark is generated between the spark plug and the grounded metal portion.

Spark should be generated.

CAUTION:

- Do not approach to the spark plug and the ignition coil within 50cm. Be careful not to get an electrical shock while checking, because the electrical discharge voltage becomes 20kV or more.
- It might cause to damage the ignition coil if the gap of more than 17 mm is taken. NOTE:

When the gap is less than 13 mm, the spark might be generated even if the coil is malfunctioning.

OK or NG

OK >> GO TO 9. NG >> GO TO 6.

6.CHECK FUNCTION OF IGNITION COIL-II

- 1. Turn ignition switch OFF.
- 2. Disconnect spark plug and connect a known-good spark plug.
- Crank engine for about 3 seconds, and recheck whether spark is generated between the spark plug and the grounded metal portion.

2 R,

The cylinder.

13 - 17 mm

Grounded metal portion
(Cylinder head, cylinder block, etc.)

EC

Α

D

F

G

Н

J

Κ

L

M

Ν

Р

DTC P0300 - P0308 MULTIPLE CYLINDER MISFIRE, NO. 1 - 8 CYLINDER MISFIRE

< SERVICE INFORMATION >

[VK45DE]

Spark should be generated.

OK or NG

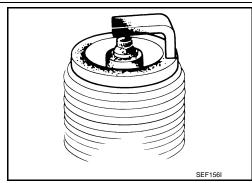
OK >> GO TO 7.

NG >> Check ignition coil, power transistor and their circuits. Refer to <u>EC-1254</u>, "<u>Diagnosis Procedure</u>".

7.CHECK SPARK PLUG

Check the initial spark plug for fouling, etc.

OK or NG


OK

>> Replace spark plug(s) with standard type one(s). For spark plug type, refer to <u>EM-190</u>.

NG

>> 1. Repair or clean spark plug.

2. GO TO 8.

8. CHECK FUNCTION OF IGNITION COIL-III

- 1. Reconnect the initial spark plugs.
- Crank engine for about 3 seconds, and recheck whether spark is generated between the spark plug and the grounded portion.

Spark should be generated.

OK or NG

OK >> INSPECTION END

NG >> Replace spark plug(s) with standard type one(s). For spark plug type, refer to <u>EM-190</u>.

9. CHECK COMPRESSION PRESSURE

Check compression pressure. Refer to EM-230, "On-Vehicle Service".

OK or NG

OK >> GO TO 10.

NG >> Check pistons, piston rings, valves, valve seats and cylinder head gaskets.

10. CHECK FUEL PRESSURE

- 1. Install all removed parts.
- Release fuel pressure to zero. Refer to <u>EC-708, "Fuel Pressure Check"</u>.
- Install fuel pressure gauge and check fuel pressure. Refer to <u>EC-708</u>, "Fuel Pressure Check".

At idling: Approximately 350 kPa (3.57 kg/cm², 51 psi)

OK or NG

OK >> GO TO 12.

NG >> GO TO 11.

11. DETECT MALFUNCTIONING PART

Check the following.

- Fuel pump and circuit (Refer to EC-1239, "Diagnosis Procedure".)
- Fuel pressure regulator (Refer to EC-708, "Fuel Pressure Check".)
- Fuel lines
- Fuel filter for clogging

>> Repair or replace.

12. CHECK IGNITION TIMING

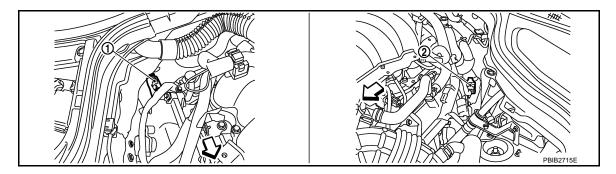
Check the following items. Refer to EC-702, "Basic Inspection".

DTC P0300 - P0308 MULTIPLE CYLINDER MISFIRE, NO. 1 - 8 CYLINDER MIS-

< SERVICE INFORMATION >

Items	Specifications
Target idle speed	650 ± 50 rpm (in P or N position)
Ignition timing	12 ± 5° BTDC (in P or N position)

OK or NG


OK >> GO TO 13.

NG >> Follow the EC-702, "Basic Inspection".

13. CHECK AIR FUEL RATIO (A/F) SENSOR 1 INPUT SIGNAL CIRCUIT

Turn ignition switch OFF.

Disconnect corresponding air fuel ratio (A/F) sensor 1 harness connector.

- A/F sensor 1 (bank 2) harness connector
- A/F sensor 1 (bank 1) harness connector

- Disconnect ECM harness connector.
- Check harness continuity between the following terminals. Refer to Wiring Diagram.

	A/F sensor 1 terminal	ECM terminal
	1	16
Bank 1	2	75
Dalik i	5	35
	6	56
	1	76
Bank 2	2	77
Bank 2	5	57
	6	58

Continuity should exist.

Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

Bank 1		Bank 2	
A/F sensor 1 terminal	ECM terminal	A/F sensor 1 terminal	ECM terminal
1	16	1	76
2	75	2	77
5	35	5	57
6	56	6	58

Continuity should not exist.

Revision: 2009 February

EC-951 2008 M35/M45

EC

Α

[VK45DE]

D

Е

F

Н

Ν

DTC P0300 - P0308 MULTIPLE CYLINDER MISFIRE, NO. 1 - 8 CYLINDER MISFIRE

[VK45DE]

< SERVICE INFORMATION >

6. Also check harness for short to power.

OK or NG

OK >> GO TO 14.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

14.CHECK A/F SENSOR 1 HEATER

Refer to EC-791, "Component Inspection".

OK or NG

OK >> GO TO 16. NG >> GO TO 15.

15. REPLACE AIR FUEL RATIO (A/F) SENSOR 1

Replace malfunctioning A/F sensor 1.

CAUTION:

- Discard any A/F sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new A/F sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

>> INSPECTION END

16. CHECK MASS AIR FLOW SENSOR

(I) With CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- 2. Check mass air flow sensor signal in "DATA MONITOR" mode with CONSULT-III.

2.0 - 6.0 g·m/sec: at idling 7.0 - 20.0 g·m/sec: at 2,500 rpm

With GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Check mass air flow sensor signal in Service \$01 with GST.

2.0 - 6.0 g·m/sec: at idling 7.0 - 20.0 g·m/sec: at 2,500 rpm

OK or NG

OK >> GO TO 17.

NG >> Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or ground. Refer to EC-810, "Diagnosis Procedure".

17. CHECK SYMPTOM MATRIX CHART

Check items on the rough idle symptom in EC-717, "Symptom Matrix Chart".

OK or NG

OK >> GO TO 18.

NG >> Repair or replace.

18. ERASE THE 1ST TRIP DTC

Some tests may cause a 1st trip DTC to be set.

Erase the 1st trip DTC from the ECM memory after performing the tests.

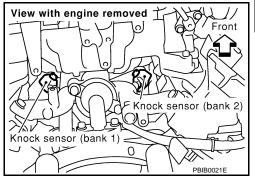
>> GO TO 19.

19. CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

>> INSPECTION END

INFOID:0000000002954954


INFOID:0000000002954955

INFOID:0000000002954956

DTC P0327, P0328, P0332, P0333 KS

Component Description

The knock sensor is attached to the cylinder block. It senses engine knocking using a piezoelectric element. A knocking vibration from the cylinder block is sensed as vibrational pressure. This pressure is converted into a voltage signal and sent to the ECM.

On Board Diagnosis Logic

The MIL will not light up for these diagnoses.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
P0327 0327 (bank 1)	Knock sensor circuit low in-	An excessively low voltage from the sensor		
P0332 0332 (bank 2)	put	is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)	
P0328 0328 (bank 1)	Knock sensor circuit high in-	An excessively high voltage from the sensor	Knock sensor	
P0333 0333 (bank 2)	put	is sent to ECM.		

DTC Confirmation Procedure

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

- 1. Start engine and let it idle for at least 5 seconds.
- 2. Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-955</u>, "<u>Diagnosis Procedure</u>".

EC

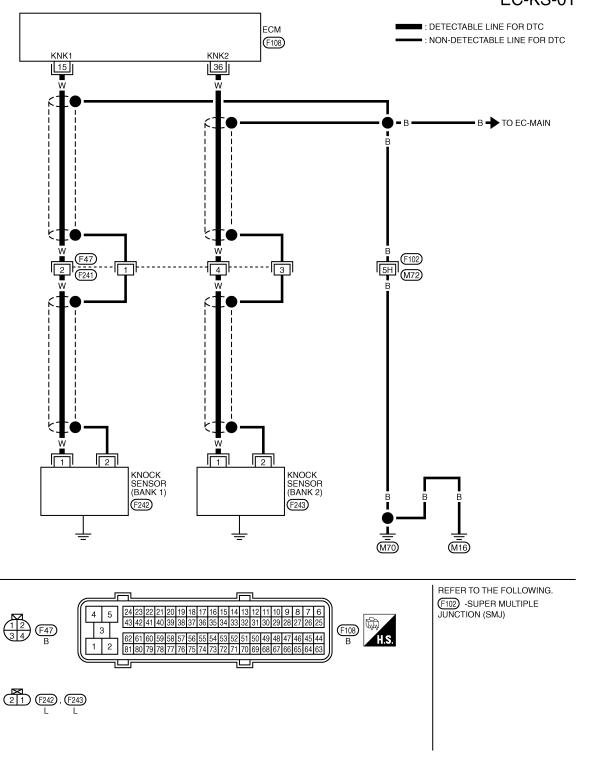
Α

D

Е

F

Н


L

Ν

Р

Wiring Diagram

TBWT1026E

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
15 36	W	Knock sensor (bank 1) Knock sensor (bank 2)	[Engine is running] • Idle speed	Approximately 2.5V

EC

D

Е

F

Н

Α

Diagnosis Procedure

INFOID:0000000002954958

1. CHECK KNOCK SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT-I

- Turn ignition switch OFF.
- Disconnect ECM harness connector.
- 3. Check resistance between ECM terminals 15, 36 and ground. Refer to Wiring Diagram.

NOTE:

It is necessary to use an ohmmeter which can measure more than 10 M Ω .

Resistance: Approximately 532 - 588 k Ω [at 20°C (68°F)]

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 2.

2.CHECK KNOCK SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT-II

- 1. Disconnect knock sensor harness connector.
- Check harness continuity between the following;
 ECM terminal 15 and knock sensor (bank1) terminal 1,
 ECM terminal 36 and knock sensor (bank 2) terminal 1.
 Refer to Wiring Diagram.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

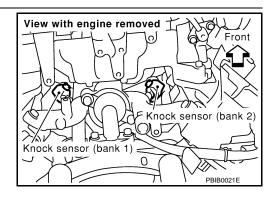
Check the following.

- Harness connectors F47, F241
- Harness for open or short between ECM and knock sensor

>> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK KNOCK SENSOR

Refer to EC-956, "Component Inspection".


OK or NG

OK >> GO TO 5.

NG >> Replace knock sensor.

5. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten ground screws on the body. Refer to <u>EC-769</u>, "Ground Inspection".

L

Ν

Р

K

Revision: 2009 February

- 1. Body ground M70
- 2. Body ground M16

OK or NG

OK >> GO TO 6.

NG >> Repair or replace ground connections.

6.CHECK KNOCK SENSOR SHIELD CIRCUIT FOR OPEN AND SHORT

- Disconnect knock sensor harness connector.
- Check harness continuity between knock sensor terminal 2 and ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F47, F241
- Harness connectors F102, M72
- Harness for open or short between knock sensor terminal 2 and ground
 - >> Repair open circuit or short to power in harness or connectors.

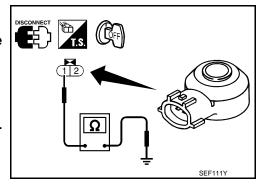
8. CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

>> INSPECTION END

Component Inspection

KNOCK SENSOR


Check resistance between knock sensor terminal 1 and ground.

It is necessary to use an ohmmeter which can measure more than 10 $\text{M}\Omega.$

Resistance: Approximately 532 - 588 k Ω [at 20°C (68°F)]

CAUTION:

Do not use any knock sensors that have been dropped or physically damaged. Use only new ones.

INFOID:0000000002954959

DTC P0327, P0328, P0332, P0333 KS

< SERVICE INFORMATION >

[VK45DE]

Removal and Installation

INFOID:0000000002954960

KNOCK SENSOR Refer to EM-249.

EC

Α

D

Е

F

G

Н

J

Κ

L

M

Ν

0

Ρ

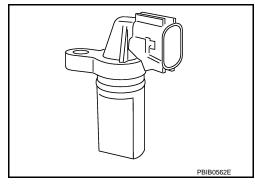
INFOID:0000000002954961

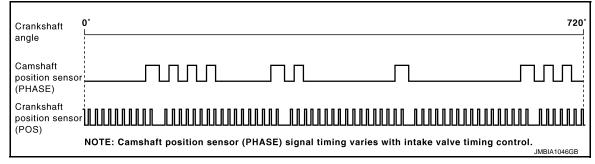
DTC P0335 CKP SENSOR (POS)

Component Description

The crankshaft position sensor (POS) is located on the A/T converter housing facing the gear teeth (cogs) of the signal plate. It detects the fluctuation of the engine revolution.

The sensor consists of a permanent magnet and Hall IC.


When the engine is running, the high and low parts of the teeth cause the gap with the sensor to change.


The changing gap causes the magnetic field near the sensor to change.

Due to the changing magnetic field, the voltage from the sensor changes.

The ECM receives the voltage signal and detects the fluctuation of the engine revolution.

ECM receives the signals as shown in the figure.

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002954962

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
ENG SPEED	Run engine and compare CONSULT-III value with the tachometer indication.	Almost the same speed as the tachometer indication.

On Board Diagnosis Logic

INFOID:0000000002954963

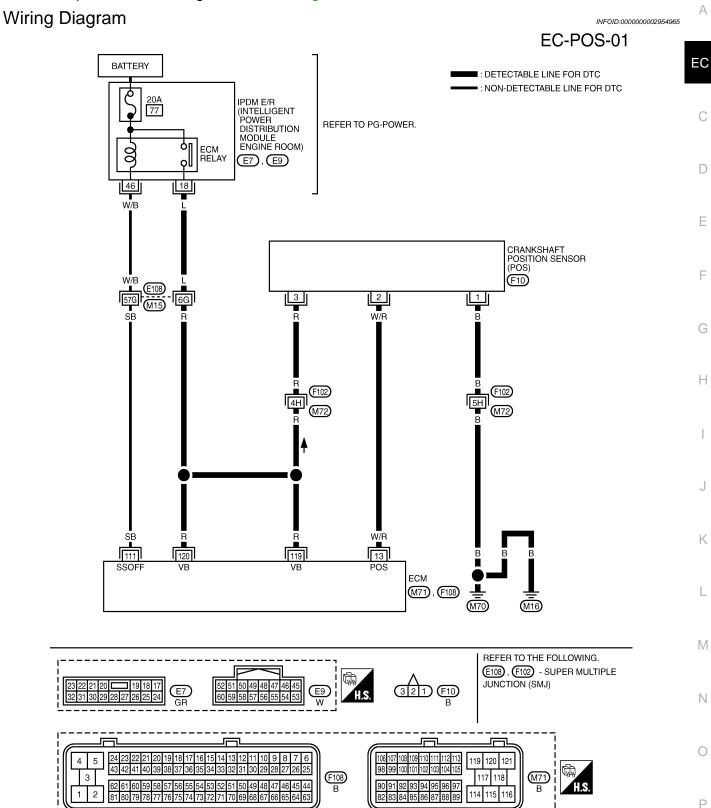
DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0335 0335	Crankshaft position sensor (POS) circuit	 The crankshaft position sensor (POS) signal is not detected by the ECM during the first few seconds of engine cranking. The proper pulse signal from the crankshaft position sensor (POS) is not sent to ECM while the engine is running. The crankshaft position sensor (POS) signal is not in the normal pattern during engine running. 	Harness or connectors (The sensor circuit is open or shorted) Crankshaft position sensor (POS) Signal plate

DTC Confirmation Procedure

INFOID:0000000002954964

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.


TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V with ignition switch ON.

- 1. Crank engine for at least 2 seconds and run it for at least 5 seconds at idle speed.
- Check 1st trip DTC.

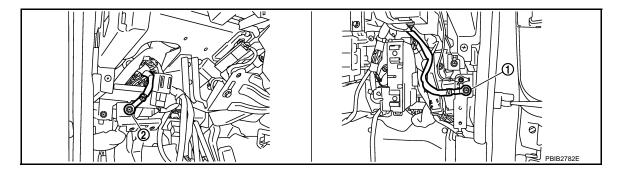
TBWT1990E

If 1st trip DTC is detected, go to <u>EC-960, "Diagnosis Procedure"</u>.

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III. CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
13	W/R	Crankshaft position sensor	 [Engine is running] Warm-up condition Idle speed NOTE: The pulse cycle changes depending on rpm at idle 	1.0 - 2.0V★ ≥ 5.0 V/Div 1 ms/Div T PBIB1041E
13	W/K	(POS)	[Engine is running] • Engine speed: 2,000 rpm	1.0 - 2.0V★ >> 5.0 V/Div 1 ms/Div T PBIB1042E
111	SB	ECM relay (Self shut-off)	[Engine is running][Ignition switch: OFF]For a few seconds after turning ignition switch OFF	0 - 1.5V
			[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
119 120	R R	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)


^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnosis Procedure

INFOID:0000000002954966

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten ground screws on the body. Refer to EC-769, "Ground Inspection".

1. Body ground M70

2. Body ground M16

OK or NG

OK >> GO TO 2.

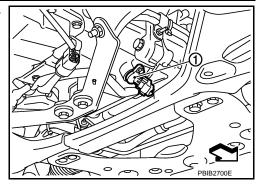
NG >> Repair or replace ground connections.

2. CHECK CRANKSHAFT POSITION (CKP) SENSOR (POS) POWER SUPPLY CIRCUIT

DTC P0335 CKP SENSOR (POS)

< SERVICE INFORMATION >

[VK45DE]

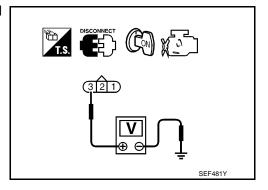

Α

EC

D

Е

- Disconnect crankshaft position (CKP) sensor (POS) (1) harness connector.
- Illustration shows the view from under the vehicle.
- <□: Vehicle front</p>
- 2. Turn ignition switch ON.



Check voltage between CKP sensor (POS) terminal 3 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- Harness connectors F102, M72
- Harness for open or short between crankshaft position sensor (POS) and ECM
- Harness for open or short between crankshaft position sensor (POS) and IPDM E/R

>> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK CKP SENSOR (POS) GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Check harness continuity between CKP sensor (POS) terminal 1 and ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 6.

NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

Revision: 2009 February

- Harness connectors F102, M72
- Harness for open or short between crankshaft position sensor (POS) and ground

>> Repair open circuit or short to power in harness or connectors.

6.CHECK CKP SENSOR (POS) INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 13 and CKP sensor (POS) terminal 2. Refer to Wiring Diagram.

Continuity should exist.

Н

J

Κ

.

IV

Ν

Ρ

< SERVICE INFORMATION >

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

7.check crankshaft position sensor (pos)

Refer to EC-962, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace crankshaft position sensor (POS).

8. CHECK GEAR TOOTH

Visually check for chipping signal plate gear tooth.

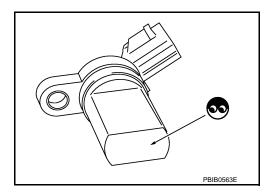
OK or NG

OK >> GO TO 9.

NG >> Replace the signal plate.

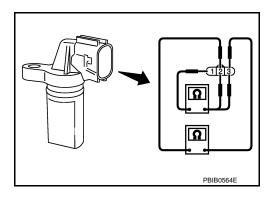
9. CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".


>> INSPECTION END

Component Inspection

INFOID:0000000002954967


CRANKSHAFT POSITION SENSOR (POS)

- 1. Loosen the fixing bolt of the sensor.
- 2. Disconnect crankshaft position sensor (POS) harness connector.
- 3. Remove the sensor.
- 4. Visually check the sensor for chipping.

5. Check resistance as shown in the figure.

Terminal No. (Polarity)	Resistance Ω [at 25°C (77°F)]
1 (+) - 2 (-)	
1 (+) - 3 (-)	Except 0 or ∞
2 (+) - 3 (-)	

Removal and Installation

INFOID:0000000002954968

CRANKSHAFT POSITION SENSOR (POS)

Refer to EM-185.

DTC P0340 CAMSHAFT POSITION (CMP) SENSOR (PHASE)

< SERVICE INFORMATION >

[VK45DE]

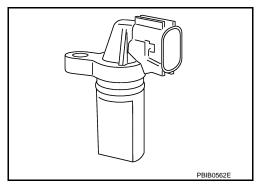
INFOID:0000000002954969

DTC P0340 CAMSHAFT POSITION (CMP) SENSOR (PHASE)

Component Description

The camshaft position sensor (PHASE) senses the protrusion of exhaust valve cam sprocket to identify a particular cylinder. The camshaft position sensor (PHASE) senses the piston position.

When the crankshaft position sensor (POS) system becomes inoperative, the camshaft position sensor (PHASE) provides various controls of engine parts instead, utilizing timing of cylinder identification signals.


The sensor consists of a permanent magnet and Hall IC.

When engine is running, the high and low parts of the teeth cause the gap with the sensor to change.

The changing gap causes the magnetic field near the sensor to change.

Due to the changing magnetic field, the voltage from the sensor changes.

ECM receives the signals as shown in the figure.

Crankshaft angle

Camshaft position sensor (PHASE)

Crankshaft position sensor (POS)

NOTE: Camshaft position sensor (PHASE) signal timing varies with intake valve timing control.

On Board Diagnosis Logic

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0340 0340	Camshaft position sensor (PHASE) circuit	 The cylinder No. signal is not sent to ECM for the first few seconds during engine cranking. The cylinder No. signal is not sent to ECM during engine running. The cylinder No. signal is not in the normal pattern during engine running. 	Harness or connectors (The sensor circuit is open or shorted) Camshaft position sensor (PHASE) Camshaft sprocket (EXH) Starter motor (Refer to SC-8.) Starting system circuit (Refer to SC-8.) Dead (Weak) battery

DTC Confirmation Procedure

INFOID:0000000002954971

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V with ignition switch ON.

EC-963

- 1. Crank engine for at least 2 seconds and run it for at least 5 seconds at idle speed.
- 2. Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-965</u>. "<u>Diagnosis Procedure</u>".
 If 1st trip DTC is not detected, go to next step.
- 4. Maintaining engine speed at more than 800 rpm for at least 5 seconds.
- Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-965</u>. "<u>Diagnosis Procedure</u>".

EC

Α

D

Е

F

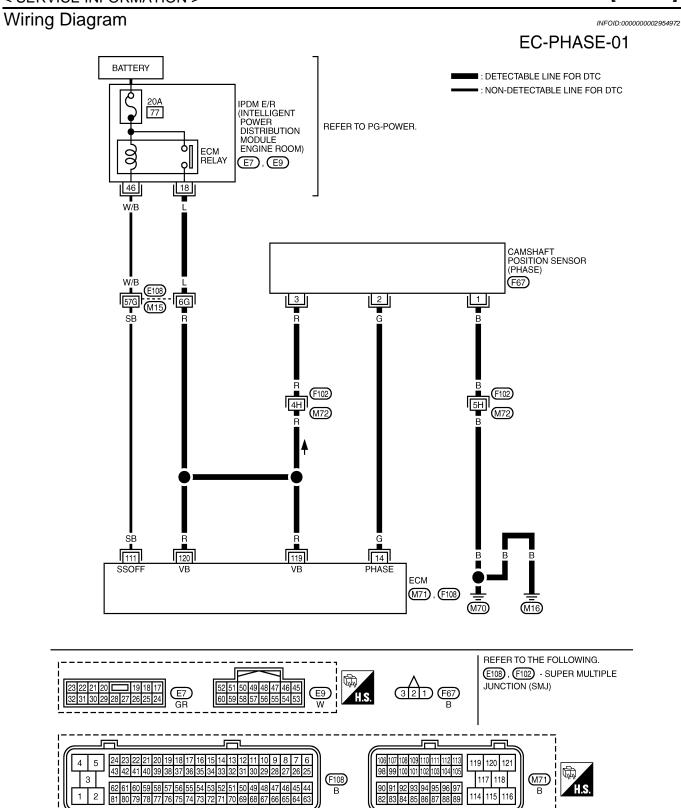
G

Н

INFOID:0000000002954970

J

K


L

M

Ν

Р

2008 M35/M45

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

CAUTION:

DTC P0340 CAMSHAFT POSITION (CMP) SENSOR (PHASE)

< SERVICE INFORMATION >

[VK45DE]

Α

D

Е

F

Н

Ν

Р

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
	Camshaft position sensor	[Engine is running] • Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle	1.0 - 4.0V★ >>> 5.0 V/Div 20 ms/Div T PBIB1039E	
14	G	(PHASE)	[Engine is running] • Engine speed: 2,000 rpm	1.0 - 4.0V★ >>> 5.0 V/Div 20 ms/Div PBIB1040E
111	11 SB ECM relay (Self shut-off)	[Engine is running] [Ignition switch: OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V	
		[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)	
119 120	R R	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnosis Procedure

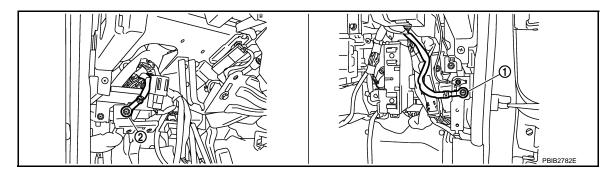
1. CHECK STARTING SYSTEM

Turn ignition switch to START position.

Does the engine turn over?

Does the starter motor operate?

Yes or No


Yes >> GO TO 2.

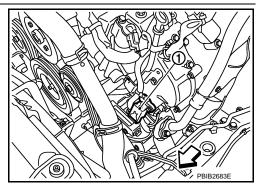
No >> Check starting system. (Refer to <u>SC-8</u>.)

2.CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- Loosen and retighten ground screws on the body. Refer to <u>EC-769</u>, "Ground Inspection".

INFOID:0000000002954973

- 1. Body ground M70
- 2. Body ground M16

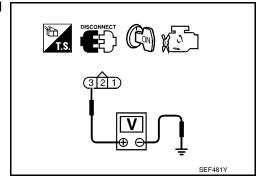

OK or NG

OK >> GO TO 3.

NG >> Repair or replace ground connections.

3.check camshaft position (cmp) sensor (phase) power supply circuit

- Disconnect camshaft position (CMP) sensor (PHASE) (1) harness connector.
- Illustration shows the view with intake air duct removed.
- <□: Vehicle front
- 2. Turn ignition switch ON.



Check voltage between CMP sensor (PHASE) terminal 3 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- Harness connectors F102, M72
- · Harness for open or short between camshaft position sensor (PHASE) and ECM
- Harness for open or short between camshaft position sensor (PHASE) and IPDM E/R

>> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK CMP SENSOR (PHASE) GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Check harness continuity between CMP sensor (PHASE) terminal 1 and ground. Refer to Wiring Diagram.

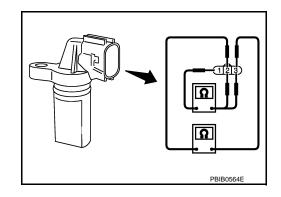
Continuity should exist.

3. Also check harness for short to power.

DTC P0340 CAMSHAFT POSITION (CMP) SENSOR (PHASE)

[VK45DE] < SERVICE INFORMATION > OK or NG Α OK >> GO TO 7. NG >> GO TO 6. 6. DETECT MALFUNCTIONING PART EC Check the following. Harness connectors F102, M72 · Harness for open or short between CMP sensor (PHASE) and ground >> Repair open circuit or short to power in harness or connectors. 7.CHECK CMP SENSOR (PHASE) INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT D Disconnect ECM harness connector. Check harness continuity between ECM terminal 14 and CMP sensor (PHASE) terminal 2. Refer to Wiring Diagram. Е Continuity should exist. 3. Also check harness for short to ground and short to power. F OK or NG OK >> GO TO 8. NG >> Repair open circuit or short to ground or short to power in harness or connectors. f 8.CHECK CAMSHAFT POSITION SENSOR (PHASE) Refer to EC-967, "Component Inspection". Н OK or NG OK >> GO TO 9. NG >> Replace camshaft position sensor (PHASE). 9. CHECK CAMSHAFT SPROCKET (EXH) Visually check camshaft sprocket (EXH) for chipping. OK or NG OK >> GO TO 10. NG >> Replace camshaft sprocket (exhaust). K 10. CHECK INTERMITTENT INCIDENT Refer to EC-763, "Diagnosis Procedure". >> INSPECTION END Component Inspection INFOID:0000000002954974 CAMSHAFT POSITION SENSOR (PHASE) Loosen the fixing bolt of the sensor. Ν 2. Disconnect camshaft position sensor (PHASE) harness connector. Remove the sensor. Visually check the sensor for chipping. Р

PBIB0563E


DTC P0340 CAMSHAFT POSITION (CMP) SENSOR (PHASE)

< SERVICE INFORMATION >

[VK45DE]

5. Check resistance as shown in the figure.

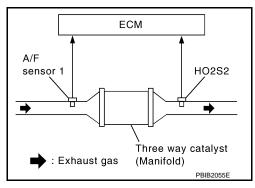
Terminal No. (Polarity)	Resistance Ω [at 25°C (77°F)]
3(+) - 1 (-)	
2 (+) - 1 (-)	Except 0 or ∞
3 (+) - 2 (-)	

INFOID:0000000002954975

Removal and Installation

CAMSHAFT POSITION SENSOR (PHASE) Refer to EM-214.

INFOID:0000000002954976


DTC P0420, P0430 THREE WAY CATALYST FUNCTION

On Board Diagnosis Logic

The ECM monitors the switching frequency ratio of air fuel ratio (A/F) sensor 1 and heated oxygen sensor 2.

A three way catalyst (manifold) with high oxygen storage capacity will indicate a low switching frequency of heated oxygen sensor 2. As oxygen storage capacity decreases, the heated oxygen sensor 2 switching frequency will increase.

When the frequency ratio of A/F sensor 1 and heated oxygen sensor 2 approaches a specified limit value, the three way catalyst (manifold) malfunction is diagnosed.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0420 0420 (Bank 1)	Catalyst system efficiency below threshold	Three way catalyst (manifold) does not operate properly. Three way catalyst (manifold) does not have enough oxygen storage capacity.	 Three way catalyst (manifold) Exhaust tube Intake air leaks Fuel injector Fuel injector leaks Spark plug Improper ignition timing
P0430 0430 (Bank 2)			

DTC Confirmation Procedure

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-III

TESTING CONDITION:

Do not hold engine speed for more than the specified minutes below.

- Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- Let engine idle for 1 minute.
- Select "COOLAN TEMP/S" in "DATA MONITOR" mode with CONSULT-III. 5.
- Make sure that "COOLAN TEMP/S" indicates more than 70°C (158°F). If not, warm up engine and go to next step when "COOLAN TEMP/S" indication reaches to 70°C (158°F).
- 7. Open engine hood.
- Select "DTC & SRT CONFIRMATION" then "SRT WORK SUPPORT" mode with CONSULT-III.
- Rev engine up to 2,000 to 3,000 rpm and hold it for 3 consecutive minutes, then release the accelerator pedal completely. If "INCMP" of "CATALYST" changed to "CMPLT", go to step 12.
- 11. Rev engine up to 2,000 to 3,000 rpm and maintain it until "INCMP" of "CATALYST" changes to "CMPLT" (It will take approximately 5 minutes).
 - If not "CMPLT", stop engine and cool it down to less than 70°C (158°F) and then retest from step 1.
- 12. Check 1st trip DTC.

Wait 5 seconds at idle.

13. If 1st trip DTC is detected, go to EC-970, "Diagnosis Procedure".

EC

Α

D

Е

F

INFOID:0000000002954977

K

M

Ν

Р

2008 M35/M45

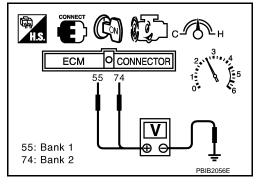
DTC P0420, P0430 THREE WAY CATALYST FUNCTION

< SERVICE INFORMATION >

[VK45DE]

Overall Function Check

INFOID:0000000002954978


Use this procedure to check the overall function of the three way catalyst (manifold). During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Open engine hood.
- Set voltmeter probe between ECM terminal 55 [HO2S2 (bank 1) signal] and ground, ECM terminal 74 [HO2S2 (bank 2) signal] and ground.
- 7. Keep engine speed at 2,500 rpm constant under no load.
- Make sure that the voltage does not vary for more than 5 seconds.

If the voltage fluctuation cycle takes less than 5 seconds, go to <u>EC-970</u>, "<u>Diagnosis Procedure</u>".

• 1 cycle: $0.6 - 1.0 \rightarrow 0 - 0.3 \rightarrow 0.6 - 1.0$

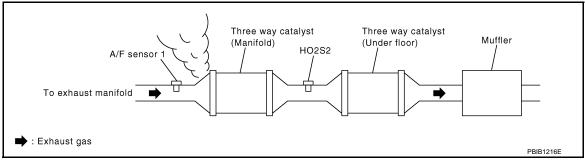
INFOID:0000000002954979

2008 M35/M45

Diagnosis Procedure

1. CHECK EXHAUST SYSTEM

Visually check exhaust tubes and muffler for dent.


OK or NG

OK >> GO TO 2.

NG >> Repair or replace.

2.CHECK EXHAUST GAS LEAK

- 1. Start engine and run it at idle.
- 2. Listen for an exhaust gas leak before the three way catalyst (manifold).

OK or NG

OK >> GO TO 3.

NG >> Repair or replace.

3.CHECK INTAKE AIR LEAK

Listen for an intake air leak after the mass air flow sensor.

OK or NG

OK >> GO TO 4.

NG >> Repair or replace.

4. CHECK IGNITION TIMING

Check the following items. Refer to EC-702, "Basic Inspection".

DTC P0420, P0430 THREE WAY CATALYST FUNCTION

< SERVICE INFORMATION >

[VK45DE]

Α

EC

D

Е

Н

Items	Specifications	
Target idle speed	650 ± 50 rpm (in P or N position)	
Ignition timing	12 ± 5° BTDC (in P or N position)	

OK or NG

OK >> GO TO 5.

NG >> Follow the EC-702, "Basic Inspection".

5. CHECK FUEL INJECTORS

Stop engine and then turn ignition switch ON.

2. Check voltage between ECM terminals 21, 22, 23, 40, 41, 42, 44, 63 and ground with CONSULT-III or tester. Refer to Wiring Diagram for fuel injectors, EC-1233, "Wiring Diagram".

Battery voltage should exist.

OK or NG

OK >> GO TO 6.

NG >> Perform EC-1234, "Diagnosis Procedure".

ECM CONNECTOR 21, 22, 23, 40, 41, 42, 44, 63 PBIB1527E

6.check function of ignition coil-i

CAUTION:

Do the following procedure in the place where ventilation is good without the combustible.

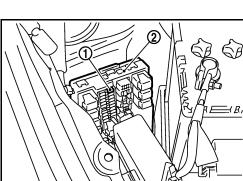
- Turn ignition switch OFF.
- Remove fuel pump fuse (1) in IPDM E/R (2) to release fuel pressure.

NOTE:

Do not use CONSULT-III to release fuel pressure, or fuel pressure applies again during the following procedure.

- Start engine.
- 4. After engine stalls, crank it two or three times to release all fuel pressure.
- Turn ignition switch OFF.
- 6. Remove all ignition coil harness connectors to avoid the electrical discharge from the ignition coils.
- 7. Remove ignition coil and spark plug of the cylinder to be checked.
- 8. Crank engine for 5 seconds or more to remove combustion gas in the cylinder.
- 9. Connect spark plug and harness connector to ignition coil.
- 10. Fix ignition coil using a rope etc. with gap of 13 17 mm between the edge of the spark plug and grounded metal portion as shown in the figure.
- 11. Crank engine for about 3 seconds, and check whether spark is generated between the spark plug and the grounded metal portion.

Spark should be generated.


CAUTION:

• Do not approach to the spark plug and the ignition coil within 50cm. Be careful not to get an electrical shock while checking, because the electrical discharge voltage becomes 20kV or more.

 It might cause to damage the ignition coil if the gap of more than 17 mm is taken. NOTE:

When the gap is less than 13 mm, the spark might be generated even if the coil is malfunctioning.

OK or NG

Ν

P

113 - 17 mm

PBIB2325E

Grounded metal portion

(Cylinder head, cylinder block, etc.)

DTC P0420, P0430 THREE WAY CATALYST FUNCTION

OK >> GO TO 10. NG >> GO TO 7.

7.CHECK FUNCTION OF IGNITION COIL-II

Turn ignition switch OFF.

< SERVICE INFORMATION >

- Disconnect spark plug and connect a known-good spark plug. 2.
- Crank engine for about 3 seconds, and recheck whether spark is generated between the spark plug and the grounded metal portion.

Spark should be generated.

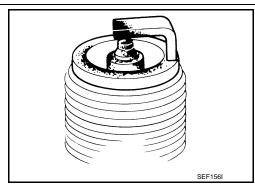
OK or NG

OK >> GO TO 8.

NG >> Check ignition coil, power transistor and their circuits. Refer to EC-1254, "Diagnosis Procedure".

8.CHECK SPARK PLUG

Check the initial spark plug for fouling, etc.


OK or NG

OK

>> Replace spark plug(s) with standard type one(s). For spark plug type, refer to EM-190.

NG

>> 1. Repair or clean spark plug. 2. GO TO 9.

[VK45DE]

9. CHECK FUNCTION OF IGNITION COIL-III

- Reconnect the initial spark plugs.
- Crank engine for about 3 seconds, and recheck whether spark is generated between the spark plug and the grounded portion.

Spark should be generated.

OK or NG

OK >> INSPECTION END

NG >> Replace spark plug(s) with standard type one(s). For spark plug type, refer to EM-190.

10. CHECK FUEL INJECTOR

- Turn ignition switch OFF.
- Remove fuel tube assembly.

Refer to EM-192.

Keep fuel hose and all fuel injectors connected to fuel tube.

- 3. Disconnect all ignition coil harness connectors.
- 4. Reconnect all fuel injector harness connectors disconnected.
- Turn ignition switch ON.

Make sure fuel does not drip from fuel injector.

OK or NG

OK (Does not drip.)>>GO TO 11.

NG (Drips.)>>Replace the fuel injector(s) from which fuel is dripping.

11. CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

Trouble is fixed.>>INSPECTION END

Trouble is not fixed.>>Replace three way catalyst assembly.

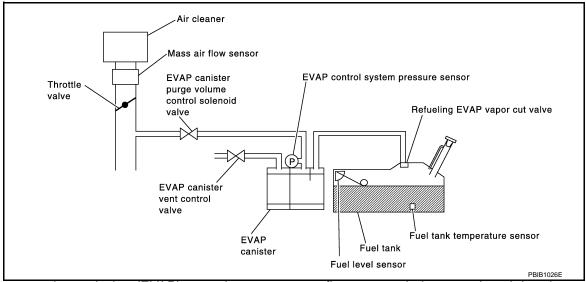
[VK45DE]

DTC P0441 EVAP CONTROL SYSTEM

System Description

INFOID:0000000002954980

Α


EC

D

F

NOTE:

If DTC P0441 is displayed with other DTC such as P2122, P2123, P2127, P2128 or P2138, first perform trouble diagnosis for other DTC.

In this evaporative emission (EVAP) control system, purge flow occurs during non-closed throttle conditions. Purge volume is related to air intake volume. Under normal purge conditions (non-closed throttle), the EVAP canister purge volume control solenoid valve is open to admit purge flow. Purge flow exposes the EVAP control system pressure sensor to intake manifold vacuum.

On Board Diagnosis Logic

INFOID:0000000002954981

Under normal conditions (non-closed throttle), sensor output voltage indicates if pressure drop and purge flow are adequate. If not, a malfunction is determined.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	K
P0441 0441	EVAP control system incorrect purge flow	EVAP control system does not operate properly, EVAP control system has a leak between intake manifold and EVAP control system pressure sensor.	EVAP canister purge volume control solenoid valve stuck closed EVAP control system pressure sensor and the circuit Loose, disconnected or improper connection of rubber tube Blocked rubber tube Cracked EVAP canister EVAP canister purge volume control solenoid valve circuit Accelerator pedal position sensor Blocked purge port EVAP canister vent control valve	L M

DTC Confirmation Procedure

INFOID:0000000002954982

Р

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Always perform test at a temperature of 5°C (41°F) or more.

(P) WITH CONSULT-III

1. Start engine and warm it up to normal operating temperature.

Revision: 2009 February **EC-973** 2008 M35/M45

< SERVICE INFORMATION >

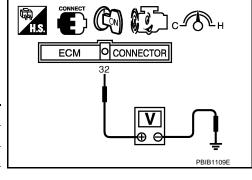
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and let it idle for at least 70 seconds.
- Select "PURG FLOW P0441" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CON-SULT-III.
- 5. Touch "START".
 - If "COMPLETED" is displayed, go to step 7.
- When the following conditions are met, "TESTING" will be displayed on the CONSULT-III screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take at least 35 seconds.)

Selector lever	Suitable position
VHCL SPEED SE	32 - 120 km/h (20 - 75 MPH)
ENG SPEED	500 - 3,000 rpm
B/FUEL SCHDL	1.0 - 10.0 msec
COOLAN TEMP/S	70 - 100°C (158 - 212°F)

If "TESTING" is not changed for a long time, retry from step 2.

7. Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to EC-974, "Diagnosis Procedure".

Overall Function Check


INFOID:0000000002954983

Use this procedure to check the overall monitoring function of the EVAP control system purge flow monitoring. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Lift up drive wheels.
- 2. Start engine (VDC switch OFF) and warm it up to normal operating temperature.
- 3. Turn ignition switch OFF, wait at least 10 seconds.
- Start engine and wait at least 70 seconds.
- 5. Set voltmeter probes to ECM terminals 32 (EVAP control system pressure sensor signal) and ground.
- Check EVAP control system pressure sensor value at idle speed and note it.
- Establish and maintain the following conditions for at least 1 minute.

Air conditioner switch	ON
Headlamp switch	ON
Rear window defogger switch	ON
Engine speed	Approx. 3,000 rpm
Gear position	Any position other than P, N or R

- 8. Verify that EVAP control system pressure sensor value stays 0.1V less than the value at idle speed (measured at step 6) for at least 1 second.
- If NG, go to <u>EC-974</u>, "<u>Diagnosis Procedure</u>".

Diagnosis Procedure

INFOID:0000000002954984

1. CHECK EVAP CANISTER

- 1. Turn ignition switch OFF.
- Check EVAP canister for cracks.

OK or NG

OK (With CONSULT-III)>>GO TO 2.

OK (Without CONSULT-III)>>GO TO 3.

NG >> Replace EVAP canister.

2.CHECK PURGE FLOW

(I) With CONSULT-III

Revision: 2009 February **EC-974** 2008 M35/M45

< SERVICE INFORMATION >

[VK45DE]

- Disconnect vacuum hose connected to EVAP canister purge volume control solenoid valve at EVAP service port and install vacuum gauge. For the location of EVAP service port, refer to <u>EC-662, "Description"</u>.
- Start engine and let it idle.
- 3. Select "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-III.
- Rev engine up to 2,000 rpm.
- Touch "Qd" and "Qu" on CONSULT-III screen to adjust "PURG VOL CONT/V" opening and check vacuum existence.

Ī	7	•
	U	,

PURG VOL CONT/V	Vacuum	
100%	Should exist.	
0%	Should not exist.	

OK or NG

OK >> GO TO 7. NG >> GO TO 4.

3. CHECK PURGE FLOW

Without CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- 2.
- Disconnect vacuum hose connected to EVAP canister purge volume control solenoid valve at EVAP service port and install vacuum gauge. For the location of EVAP service port, refer to EC-662, "Description".
- Start engine and let it idle.

Do not depress accelerator pedal even slightly.

Check vacuum gauge indication before 60 seconds passed after starting engine.

Vacuum should not exist.

Revving engine up to 2,000rpm after 100 seconds passed after starting engine.

Vacuum should exist.

OK or NG

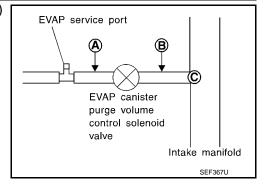
OK >> GO TO 7. NG >> GO TO 4.

K

4. CHECK EVAP PURGE LINE

- Turn ignition switch OFF.
- Check EVAP purge line for improper connection or disconnection. Refer to EC-662, "Description".

OK or NG


OK >> GO TO 5. NG >> Repair it.

M

Ν

${f 5.}$ CHECK EVAP PURGE HOSE AND PURGE PORT

- Disconnect purge hoses connected to EVAP service port (A) and EVAP canister purge volume control solenoid valve (B).
- Blow air into each hose and EVAP purge port (C).

D

Е

F

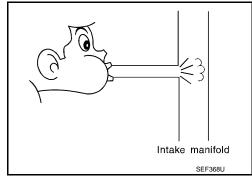
Н

Р

Revision: 2009 February

< SERVICE INFORMATION >

[VK45DE]


3. Check that air flows freely.

OK or NG

OK (With CONSULT-III)>>GO TO 6.

OK (Without CONSULT-III)>>GO TO 7.

NG >> Repair or clean hoses and/or purge port.

6. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(P) With CONSULT-III

- Start engine.
- Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-III. Check that engine speed varies according to the valve opening.

OK or NG

OK >> GO TO 8.

NG >> GO TO 7.

.CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-997, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace EVAP canister purge volume control solenoid valve.

8. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR CONNECTOR

- 1. Disconnect EVAP control system pressure sensor harness connector.
- 2. Check connectors for water.

Water should not exist.

OK or NG

OK >> GO TO 9.

NG >> Replace EVAP control system pressure sensor.

9.CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR FUNCTION

Refer to <u>EC-1012</u>, "DTC Confirmation Procedure" for DTC P0452, <u>EC-1018</u>, "DTC Confirmation Procedure" for DTC P0453.

OK or NG

OK >> GO TO 10.

NG >> Replace EVAP control system pressure sensor.

10.CHECK RUBBER TUBE FOR CLOGGING

- 1. Disconnect rubber tube connected to EVAP canister vent control valve.
- 2. Check the rubber tube for clogging.

OK or NG

OK >> GO TO 11.

NG >> Clean the rubber tube using an air blower.

11. CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-1002, "Component Inspection".

OK or NG

OK >> GO TO 12.

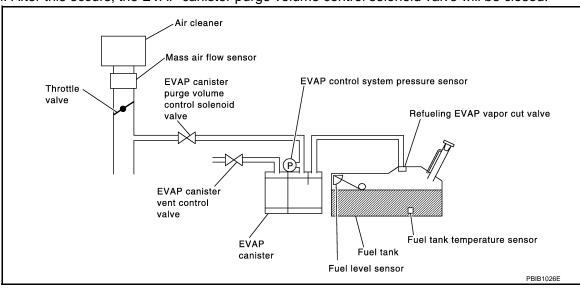
NG >> Replace EVAP canister vent control valve.

12. CHECK EVAP PURGE LINE

DTC P0441 EVAP CONTROL SYSTEM		
< SERVICE INFORMATION >	[VK45DE]	
Inspect EVAP purge line (pipe and rubber tube). Check for evidence of leaks. Refer to EC-662 , "Description".		А
OK or NG	_	
OK >> GO TO 13. NG >> Replace it.		EC
13.CLEAN EVAP PURGE LINE		LO
Clean EVAP purge line (pipe and rubber tube) using air blower.		
		С
>> GO TO 14. 14. CHECK INTERMITTENT INCIDENT		D
Refer to EC-763, "Diagnosis Procedure".		
		Е
>> INSPECTION END		
		F
		G
		Н
		ı
		J
		J
		K
		L
		M
		Ν
		0

EC-977 Revision: 2009 February 2008 M35/M45

Р


On Board Diagnosis Logic

INFOID:0000000002954985

This diagnosis detects leaks in the EVAP purge line using engine intake manifold vacuum.

If pressure does not increase, the ECM will check for leaks in the line between the fuel tank and EVAP canister purge volume control solenoid valve, under the following "Vacuum test" conditions.

The EVAP canister vent control valve is closed to shut the EVAP purge line off. The EVAP canister purge volume control solenoid valve will then be opened to depressurize the EVAP purge line using intake manifold vacuum. After this occurs, the EVAP canister purge volume control solenoid valve will be closed.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0442 0442	EVAP control system small leak detected (negative pressure)	EVAP control system has a leak, EVAP control system does not op- erate properly.	Incorrect fuel tank vacuum relief valve Incorrect fuel filler cap used Fuel filler cap remains open or fails to close. Foreign matter caught in fuel filler cap. Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve. Foreign matter caught in EVAP canister vent control valve. EVAP canister or fuel tank leaks EVAP purge line (pipe and rubber tube) leaks EVAP purge line rubber tube bent Loose or disconnected rubber tube EVAP canister vent control valve and the circuit EVAP canister purge volume control solenoid valve and the circuit Fuel tank temperature sensor O-ring of EVAP canister vent control valve is missing or damaged EVAP canister is saturated with water EVAP control system pressure sensor Fuel level sensor and the circuit Refueling EVAP vapor cut valve ORVR system leaks

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

DTC Confirmation Procedure

INFOID:0000000002954986

NOTE:

Revision: 2009 February **EC-978** 2008 M35/M45

< SERVICE INFORMATION >

[VK45DE]

 If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 and 3/4 full, and vehicle is placed on flat level surface.
- Always perform test at a temperature of 0 to 30°C (32 to 86°F).

(P) WITH CONSULT-III

- 1. Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-III.
- 4. Make sure that the following conditions are met.

COOLAN TEMP/S: 0 - 70°C (32 - 158°F) INT/A TEMP SE: 0 - 30°C (32 - 86°F)

5. Select "EVAP SML LEAK P0442/P1442" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-III.

Follow the instruction displayed.

NOTE:

If the engine speed cannot be maintained within the range displayed on the CONSULT-III screen, go to EC-702, "Basic Inspection".

Make sure that "OK" is displayed.

If "NG" is displayed, refer to EC-979, "Diagnosis Procedure".

NOTE:

Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

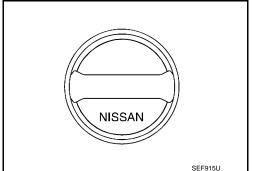
WITH GST

NOTE:

Be sure to read the explanation of EC-677, "Emission-Related Diagnostic Information" before driving vehicle.

- Start engine.
- Drive vehicle according to EC-677, "Emission-Related Diagnostic Information".
- Stop vehicle.
- Turn ignition switch OFF, wait at least 10 seconds and then turn ON.
- Select Service \$07 with GST.
 - If P0442 is displayed on the screen, go to EC-979, "Diagnosis Procedure".
 - If P0441 is displayed on the screen, go to <u>EC-974</u>, "<u>Diagnosis Procedure</u>".

Diagnosis Procedure


1. CHECK FUEL FILLER CAP DESIGN

- Turn ignition switch OFF.
- Check for genuine NISSAN fuel filler cap design.

OK or NG

OK >> GO TO 2.

NG >> Replace with genuine NISSAN fuel filler cap.

2.CHECK FUEL FILLER CAP INSTALLATION

Check that the cap is tightened properly by rotating the cap clockwise.

OK or NG

>> GO TO 3. OK

NG >> 1. Open fuel filler cap, then clean cap and fuel filler neck threads using air blower.

Retighten until ratcheting sound is heard.

EC-979

EC

Α

D

Е

Н

K

INFOID:0000000002954987

M

N

< SERVICE INFORMATION >

3.check fuel filler cap function

Check for air releasing sound while opening the fuel filler cap.

OK or NG

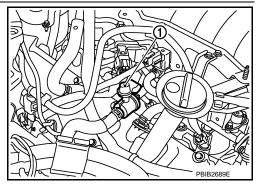
OK >> GO TO 5. NG >> GO TO 4.

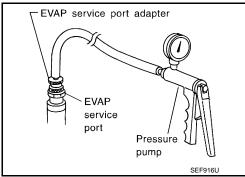
4. CHECK FUEL TANK VACUUM RELIEF VALVE

Refer to EC-664, "Component Inspection".

OK or NG

OK >> GO TO 5.


NG >> Replace fuel filler cap with a genuine one.


5. INSTALL THE PRESSURE PUMP

To locate the EVAP leak, install EVAP service port adapter and pressure pump to EVAP service port (1) securely.

NOTE:

Improper installation of the EVAP service port adapter to the EVAP service port may cause leaking.

With CONSULT-III>>GO TO 6. Without CONSULT-III>>GO TO 7.

6. CHECK FOR EVAP LEAK

(P) With CONSULT-III

- 1. Turn ignition switch ON.
- 2. Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-III.
- Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph.

CAUTION:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.

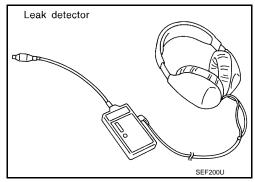
< SERVICE INFORMATION >

[VK45DE]

Α

EC

D


Н

 Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to <u>EC-662</u>, "<u>Description</u>".

OK or NG

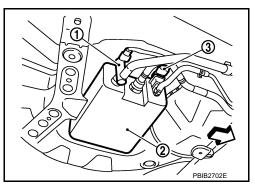
OK >> GO TO 8.

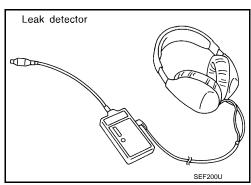
NG >> Repair or replace.

7.CHECK FOR EVAP LEAK

(R) Without CONSULT-III

- Turn ignition switch OFF.
- 2. Apply 12 volts DC to EVAP canister vent control valve (1). The valve will close. (Continue to apply 12 volts until the end of test.)
- Illustration shows the view from under the vehicle
- <⊃: Vehicle front
- EVAP canister (2)
- EVAP control system pressure sensor (3)
- Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (0.013 to 0.028 kg/cm², 0.019 to 0.039 psi), then remove pump and EVAP service port adapter.


CAUTION:


- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 4. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to EC-662, "Description".

OK >> GO TO 8.

NG >> Repair or replace.

8. CHECK EVAP CANISTER VENT CONTROL VALVE

Check the following.

- EVAP canister vent control valve is installed properly. Refer to EC-666, "Removal and Installation".
- EVAP canister vent control valve.
 Refer to <u>EC-1002</u>, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Repair or replace EVAP canister vent control valve and O-ring.

9. CHECK IF EVAP CANISTER SATURATED WITH WATER

1. Remove EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.

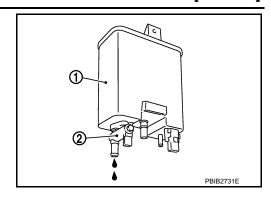
1 V I

Ν

Revision: 2009 February

< SERVICE INFORMATION >

[VK45DE]


- 2. Does water drain from the EVAP canister (1)?
- EVAP canister vent control valve (2)

Yes or No

Yes >> GO TO 10.

No (With CONSULT-III)>>GO TO 12.

No (Without CONSULT-III)>>GO TO 13.

10. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve and EVAP control system pressure sensor attached.

The weight should be less than 2.0 kg (4.4 lb).

OK or NG

OK (With CONSULT-III)>>GO TO 12.

OK (Without CONSULT-III)>>GO TO 13.

NG >> GO TO 11.

11. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and vehicle frame for clogging or poor connection

>> Repair hose or replace EVAP canister.

12. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(P) With CONSULT-III

- 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 2. Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- 4. Touch "Qu" on CONSULT-III screen to increase "PURG VOL CONT/V" opening to 100%.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

OK or NG

OK >> GO TO 15.

NG >> GO TO 14.

13. Check evap canister purge volume control solenoid valve operation

⋈ Without CONSULT-III

- Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- Start engine and let it idle for at least 80 seconds.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

Vacuum should exist.

OK or NG

OK >> GO TO 15.

NG >> GO TO 14.

14. CHECK VACUUM HOSE

Check vacuum hoses for clogging or disconnection. Refer to EC-730, "Vacuum Hose Drawing".

OK or NG

OK >> GO TO 15.

NG >> Repair or reconnect the hose.

DIC PU442 EVAP CONTROL STSTEW	- 1
< SERVICE INFORMATION > [VK45D	<u> </u>
15. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE	
Refer to EC-997, "Component Inspection".	
OK or NG OK >> GO TO 16.	
OK >> GO TO 16. NG >> Replace EVAP canister purge volume control solenoid valve.	
16. CHECK FUEL TANK TEMPERATURE SENSOR	
Refer to EC-936, "Component Inspection".	
OK or NG	
OK >> GO TO 17.	
NG >> Replace fuel level sensor unit.	
17. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR	
Refer to EC-1017, "Component Inspection".	
OK or NG OK >> GO TO 18.	
NG >> Replace EVAP control system pressure sensor.	
18. CHECK EVAP PURGE LINE	
Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks or improper connection. Refer to EC-662 , "Description".	
OK or NG	
OK >> GO TO 19. NG >> Repair or reconnect the hose.	
NG >> Repair or reconnect the hose. 19.CLEAN EVAP PURGE LINE	
Clean EVAP purge line (pipe and rubber tube) using air blower.	
>> GO TO 20.	
20. CHECK EVAP/ORVR LINE	
Check EVAP/ORVR line between EVAP canister and fuel tank for clogging, kink, looseness and improper conection. For location, refer to <u>EC-668</u> .	on-
OK or NG	
OK >> GO TO 21. NG >> Repair or replace hoses and tubes.	
NG >> Repair or replace hoses and tubes. 21.CHECK RECIRCULATION LINE	
Check recirculation line between filler neck tube and fuel tank for clogging, kink, cracks, looseness a improper connection.	IIIu
OK or NG	
OK >> GO TO 22.	
NG >> Repair or replace hose, tube or filler neck tube. 22 CHECK REFLIELING EVAD VADOR CHEVALVE	
22. CHECK REFUELING EVAP VAPOR CUT VALVE	
Refer to EC-670, "Component Inspection".	
OK or NG OK >> GO TO 23.	
NG >> Replace refueling EVAP vapor cut valve with fuel tank.	
23. CHECK FUEL LEVEL SENSOR	
Refer to DI-24, "Electrical Component Inspection".	
OK or NG	
OK >> GO TO 24.	
NG >> Replace fuel level sensor unit.	

Revision: 2009 February **EC-983** 2008 M35/M45

NG

>> Replace fuel level sensor unit.

< SERVICE INFORMATION >

[VK45DE]

24. CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

>> INSPECTION END

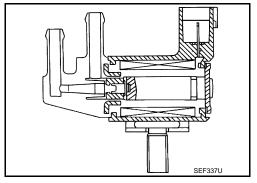
DTC P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

< SERVICE INFORMATION >

DTC P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Description

SYSTEM DESCRIPTION


Sensor	Input signal to ECM	ECM function	Actuator	
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed*1			
Mass air flow sensor	Amount of intake air			
Engine coolant temperature sensor	Engine coolant temperature			
Battery	Battery voltage*1	EVAP canister purge flow control	EVAP canister purge volume control solenoid valve	
Throttle position sensor	Throttle position			
Accelerator pedal position sensor	Accelerator pedal position	parge new control	Control Colonicia Valvo	
Air fuel ratio (A/F) sensor 1	Density of oxygen in exhaust gas (Mixture ratio feedback signal)	-		
Fuel tank temperature sensor	Fuel temperature in fuel tank			
Wheel sensor	Vehicle speed*2			

^{*1:} ECM determines the start signal status by the signals of engine speed and battery voltage.

This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass passage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor from the EVAP canister is regulated as the air flow changes.

COMPONENT DESCRIPTION

The EVAP canister purge volume control solenoid valve uses a ON/ OFF duty to control the flow rate of fuel vapor from the EVAP canister. The EVAP canister purge volume control solenoid valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of fuel vapor that will flow through the valve.

CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
PURG VOL C/V	 Engine: After warming up Selector lever: P or N Air conditioner switch: OFF 	Idle (Accelerator pedal: Not depressed even slightly, after engine starting.)	0%
	No load	2,000 rpm	_

Revision: 2009 February **EC-985** 2008 M35/M45

Α

D

Е

Н

Κ

L

M

N

Г

INFOID:0000000002954989

C

Р

^{*2:} This signal is sent to the ECM through CAN communication line.

DTC P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE [VK45DE]

< SERVICE INFORMATION >

On Board Diagnosis Logic

INFOID:0000000002954990

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0443 0443	EVAP canister purge volume control solenoid valve	The canister purge flow is detected during the specified driving conditions, even when EVAP canister purge volume control solenoid valve is completely closed.	EVAP control system pressure sensor EVAP canister purge volume control solenoid valve (The valve is stuck open.) EVAP canister vent control valve EVAP canister Hoses (Hoses are connected incorrectly or clogged.)

DTC Confirmation Procedure

INFOID:0000000002954991

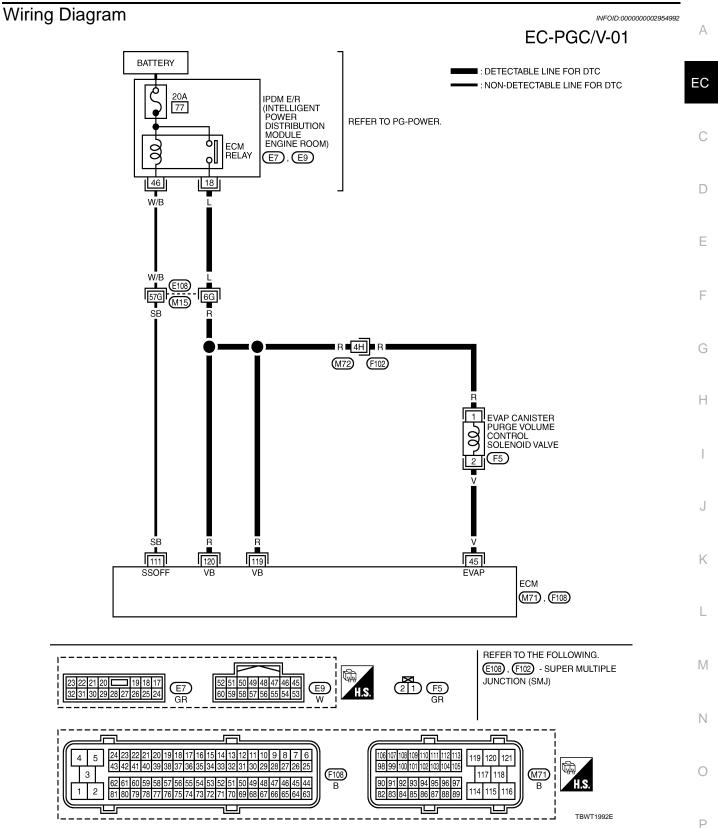
NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Always perform test at a temperature of 5°C (41°F) or more.

(P) WITH CONSULT-III


- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON.
- 4. Select "PURG VOL CN/V P1444" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-III.
- 5. Touch "START".
- 6. Start engine and let it idle until "TESTING" on CONSULT-III changes to "COMPLETED". (It will take approximately 10 seconds.)
 - If "TESTING" is not displayed after 5 minutes, retry from step 2.
- 7. Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to EC-988, "Diagnosis Procedure".

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and let it idle for at least 20 seconds.
- 4. Check 1st trip DTC.
- 5. If 1st trip DTC is detected, go to EC-988, "Diagnosis Procedure".

DTC P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

< SERVICE INFORMATION > [VK45DE]

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

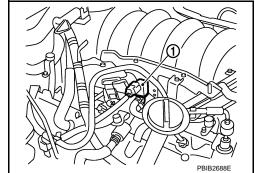
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

DTC P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE [VK45DE]

< SERVICE INFORMATION >

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
45	V	EVAP canister purge volume	 [Engine is running] Idle speed Accelerator pedal: Not depressed even slightly, after engine starting 	BATTERY VOLTAGE (11 - 14V)*
45	V	control solenoid valve	 [Engine is running] Engine speed: About 2,000 rpm (More than 100 seconds after starting engine) 	BATTERY VOLTAGE (11 - 14V)* In the second of the second
111	SB	SB ECM relay (Self shut-off)	[Engine is running][Ignition switch: OFF]For a few seconds after turning ignition switch OFF	0 - 1.5V
			[Ignition switch: OFF]More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
119 120	R R	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)


^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnosis Procedure

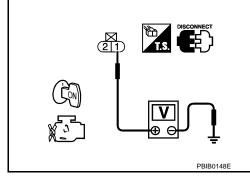
INFOID:0000000002954993

1. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT

- Turn ignition switch OFF.
- Disconnect EVAP canister purge volume control solenoid valve (1) harness connector.
- Turn ignition switch ON.

DTC P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

< SERVICE INFORMATION >


[VK45DE]

Check voltage between EVAP canister purge volume control solenoid valve terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- Harness connectors M72, F102
- IPDM E/R harness connector E7
- Harness for open or short between EVAP canister purge volume control solenoid valve and IPDM E/R
- Harness for open or short between EVAP canister purge volume control solenoid valve and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

3.check evap canister purge volume control solenoid valve output signal circuit FOR OPEN AND SHORT

- Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 45 and EVAP canister purge volume control solenoid valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

f 4.CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR CONNECTOR

- Disconnect EVAP control system pressure sensor harness connector.
- 2. Check connectors for water.

Water should not exist.

OK or NG

OK >> GO TO 5.

NG >> Replace EVAP control system pressure sensor.

${f 5}$.CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-1017, "Component Inspection".

OK or NG

OK (With CONSULT-III)>>GO TO 6.

OK (Without CONSULT-III)>>GO TO 7.

>> Replace EVAP control system pressure sensor.

O.CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(P) With CONSULT-III

- Turn ignition switch OFF.
- 2. Reconnect harness connectors disconnected.
- Start engine.
- Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-III. Check that engine speed varies according to the valve opening.

EC

Α

D

Е

Н

K

Ν

DTC P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE **IVK45DE1**

< SERVICE INFORMATION >

OK or NG

OK >> GO TO 8.

NG >> GO TO 7.

7.CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-991, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace EVAP canister purge volume control solenoid valve.

$oldsymbol{8}.$ CHECK RUBBER TUBE FOR CLOGGING

- Disconnect rubber tube connected to EVAP canister vent control valve.
- Check the rubber tube for clogging.

OK or NG

OK >> GO TO 9.

NG >> Clean the rubber tube using an air blower.

$oldsymbol{9}.$ CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-1002, "Component Inspection".

OK or NG

OK >> GO TO 10.


NG >> Replace EVAP canister vent control valve.

10.CHECK IF EVAP CANISTER SATURATED WITH WATER

- Remove EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.
- Does water drain from the EVAP canister (1)?
- EVAP canister vent control valve (2)

Yes or No

Yes >> GO TO 11. Nο >> GO TO 13.

11. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve and EVAP control system pressure sensor attached.

The weight should be less than 2.0 kg (4.4 lb).

OK or NG

OK >> GO TO 13.

>> GO TO 12. NG

12. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and vehicle frame for clogging or poor connection

>> Repair hose or replace EVAP canister.

13. CHECK INTERMITTENT INCIDENT

Refer to EC-763. "Diagnosis Procedure".

>> INSPECTION END

DTC P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE [VK45DE]

< SERVICE INFORMATION >

Component Inspection

INFOID:0000000002954994

Α

EC

D

Е

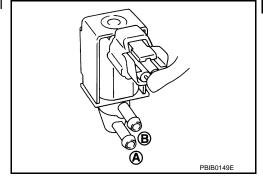
Н

K

L

Ν

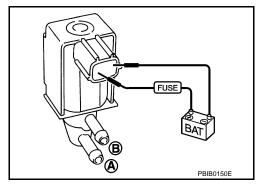
0


Р

EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(II) With CONSULT-III

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.


Condition (PURG VOL CONT/V value)	Air passage continuity between (A) and (B)
100%	Yes
0%	No

Without CONSULT-III

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.

Condition	Air passage continuity between (A) and (B)
12V direct current supply between terminals 1 and 2	Yes
No supply	No

Removal and Installation

EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE Refer to EM-177.

INFOID:0000000002954995

EC-991 Revision: 2009 February 2008 M35/M45

DTC P0444, P0445 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

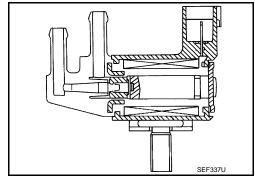
< SERVICE INFORMATION >

[VK45DE]

DTC P0444, P0445 EVAP CANISTER PURGE VOLUME CONTROL SOLE-NOID VALVE

Description INFOID:000000002954996

SYSTEM DESCRIPTION


Sensor	Input signal to ECM	ECM function	Actuator
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed*1		
Mass air flow sensor	Amount of intake air		
Engine coolant temperature sensor	Engine coolant temperature		
Battery	Battery voltage*1	EVAP canister EVAP canister purge vol control solenoid valve	
Throttle position sensor	Throttle position		
Accelerator pedal position sensor	Accelerator pedal position	parge new control	Control Colonida Valvo
Air fuel ratio (A/F) sensor 1	Density of oxygen in exhaust gas (Mixture ratio feedback signal)		
Fuel tank temperature sensor	Fuel temperature in fuel tank		
Wheel sensor	Vehicle speed*2		

^{*1:} ECM determines the start signal status by the signals of engine speed and battery voltage.

This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass passage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor from the EVAP canister is regulated as the air flow changes.

COMPONENT DESCRIPTION

The EVAP canister purge volume control solenoid valve uses a ON/ OFF duty to control the flow rate of fuel vapor from the EVAP canister. The EVAP canister purge volume control solenoid valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of fuel vapor that will flow through the valve.

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002954997

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
PURG VOL C/V	Engine: After warming upSelector lever: P or NAir conditioner switch: OFF	Idle (Accelerator pedal: Not depressed even slightly, after engine starting.)	0%
	No load	2,000 rpm	_

^{*2:} This signal is sent to the ECM through CAN communication line.

DTC P0444, P0445 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

< SERVICE INFORMATION >

[VK45DE]

On Board Diagnosis Logic

INFOID:0000000002954998

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0444 0444	EVAP canister purge volume control solenoid valve circuit open	An excessively low voltage signal is sent to ECM through the valve	Harness or connectors (The solenoid valve circuit is open or shorted.) EVAP canister purge volume control solenoid valve
P0445 0445	EVAP canister purge volume control solenoid valve circuit shorted	An excessively high voltage signal is sent to ECM through the valve	Harness or connectors (The solenoid valve circuit is shorted.) EVAP canister purge volume control solenoid valve

DTC Confirmation Procedure

INFOID:0000000002954999

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm battery voltage is more than 11V at idle.

- 1. Start engine and let it idle for at least 13 seconds.
- 2. Check 1st trip DTC.
- 3. If 1st trip DTC is detected, go to EC-995, "Diagnosis Procedure".

EC

Α

C

F

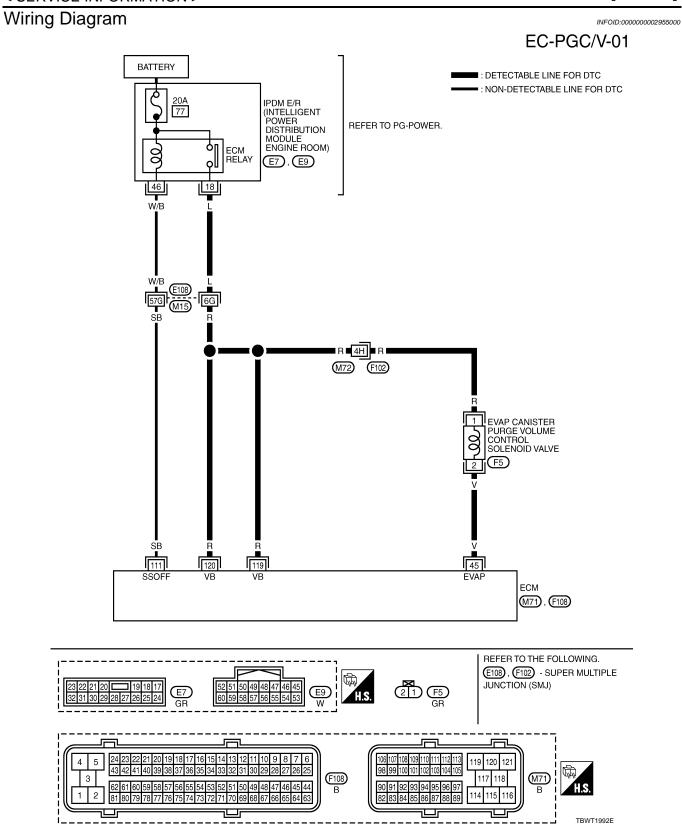
D

F

G

Н

K


L

Ν

O

Р

[VK45DE]

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

CAUTION:

DTC P0444, P0445 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID **VALVE**

< SERVICE INFORMATION >

[VK45DE]

K

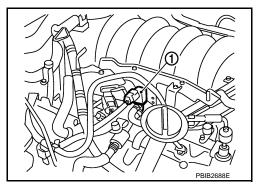
M

Ν

0

INFOID:0000000002955001

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC	
45	V	EVAP canister purge volume	 [Engine is running] Idle speed Accelerator pedal: Not depressed even slightly, after engine starting 	BATTERY VOLTAGE (11 - 14V)*	C D	
45	V	control solenoid valve	 [Engine is running] Engine speed: About 2,000 rpm (More than 100 seconds after starting engine) 	BATTERY VOLTAGE (11 - 14V)* Indication of the second content o	F G	
111	SB	ECM relay (Self shut-off)	[Engine is running] [Ignition switch: OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V	- H	
	[Ignition switch: OFF]	(Oon Shut-On)	(ocii siiut-oii)	More than a few seconds after turning igni-	BATTERY VOLTAGE (11 - 14V)	J
119 120	R R	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)	_	

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

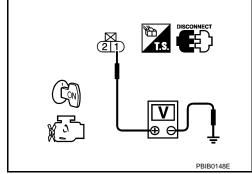
Diagnosis Procedure

1.CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect EVAP canister purge volume control solenoid valve (1) harness connector.
- 3. Turn ignition switch ON.

DTC P0444, P0445 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

< SERVICE INFORMATION >


[VK45DE]

 Check voltage between EVAP canister purge volume control solenoid valve terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- Harness connectors M72, F102
- IPDM E/R harness connector E7
- Harness for open or short between EVAP canister purge volume control solenoid valve and IPDM E/R
- Harness for open or short between EVAP canister purge volume control solenoid valve and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 45 and EVAP canister purge volume control solenoid valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK (With CONSULT-III)>>GO TO 4.

OK (Without CONSULT-III)>>GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(P) With CONSULT-III

- 1. Reconnect all harness connectors disconnected.
- Start engine.
- Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-III. Check that engine speed varies according to the valve opening.

OK or NG

OK >> GO TO 6.

NG >> GO TO 5.

5. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-997, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace EVAP canister purge volume control solenoid valve.

6.CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

>> INSPECTION END

DTC P0444, P0445 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

< SERVICE INFORMATION >

[VK45DE]

Component Inspection

INFOID:0000000002955002

Α

EC

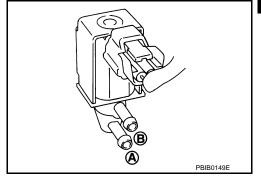
D

Е

Н

K

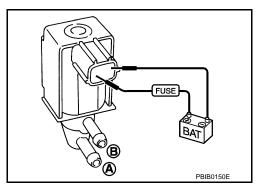
L


Ν

EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(II) With CONSULT-III

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.


Condition (PURG VOL CONT/V value)	Air passage continuity between (A) and (B)
100%	Yes
0%	No

Without CONSULT-III

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.

Condition	Air passage continuity between (A) and (B)
12V direct current supply between terminals 1 and 2	Yes
No supply	No

Removal and Installation

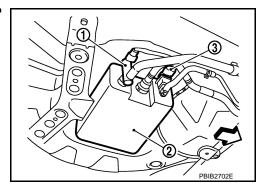
EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE Refer to $\underline{\mathsf{EM-}177}$.

INFOID:0000000002955003

Ρ

Revision: 2009 February **EC-997** 2008 M35/M45

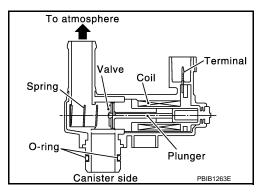
[VK45DE]


INFOID:000000002955004

DTC P0447 EVAP CANISTER VENT CONTROL VALVE

Component Description

The EVAP canister vent control valve (1) is located on the EVAP canister (2) and is used to seal the canister vent.


- Illustration shows the view from under the vehicle.
- <=: Vehicle front
- EVAP control system pressure sensor (3)

This solenoid valve responds to signals from the ECM. When the ECM sends an ON signal, the coil in the solenoid valve is energized. A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows EVAP control system diagnosis.

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002955005

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	Ignition switch: ON	OFF

On Board Diagnosis Logic

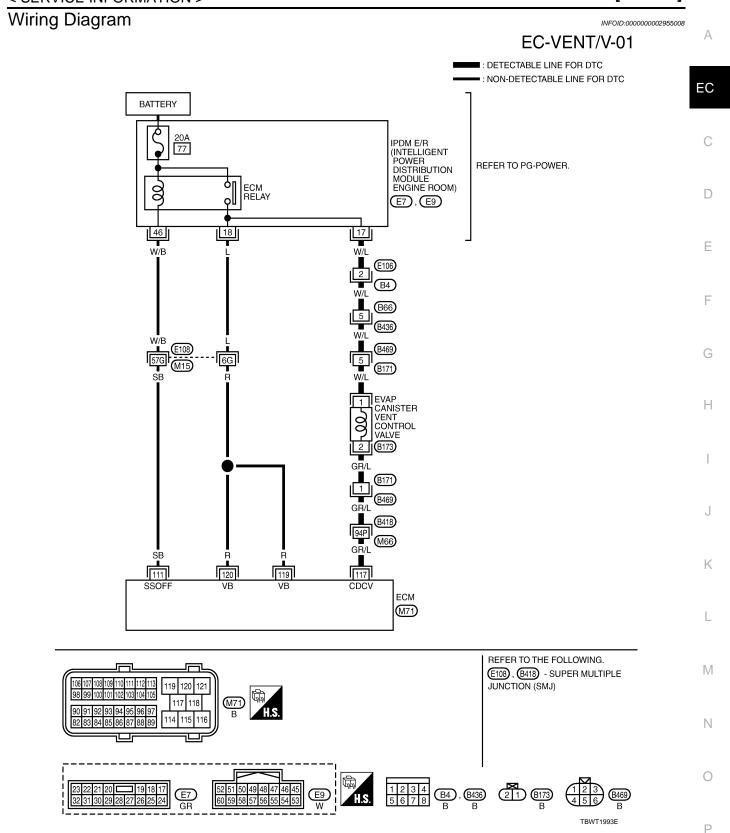
INFOID:0000000002955006

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0447 0447	EVAP canister vent control valve circuit open	An improper voltage signal is sent to ECM through EVAP canister vent control valve.	Harness or connectors (The valve circuit is open or shorted.) EVAP canister vent control valve

DTC Confirmation Procedure

INFOID:0000000002955007

NOTE:


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm battery voltage is more than 11V at idle.

- Start engine and wait at least 8 seconds.
- Check 1st trip DTC.
- 3. If 1st trip DTC is detected, go to EC-1000, "Diagnosis Procedure".

[VK45DE]

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

DTC P0447 EVAP CANISTER VENT CONTROL VALVE

< SERVICE INFORMATION >

[VK45DE]

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
111	SB	ECM relay	[Engine is running] [Ignition switch: OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V
		(Self shut-off)	[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
117	GR/L	EVAP canister vent control valve	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)
119 120	R R	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

Diagnosis Procedure

INFOID:0000000002955009

1. INSPECTION START

Do you have CONSULT-III?

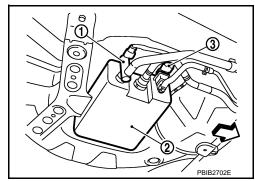
Yes or No

Yes >> GO TO 2. No >> GO TO 3.

2.CHECK EVAP CANISTER VENT CONTROL VALVE CIRCUIT

(II) With CONSULT-III

- 1. Turn ignition switch OFF and then turn ON.
- 2. Select "VENT CONTROL/V" in "ACTIVE TEST" mode with CONSULT-III.
- 3. Touch "ON/OFF" on CONSULT-III screen.
- 4. Check for operating sound of the valve.


Clicking noise should be heard.

OK or NG

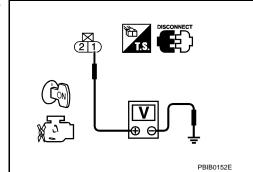
OK >> GO TO 7. NG >> GO TO 3.

3.CHECK EVAP CANISTER VENT CONTROL VALVE POWER SUPPLY CIRCUIT

- Turn ignition switch OFF.
- 2. Disconnect EVAP canister vent control valve (1) harness connector.
- Illustration shows the view from under the vehicle.
- <□: Vehicle front
- EVAP canister (2)
- EVAP control system pressure sensor (3)
- 3. Turn ignition switch ON.

DTC P0447 EVAP CANISTER VENT CONTROL VALVE

< SERVICE INFORMATION >


[VK45DE]

Check voltage between EVAP canister vent control valve terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. >> GO TO 4. NG

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E106, B4
- Harness connectors B66, B436
- Harness connectors B469, B171
- IPDM E/R harness connector E7
- Harness for open or short between EVAP canister vent control valve and IPDM E/R

>> Repair open circuit or short to ground or short to power in harness or connectors.

${f 5.}$ CHECK EVAP CANISTER VENT CONTROL VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 117 and EVAP canister vent control valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B171, B469
- Harness connectors B418, M66
- Harness for open or short between EVAP canister vent control valve and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

7.CHECK RUBBER TUBE FOR CLOGGING

- Disconnect rubber tube connected to EVAP canister vent control valve.
- Check the rubber tube for clogging.

OK or NG

OK >> GO TO 8.

NG >> Clean the rubber tube using an air blower.

8.CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-1002, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace EVAP canister vent control valve.

$\mathbf{9}.$ CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

Α

EC

D

Е

F

Н

K

N

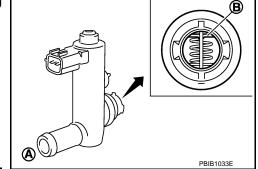
EC-1001

Revision: 2009 February

2008 M35/M45

>> INSPECTION END

Component Inspection


INFOID:0000000002955010

EVAP CANISTER VENT CONTROL VALVE

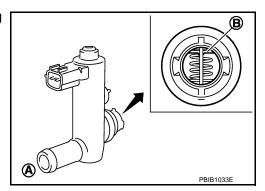
(P) With CONSULT-III

- 1. Remove EVAP canister vent control valve from EVAP canister.
- Check portion (B) of EVAP canister vent control valve for being rusted.
 - If NG, replace EVAP canister vent control valve. If OK, go to next step.
- 3. Reconnect harness connectors disconnected.
- 4. Turn ignition switch ON.
- 5. Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.
- Check air passage continuity and operation delay time.
 Make sure new O-ring is installed properly.

Condition VENT CONTROL/V	Air passage continuity between (A) and (B

Condition VENT CONTROL/V	Air passage continuity between (A) and (B)
ON	No
OFF	Yes

Operation takes less than 1 second.


If NG, replace EVAP canister vent control valve.

If OK, go to next step.

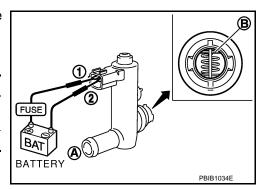
- 7. Clean the air passage [portion (A) to (B)] of EVAP canister vent control valve using an air blower.
- 8. Perform step 6 again.

Without CONSULT-III

- 1. Remove EVAP canister vent control valve from EVAP canister.
- 2. Check portion (B) of EVAP canister vent control valve for being rusted.

3. Check air passage continuity and operation delay time under the following conditions.

Make sure new O-ring is installed properly.


Condition	Air passage continuity between (A) and (B)
12V direct current supply between terminals (1) and (2)	No
OFF	Yes

Operation takes less than 1 second.

If NG, replace EVAP canister vent control valve.

If OK, go to next step.

- 4. Clean the air passage [portion (A) to (B)] of EVAP canister vent control valve using an air blower.
- Perform step 3 again.

[VK45DE]

INFOID:0000000002955011

Α

EC

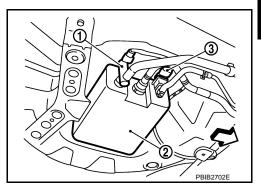
D

Е

F

Н

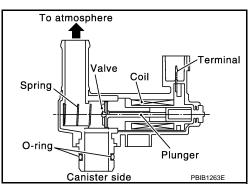
Ν


Р

DTC P0448 EVAP CANISTER VENT CONTROL VALVE

Component Description

The EVAP canister vent control valve (1) is located on the EVAP canister (2) and is used to seal the canister vent.


- Illustration shows the view from under the vehicle.
- ← : Vehicle front
- EVAP control system pressure sensor (3)

This solenoid valve responds to signals from the ECM. When the ECM sends an ON signal, the coil in the solenoid valve is energized. A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows EVAP control system diagnosis.

CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	Ignition switch: ON	OFF

On Board Diagnosis Logic

INFOID:0000000002955013

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0448 0448	EVAP canister vent control valve close	EVAP canister vent control valve remains closed under specified driving conditions.	EVAP canister vent control valve EVAP control system pressure sensor and the circuit Blocked rubber tube to EVAP canister vent control valve EVAP canister is saturated with water

DTC Confirmation Procedure

NOTE:

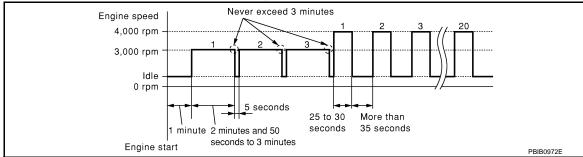
If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

- Turn ignition switch ON and wait at least 5 seconds. 1.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and let it idle for at least 1 minute.
- Repeat next procedures 3 times.
- Increase the engine speed up to 3,000 to 3,500 rpm and keep it for 2 minutes and 50 seconds to 3 minа utes.

Never exceed 3 minutes.

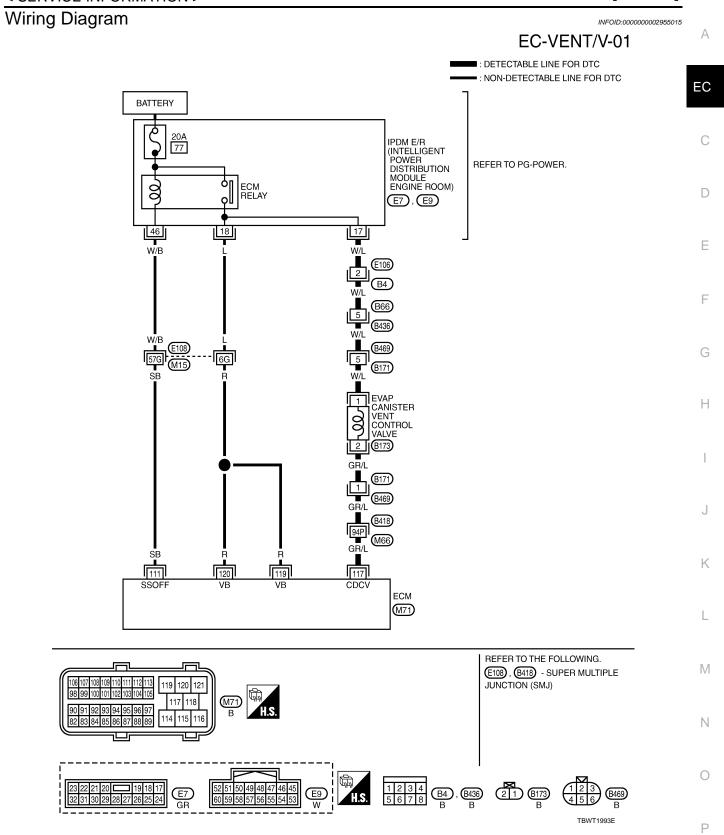
INFOID:0000000002955012

INFOID:0000000002955014


EC-1003 Revision: 2009 February 2008 M35/M45

DTC P0448 EVAP CANISTER VENT CONTROL VALVE

[VK45DE]


< SERVICE INFORMATION >

- b. Fully released accelerator pedal and keep engine idle for about 5 seconds.
- 5. Check 1st trip DTC.
- 6. If 1st trip DTC is detected, go to <u>EC-1006, "Diagnosis Procedure"</u>. If 1st trip DTC is not detected, go to the next step.
- 7. Repeat next procedure 20 times.
- a. Quickly increase the engine speed up to 4,000 to 4,500 rpm or more and keep it for 25 to 30 seconds.
- b. Fully released accelerator pedal and keep engine idle for at least 35 seconds.

- 8. Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-1006, "Diagnosis Procedure"</u>.

[VK45DE]

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

< SERVICE INFORMATION >

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
111	SB ECM relay	[Engine is running] [Ignition switch: OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V	
(Self shut-off)	(Sell shut-off)	[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)	
117	GR/L	EVAP canister vent control valve	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)
119 120	R R	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

Diagnosis Procedure

INFOID:0000000002955016

1. CHECK RUBBER TUBE

- 1. Turn ignition switch OFF.
- 2. Disconnect rubber tube connected to EVAP canister vent control valve (1).
- Illustration shows the view from under the vehicle.
- <⇒: Vehicle front</p>
- EVAP canister (2)
- EVAP control system pressure sensor (3)
- 3. Check the rubber tube for clogging.

OK or NG

OK >> GO TO 2.

NG >> Clean rubber tube using an air blower.

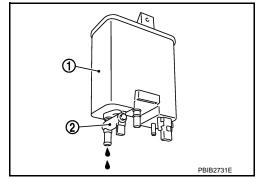
PBIB2702E

2.CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-1007, "Component Inspection".

OK or NG

OK >> GO TO 3.


NG >> Replace EVAP canister vent control valve.

3.CHECK IF EVAP CANISTER SATURATED WITH WATER

- 1. Remove EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.
- 2. Check if water will drain from the EVAP canister (1).
- EVAP canister vent control valve (2)

Yes or No

Yes >> GO TO 4. No >> GO TO 6.

4. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve and EVAP control system pressure sensor attached.

The weight should be less than 2.0 kg (4.4 lb).

DTC P0448 EVAP CANISTER VENT CONTROL VALVE [VK45DE] < SERVICE INFORMATION > OK or NG Α OK >> GO TO 6. NG >> GO TO 5. 5. DETECT MALFUNCTIONING PART EC Check the following. EVAP canister for damage EVAP hose between EVAP canister and vehicle frame for clogging or poor connection >> Repair hose or replace EVAP canister. 6.CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR CONNECTOR D Disconnect EVAP control system pressure sensor harness connector. 2. Check connectors for water. Е Water should not exist. OK or NG F

OK >> GO TO 7.

NG >> Replace EVAP control system pressure sensor.

CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-1017, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace EVAP control system pressure sensor.

8. CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

>> INSPECTION END

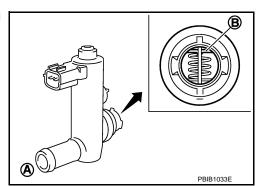
Component Inspection

EVAP CANISTER VENT CONTROL VALVE

- (P) With CONSULT-III
- 1. Remove EVAP canister vent control valve from EVAP canister.
- Check portion (B) of EVAP canister vent control valve for being rusted.
 - If NG, replace EVAP canister vent control valve.
 - If OK, go to next step.
- Reconnect harness connectors disconnected.
- Turn ignition switch ON.
- Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.
- Check air passage continuity and operation delay time.

Make sure new O-ring is installed properly.

Condition VENT CONTROL/V Air passage continuity between (A) and	
ON	No
OFF	Yes


Operation takes less than 1 second.

If NG, replace EVAP canister vent control valve.

If OK, go to next step.

- 7. Clean the air passage [portion (A) to (B)] of EVAP canister vent control valve using an air blower.
- Perform step 6 again.

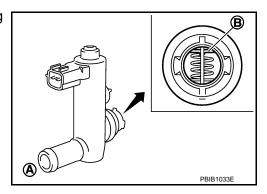
Revision: 2009 February

Н

M

Ν

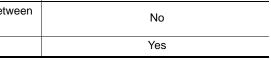
Р


INFOID:0000000002955017

2008 M35/M45

EC-1007

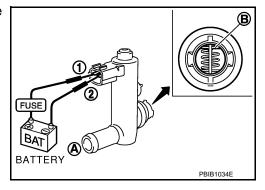
(X) Without CONSULT-III


- Remove EVAP canister vent control valve from EVAP canister.
- Check portion (B) of EVAP canister vent control valve for being rusted.

3. Check air passage continuity and operation delay time under the following conditions.

Make sure new O-ring is installed properly.

Condition	Air passage continuity between (A) and (B)
12V direct current supply between terminals (1) and (2)	No
OFF	Yes



Operation takes less than 1 second.

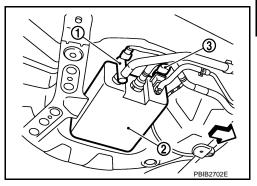
If NG, replace EVAP canister vent control valve.

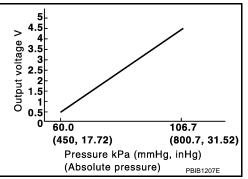
If OK, go to next step.

- 4. Clean the air passage [portion (A) to (B)] of EVAP canister vent control valve using an air blower.
- 5. Perform step 3 again.

< SERVICE INFORMATION >

[VK45DE]


INFOID:0000000002955018


DTC P0451 EVAP CONTROL SYSTEM PRESSURE SENSOR

Component Description

The EVAP control system pressure sensor (3) detects pressure in the purge line. The sensor output voltage to the ECM increases as pressure increases.

- Illustration shows the view from under the vehicle.
- ✓⊇: Vehicle front
- EVAP canister vent control valve (1)
- EVAP canister (2)

CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
EVAP SYS PRES	Ignition switch: ON	Approx. 1.8 - 4.8V

On Board Diagnosis Logic

INFOID:0000000002955020

NOTE:

If DTC P0451 is displayed with DTC P0643, first perform the trouble diagnosis for DTC P0643. Refer to EC-1061.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0451 0451	EVAP control system pressure sensor performance	ECM detects a sloshing signal from the EVAP control system pressure sensor	Harness or connectors EVAP control system pressure sensor

DTC Confirmation Procedure

INFOID:0000000002955021

2008 M35/M45

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

- 1. Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and wait at least 40 seconds.

NOTE:

Do not depress accelerator pedal even slightly.

- Check 1st trip DTC.
- 4. If 1st trip DTC is detected, go to EC-1010, "Diagnosis Procedure".

EC

Α

С

D

Е

F

G

M

Ν

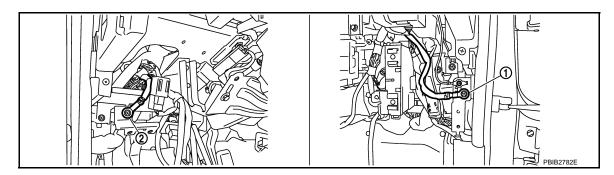
Р

INFOID:0000000002955019

Revision: 2009 February

DIC PU431 EVAP CONTROL STSTEW PRESSURE SENSO

Diagnosis Procedure


< SERVICE INFORMATION >

INFOID:0000000002955022

[VK45DE]

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten ground screws on the body. Refer to EC-769, "Ground Inspection".

1. Body ground M70

2. Body ground M16

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR CONNECTOR FOR WATER

- Disconnect EVAP control system pressure sensor (3) harness connector.
- Illustration shows the view from under the vehicle.
- <□: Vehicle front
- EVAP canister vent control valve (1)
- EVAP canister (2)
- 2. Check sensor harness connector for water.

Water should not exist.

OK or NG

OK >> GO TO 3.

NG >> Repair or replace harness connector.

3.check evap control system pressure sensor

Refer to EC-1010, "Component Inspection".

OK or NG

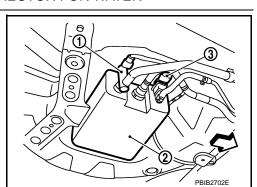
OK >> GO TO 4.

NG >> Replace EVAP control system pressure sensor.

4. CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

For Wiring Diagram, refer to EC-1014, "Wiring Diagram".


>> INSPECTION END

Component Inspection

INFOID:0000000002955023

EVAP CONTROL SYSTEM PRESSURE SENSOR

- Remove EVAP control system pressure sensor with its harness connector connected from EVAP canister.
 Always replace O-ring with a new one.
- Install a vacuum pump to EVAP control system pressure sensor.

< SERVICE INFORMATION >

3. Turn ignition switch ON and check output voltage between ECM terminal 32 and ground under the following conditions.

Applied vacuum kPa (kg/cm², psi)	Voltage V
Not applied	1.8 - 4.8
-26.7 (-0.272, -3.87)	2.1 to 2.5V lower than above value

EVAP control system pressure sensor Pump Pump PBIB1173E

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply vacuum below -93.3 kPa (-0.952 kg/cm², 13.53 psi) or pressure over 101.3 kPa (1.033 kg/cm², 14.69 psi).
- 4. If NG, replace EVAP control system pressure sensor.

Α

[VK45DE]

EC

С

D

Е

F

Н

J

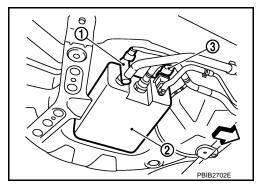
Κ

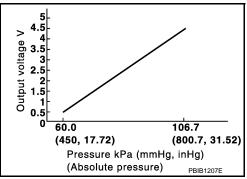
L

M

Ν

0


INFOID:0000000002955024


DTC P0452 EVAP CONTROL SYSTEM PRESSURE SENSOR

Component Description

The EVAP control system pressure sensor (3) detects pressure in the purge line. The sensor output voltage to the ECM increases as pressure increases.

- Illustration shows the view from under the vehicle.
- ✓⊇: Vehicle front
- EVAP canister vent control valve (1)
- EVAP canister (2)

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002955025

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
EVAP SYS PRES	Ignition switch: ON	Approx. 1.8 - 4.8V

On Board Diagnosis Logic

INFOID:0000000002955026

NOTE:

If DTC P0452 is displayed with DTC P0643, first perform the trouble diagnosis for DTC P0643. Refer to <u>EC-1061</u>.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0452 0452	EVAP control system pressure sensor low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.) EVAP control system pressure sensor

DTC Confirmation Procedure

INFOID:0000000002955027

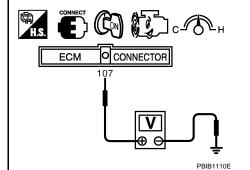
NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Always perform test at a temperature of 5°C (41°F) or more.

(II) WITH CONSULT-III


- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-III.

< SERVICE INFORMATION >

- 5. Make sure that "FUEL T/TMP SE" is more than 0°C (32°F).
- 6. Start engine and wait at least 20 seconds.
- 7. Check 1st trip DTC.
- 8. If 1st trip DTC is detected, go to <u>EC-1015, "Diagnosis Procedure".</u>

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Check that voltage between ECM terminal 107 (Fuel tank temperature sensor signal) and ground is less than 4.2V.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Start engine and wait at least 20 seconds.
- 5. Check 1st trip DTC.
- 6. If 1st trip DTC is detected, go to <u>EC-1015</u>. "<u>Diagnosis Procedure</u>".

EC

Α

[VK45DE]

С

D

Е

F

G

Н

J

Κ

L

M

Ν

0

TBWT1994E

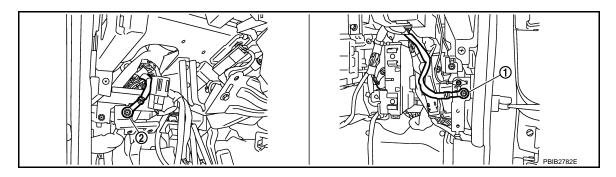
< SERVICE INFORMATION > Wiring Diagram INFOID:0000000002955028 EC-PRE/SE-01 : DETECTABLE LINE FOR DTC : NON-DETECTABLE LINE FOR DTC EVAP CONTROL SYSTEM PRESSURE SENSOR **B**172 \Box B/W R/G R/G 3 B/W R/G B/W B/W 78P 79P R/G B/W R/G B/W 37H 38H R/G B/W в/w 67 R/G 32 48 FTPRS GND-A ECM (F108) REFER TO THE FOLLOWING. (F102), (B418) - SUPER MULTIPLE JUNCTION (SMJ) 3 2 1 B172 GR (F108)

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

< SERVICE INFORMATION >

[VK45DE]


TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
32	R/G	EVAP control system pressure sensor	[Ignition switch: ON]	Approximately 1.8 - 4.8V
48	BR	Sensor power supply (EVAP control system pressure sensor)	[Ignition switch: ON]	Approximately 5V
67	B/W	Sensor ground (EVAP control system pressure sensor)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V

Diagnosis Procedure

INFOID:0000000002955029

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- Loosen and retighten ground screws on the body. Refer to <u>EC-769</u>, "Ground Inspection".

1. Body ground M70

2. Body ground M16

OK or NG

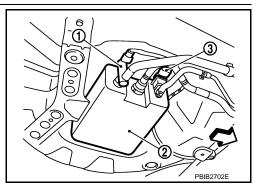
OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. CHECK CONNECTOR

- Disconnect EVAP control system pressure sensor (3) harness connector.
- Illustration shows the view from under the vehicle.
- <□: Vehicle front
- EVAP canister vent control valve (1)
- EVAP canister (2)
- 2. Check sensor harness connector for water.

Water should not exist.


OK or NG

OK >> GO TO 3.

NG >> Repair or replace harness connector.

3.CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR POWER SUPPLY CIRCUIT

1. Turn ignition switch ON.

0

D

Е

F

EC

Α

Н

J

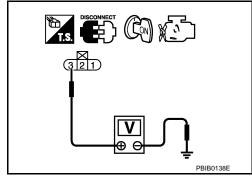
K

M

Ν

0

< SERVICE INFORMATION >


[VK45DE]

Check voltage between EVAP control system pressure sensor terminal 3 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B171, B469
- Harness connectors B418, M66
- Harness connectors M72, F102
- Harness for open or short between EVAP control system pressure sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between EVAP control system pressure sensor terminal 1 and ECM terminal
 67

Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B171, B469
- Harness connectors B418, M66
- Harness connectors M72, F102
- · Harness for open or short between EVAP control system pressure sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

7.CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

1. Check harness continuity between ECM terminal 32 and EVAP control system pressure sensor terminal 2.

Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9. NG >> GO TO 8.

8.DETECT MALFUNCTIONING PART

Check the following.

DIC PU432 EVAP CONTROL STSTEM PRESSURE SENSOR

- Harness connectors B171, B469
- Harness connectors B418, M66

< SERVICE INFORMATION >

- Harness connectors M72, F102
- Harness for open or short between EVAP control system pressure sensor and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-1017, "Component Inspection".

OK or NG

OK >> GO TO 10.

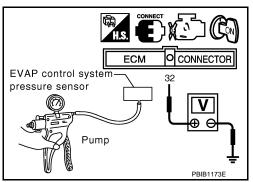
NG >> Replace EVAP control system pressure sensor.

10. CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

>> INSPECTION END

Component Inspection


EVAP CONTROL SYSTEM PRESSURE SENSOR

- 1. Remove EVAP control system pressure sensor with its harness connector connected from EVAP canister. **Always replace O-ring with a new one.**
- 2. Install a vacuum pump to EVAP control system pressure sensor.
- 3. Turn ignition switch ON and check output voltage between ECM terminal 32 and ground under the following conditions.

Applied vacuum kPa (kg/cm ² , psi)	Voltage V	
Not applied	1.8 - 4.8	
-26.7 (-0.272, -3.87)	2.1 to 2.5V lower than above value	

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply vacuum below -93.3 kPa (-0.952 kg/cm², 13.53 psi) or pressure over 101.3 kPa (1.033 kg/cm², 14.69 psi).
- 4. If NG, replace EVAP control system pressure sensor.

EC

Α

D

Е

Н

INFOID:0000000002955030

[VK45DE]

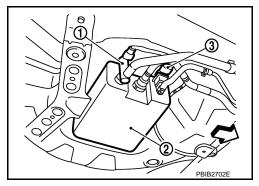
K

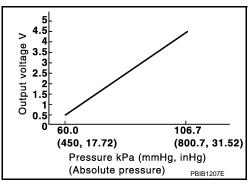
Ν

0

Р

Revision: 2009 February **EC-1017** 2008 M35/M45


INFOID:0000000002955031


DTC P0453 EVAP CONTROL SYSTEM PRESSURE SENSOR

Component Description

The EVAP control system pressure sensor (3) detects pressure in the purge line. The sensor output voltage to the ECM increases as pressure increases.

- Illustration shows the view from under the vehicle.
- ✓⊇: Vehicle front
- EVAP canister vent control valve (1)
- EVAP canister (2)

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002955032

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
EVAP SYS PRES	Ignition switch: ON	Approx. 1.8 - 4.8V

On Board Diagnosis Logic

INFOID:0000000002955033

NOTE:

If DTC P0453 is displayed with DTC P0643, first perform the trouble diagnosis for DTC P0643. Refer to <u>EC-1061</u>.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0453 0453	EVAP control system pressure sensor high input	An excessively high voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.) EVAP control system pressure sensor EVAP canister vent control valve EVAP canister Rubber hose from EVAP canister vent control valve to vehicle frame

DTC Confirmation Procedure

INFOID:0000000002955034

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

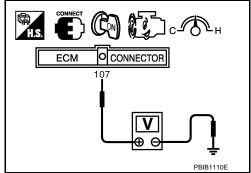
Always perform test at a temperature of 5°C (41°F) or more.

(P) WITH CONSULT-III

1. Start engine and warm it up to normal operating temperature.

Revision: 2009 February **EC-1018** 2008 M35/M45

DIC F0433 EVAP CONTROL 3131EM FRE330RE 3EN3OF


- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON.

< SERVICE INFORMATION >

- 4. Select "DATA MONITOR" mode with CONSULT-III.
- 5. Make sure that "FUEL T/TMP SE" is more than 0°C (32°F).
- 6. Start engine and wait at least 20 seconds.
- 7. Check 1st trip DTC.
- 8. If 1st trip DTC is detected, go to EC-1021, "Diagnosis Procedure".

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Check that voltage between ECM terminal 107 (Fuel tank temperature sensor signal) and ground is less than 4.2V.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Start engine and wait at least 20 seconds.
- Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-1021</u>, "<u>Diagnosis Procedure</u>".

EC

Α

[VK45DE]

D

Е

F

G

Н

1

K

L

M

Ν

0

TBWT1994E

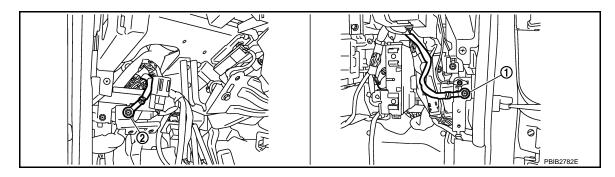
< SERVICE INFORMATION > Wiring Diagram INFOID:0000000002955035 EC-PRE/SE-01 : DETECTABLE LINE FOR DTC : NON-DETECTABLE LINE FOR DTC EVAP CONTROL SYSTEM PRESSURE SENSOR **B**172 \Box B/W R/G R/G 3 B/W R/G B/W B/W 78P 79P R/G B/W R/G B/W 38H 37H R/G B/W R/G B/W 67 32 48 FTPRS GND-A ECM (F108) REFER TO THE FOLLOWING. (F102), (B418) - SUPER MULTIPLE JUNCTION (SMJ) 3 2 1 B172 GR (F108)

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

< SERVICE INFORMATION >

[VK45DE]


TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
32	R/G	EVAP control system pres- sure sensor	[Ignition switch: ON]	Approximately 1.8 - 4.8V
48	BR	Sensor power supply (EVAP control system pressure sensor)	[Ignition switch: ON]	Approximately 5V
67	B/W	Sensor ground (EVAP control system pressure sensor)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V

Diagnosis Procedure

INFOID:0000000002955036

1. CHECK GROUND CONNECTIONS

- Turn ignition switch OFF.
- Loosen and retighten ground screws on the body. Refer to EC-769, "Ground Inspection".

1. Body ground M70

2. Body ground M16

OK or NG

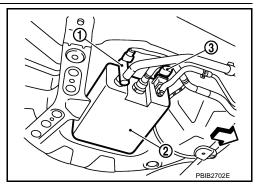
OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. CHECK CONNECTOR

- Disconnect EVAP control system pressure sensor (3) harness connector.
- Illustration shows the view from under the vehicle.
- EVAP canister vent control valve (1)
- EVAP canister (2)
- Check sensor harness connector for water.

Water should not exist.


OK or NG

OK >> GO TO 3.

NG >> Repair or replace harness connector.

3.CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR POWER SUPPLY CIRCUIT

Turn ignition switch ON.

EC

Е

F

Н

Α

D

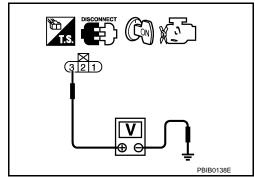
Ν

M

K

Ρ

< SERVICE INFORMATION >


[VK45DE]

Check voltage between EVAP control system pressure sensor terminal 3 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B171, B469
- Harness connectors B418, M66
- Harness connectors M72, F102
- Harness for open or short between EVAP control system pressure sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between EVAP control system pressure sensor terminal 1 and ECM terminal
 67

Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B171, B469
- Harness connectors B418, M66
- Harness connectors M72, F102
- · Harness for open or short between EVAP control system pressure sensor and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

7.CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal 32 and EVAP control system pressure sensor terminal 2.

Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9. NG >> GO TO 8.

8.DETECT MALFUNCTIONING PART

Check the following.

< SERVICE INFORMATION >

- Harness connectors B171, B469
- Harness connectors B418, M66
- Harness connectors M72, F102
- Harness for open or short between EVAP control system pressure sensor and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK RUBBER TUBE

- Disconnect rubber tube connected to EVAP canister vent control valve.
- Check the rubber tube for clogging, vent or kinked.

OK or NG

OK >> GO TO 10.

NG >> Clean the rubber tube using an air blower, repair or replace rubber tube.

10.CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-1002, "Component Inspection".

OK or NG

OK >> GO TO 11.

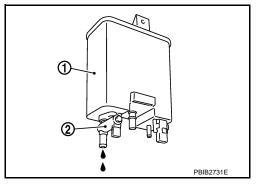
NG >> Replace EVAP canister vent control valve.

11. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-1024, "Component Inspection".

OK or NG

OK >> GO TO 12.


NG >> Replace EVAP control system pressure sensor.

12.CHECK IF EVAP CANISTER SATURATED WITH WATER

- Remove EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.
- Check if water will drain from the EVAP canister (1).
- EVAP canister vent control valve (2)

Yes or No

Yes >> GO TO 13. No >> GO TO 15.

13. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve and EVAP control system pressure sensor attached.

The weight should be less than 2.0 kg (4.4 lb).

OK or NG

OK >> GO TO 15.

NG >> GO TO 14.

14.DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and vehicle frame for clogging or poor connection

>> Repair hose or replace EVAP canister.

15. CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

[VK45DE]

Α

EC

D

F

Н

K

M

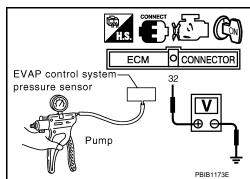
N

EC-1023

Revision: 2009 February 2008 M35/M45

[VK45DE]

>> INSPECTION END


Component Inspection

INFOID:0000000002955037

EVAP CONTROL SYSTEM PRESSURE SENSOR

- 1. Remove EVAP control system pressure sensor with its harness connector connected from EVAP canister. Always replace O-ring with a new one.
- 2. Install a vacuum pump to EVAP control system pressure sensor.
- 3. Turn ignition switch ON and check output voltage between ECM terminal 32 and ground under the following conditions.

Applied vacuum kPa (kg/cm², psi)	Voltage V
Not applied	1.8 - 4.8
-26.7 (-0.272, -3.87)	2.1 to 2.5V lower than above value

CAUTION:

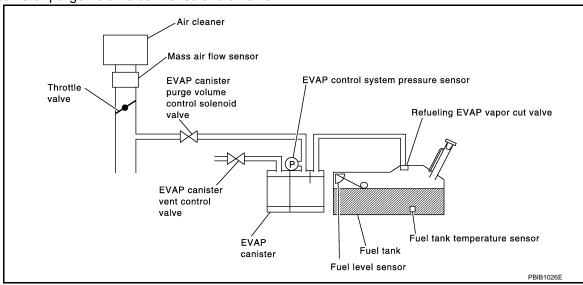
- Always calibrate the vacuum pump gauge when using it.
- Do not apply vacuum below -93.3 kPa (-0.952 kg/cm², 13.53 psi) or pressure over 101.3 kPa (1.033 kg/cm², 14.69 psi).
- 4. If NG, replace EVAP control system pressure sensor.

DTC P0455 EVAP CONTROL SYSTEM

On Board Diagnosis Logic

INFOID:0000000002955038

Α


EC

D

Е

F

This diagnosis detects a very large leak (fuel filler cap fell off etc.) in EVAP system between the fuel tank and EVAP canister purge volume control solenoid valve.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0455 0455	EVAP control system gross leak detected	EVAP control system has a very large leak such as fuel filler cap fell off, EVAP control system does not operate properly.	 Fuel filler cap remains open or fails to close. Incorrect fuel tank vacuum relief valve Incorrect fuel filler cap used Foreign matter caught in fuel filler cap. Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve. Foreign matter caught in EVAP canister vent control valve. EVAP canister or fuel tank leaks EVAP purge line (pipe and rubber tube) leaks EVAP purge line rubber tube bent. Loose or disconnected rubber tube EVAP canister vent control valve and the circuit EVAP canister purge volume control solenoid valve and the circuit Fuel tank temperature sensor O-ring of EVAP canister vent control valve is missing or damaged. EVAP control system pressure sensor Refueling EVAP vapor cut valve ORVR system leaks

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

DTC Confirmation Procedure

INFOID:0000000002955039

Р

CAUTION:

Never remove fuel filler cap during the DTC Confirmation Procedure. NOTE:

< SERVICE INFORMATION >

- Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.
- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 and 3/4 full, and vehicle is placed on flat level surface.
- Open engine hood before conducting the following procedures.

(P) WITH CONSULT-III

- 1. Tighten fuel filler cap securely until ratcheting sound is heard.
- 2. Turn ignition switch ON.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-III.
- 5. Make sure that the following conditions are met.

COOLAN TEMP/S: 0 - 70°C (32 - 158°F) INT/A TEMP SE: 0 - 60°C (32 - 140°F)

Select "EVAP SML LEAK P0442/P1442" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-III.

Follow the instruction displayed.

NOTE:

If the engine speed cannot be maintained within the range displayed on the CONSULT-III screen, go to EC-702, "Basic Inspection".

7. Make sure that "OK" is displayed.

If "NG" is displayed, select "SELF-DIAG RESULTS" mode and make sure that "EVAP GROSS LEAK [P0455]" is displayed. If it is displayed, refer to EC-1026, "Diagnosis Procedure".

If P0442 is displayed, perform Diagnostic Procedure for DTC P0442, refer to EC-979, "Diagnosis Procedure".

WITH GST

NOTE:

Be sure to read the explanation of <u>EC-677</u>, "Emission-Related <u>Diagnostic Information</u>" before driving vehicle.

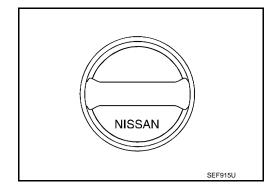
- Start engine.
- Drive vehicle according to EC-677, "Emission-Related Diagnostic Information".
- 3. Stop vehicle.
- 4. Turn ignition switch OFF, wait at least 10 seconds and then turn ON.
- 5. Check 1st trip DTC.
- If P0455 is displayed, go to <u>EC-1026, "Diagnosis Procedure"</u>.

If P0442 is displayed, go to EC-979, "Diagnosis Procedure".

If P0441 is displayed, go to EC-974, "Diagnosis Procedure".

Diagnosis Procedure

INFOID:0000000002955040


1. CHECK FUEL FILLER CAP DESIGN

- 1. Turn ignition switch OFF.
- Check for genuine NISSAN fuel filler cap design.

OK or NG

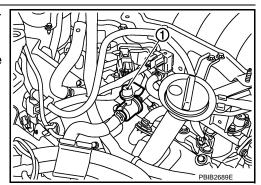
OK >> GO TO 2.

NG >> Replace with genuine NISSAN fuel filler cap.

2.check fuel filler cap installation

DTC P0455 EVAP CONTROL SYSTEM [VK45DE] < SERVICE INFORMATION > Check that the cap is tightened properly by rotating the cap clockwise. Α OK or NG OK >> GO TO 3. NG >> 1. Open fuel filler cap, then clean cap and fuel filler neck threads using air blower. Retighten until ratcheting sound is heard. EC 3.CHECK FUEL FILLER CAP FUNCTION Check for air releasing sound while opening the fuel filler cap. OK or NG OK >> GO TO 5. NG >> GO TO 4. D 4.CHECK FUEL TANK VACUUM RELIEF VALVE Refer to EC-664, "Component Inspection". Е OK or NG OK >> GO TO 5. NG >> Replace fuel filler cap with a genuine one. F 5.CHECK EVAP PURGE LINE Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks, improper connection or disconnection. Refer to EC-662, "Description". OK or NG OK >> GO TO 6. NG >> Repair or reconnect the hose. 6.CLEAN EVAP PURGE LINE Clean EVAP purge line (pipe and rubber tube) using air blower. >> GO TO 7. .CHECK EVAP CANISTER VENT CONTROL VALVE Check the following. EVAP canister vent control valve is installed properly. Refer to EC-666, "Removal and Installation". EVAP canister vent control valve. Refer to EC-1002, "Component Inspection". OK or NG OK

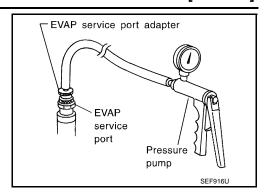
>> GO TO 8.


NG >> Repair or replace EVAP canister vent control valve and O-ring.

8. INSTALL THE PRESSURE PUMP

To locate the EVAP leak, install EVAP service port adapter and pressure pump to EVAP service port (1) securely.

NOTE:


Improper installation of the EVAP service port adapter to the EVAP service port may cause leaking.

Н

M

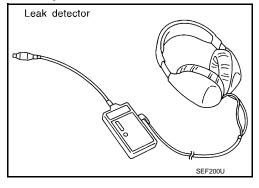
Ν

With CONSULT-III>>GO TO 9. Without CONSULT-III>>GO TO 10.

9. CHECK FOR EVAP LEAK

(P) With CONSULT-III

- 1. Turn ignition switch ON.
- 2. Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-III.
- Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph.

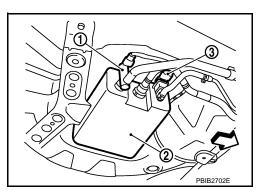

CAUTION:

- Do not use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to <u>EC-662</u>. "<u>Description</u>".

OK or NG

OK >> GO TO 11.

NG >> Repair or replace.


10. CHECK FOR EVAP LEAK

(R) Without CONSULT-III

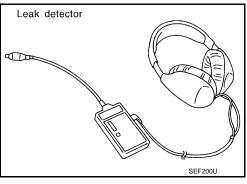
- 1. Turn ignition switch OFF.
- Apply 12 volts DC to EVAP canister vent control valve (1). The valve will close. (Continue to apply 12 volts until the end of test.)
- Illustration shows the view from under the vehicle
- ⇐ : Vehicle front
- EVAP canister (2)
- EVAP control system pressure sensor (3)
- Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (0.0133 to 0.028 kg/cm², 0.019 to 0.039 psi), then remove pump and EVAP service port adapter.

CAUTION:

- Do not use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.

DTC P0455 EVAP CONTROL SYSTEM

< SERVICE INFORMATION >


[VK45DE]

Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to EC-662, "Description".

OK or NG

OK >> GO TO 12.

NG >> Repair or replace.

11. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(P) With CONSULT-III

- Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 2. Start engine.
- Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- Touch "Qu" on CONSULT-III screen to increase "PURG VOL CONT/V" opening to 100%.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

OK or NG

OK >> GO TO 14.

NG >> GO TO 13.

12.CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(R) Without CONSULT-III

- Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- Start engine and let it idle for at least 80 seconds.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

Vacuum should exist.

OK or NG

OK >> GO TO 15.

NG >> GO TO 13.

13. CHECK VACUUM HOSE

Check vacuum hoses for clogging or disconnection. Refer to EC-730, "Vacuum Hose Drawing".

OK or NG

OK (With CONSULT-III)>>GO TO 14.

OK (Without CONSULT-III)>>GO TO 15.

>> Repair or reconnect the hose.

14.CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(P) With CONSULT-III

- Start engine.
- Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-III. Check that engine speed varies according to the valve opening.

OK or NG

OK >> GO TO 16.

NG >> GO TO 15.

15. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-997, "Component Inspection".

OK or NG

OK >> GO TO 16.

NG >> Replace EVAP canister purge volume control solenoid valve. Α

EC

C

D

Е

F

Н

DTC P0455 EVAP CONTROL SYSTEM

< SERVICE INFORMATION >

[VK45DE]

16. CHECK FUEL TANK TEMPERATURE SENSOR

Refer to EC-936, "Component Inspection".

OK or NG

OK >> GO TO 17.

NG >> Replace fuel level sensor unit.

17. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-1017, "Component Inspection".

OK or NG

OK >> GO TO 18.

NG >> Replace EVAP control system pressure sensor.

18. CHECK EVAP/ORVR LINE

Check EVAP/ORVR line between EVAP canister and fuel tank for clogging, kink, looseness and improper connection. For location, refer to <u>EC-668</u>.

OK or NG

OK >> GO TO 19.

NG >> Repair or replace hoses and tubes.

19. CHECK RECIRCULATION LINE

Check recirculation line between filler neck tube and fuel tank for clogging, kink, cracks, looseness and improper connection.

OK or NG

OK >> GO TO 20.

NG >> Repair or replace hose, tube or filler neck tube.

20. CHECK REFUELING EVAP VAPOR CUT VALVE

Refer to EC-670, "Component Inspection".

OK or NG

OK >> GO TO 21.

NG >> Replace refueling EVAP vapor cut valve with fuel tank.

21. CHECK INTERMITTENT INCIDENT

Refer to EC-763. "Diagnosis Procedure".

>> INSPECTION END

INFOID:0000000002955041

Α

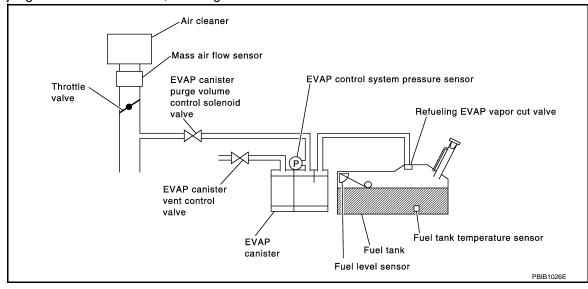
EC

C

D

Е

DTC P0456 EVAP CONTROL SYSTEM


On Board Diagnosis Logic

This diagnosis detects very small leaks in the EVAP line between fuel tank and EVAP canister purge volume control solenoid valve, using the intake manifold vacuum in the same way as conventional EVAP small leak diagnosis.

If ECM judges a leak which corresponds to a very small leak, the very small leak P0456 will be detected.

If ECM judges a leak equivalent to a small leak, EVAP small leak P0442 will be detected.

If ECM judges there are no leaks, the diagnosis will be OK.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0456 0456	Evaporative emission control system very small leak (negative pressure check)	 EVAP system has a very small leak. EVAP system does not operate properly. 	 Incorrect fuel tank vacuum relief valve Incorrect fuel filler cap used Fuel filler cap remains open or fails to close. Foreign matter caught in fuel filler cap. Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve. Foreign matter caught in EVAP canister vent control valve. EVAP canister or fuel tank leaks EVAP purge line (pipe and rubber tube) leaks EVAP purge line rubber tube bent Loose or disconnected rubber tube EVAP canister vent control valve and the circuit EVAP canister purge volume control solenoid valve and the circuit Fuel tank temperature sensor O-ring of EVAP canister vent control valve is missing or damaged EVAP canister is saturated with water EVAP control system pressure sensor Refueling EVAP vapor cut valve ORVR system leaks Fuel level sensor and the circuit Foreign matter caught in EVAP canister purge volume control solenoid valve

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

DTC P0456 EVAP CONTROL SYSTEM

< SERVICE INFORMATION >

[VK45DE]

DTC Confirmation Procedure

NOTE:

- If DTC P0456 is displayed with P0442, first perform trouble diagnosis for DTC P0456.
- After repair, make sure that the hoses and clips are installed properly.
- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Open engine hood before conducting following procedure.
- If any of following conditions are met just before the DTC confirmation procedure, leave the vehicle for more than 1 hour.
- Fuel filler cap is removed.
- Fuel is refilled or drained.
- EVAP component parts is/are removed.
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(II) WITH CONSULT-III

- 1. Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-III.
- 2. Make sure the following conditions are met.

FUEL LEVEL SE: 0.25 - 1.4V

COOLAN TEMP/S: 0 - 32°C (32 - 90°F) FUEL T/TMP SE: 0 - 35°C (32 - 95°F) INT/A TEMP SE: More than 0°C (32°F)

If NG, turn ignition switch OFF and leave the vehicle in a cool place (soak the vehicle) or refilling/draining fuel until the output voltage condition of the "FUEL LEVEL SE" meets within the range above and leave the vehicle for more than 1 hour. Then start from step 1.

- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Turn ignition switch ON.
- Select "EVAP V/S LEAK P0456/P1456" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-III.
 - Follow the instruction displayed.
- 6. Make sure that "OK" is displayed.

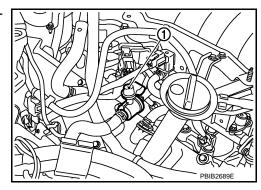
If "NG" is displayed, refer to EC-1033, "Diagnosis Procedure".

NOTE:

- If the engine speed cannot be maintained within the range displayed on CONSULT-III screen, go to EC-702, "Basic Inspection".
- Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

Overall Function Check

INFOID:0000000002955043


INFOID:0000000002955042

WITH GST

Use this procedure to check the overall function of the EVAP very small leak function. During this check, a 1st trip DTC might not be confirmed.

CAUTION:

- Do not use compressed air, doing so may damage the EVAP system.
- Do not start engine.
- Do not exceeded 4.12 kPa (0.042 kg/cm², 0.6 psi).
- 1. Attach the EVAP service port adapter securely to the EVAP service port (1).

DTC P0456 EVAP CONTROL SYSTEM

< SERVICE INFORMATION >

[VK45DE]

- 2. Set the pressure pump and a hose.
- 3. Also set a vacuum gauge via 3-way connector and a hose.
- 4. Turn ignition switch ON.
- 5. Connect GST and select Service \$08.
- Using Service \$08 control the EVAP canister vent control valve (close).
- Apply pressure and make sure the following conditions are satisfied.

Pressure to be applied: 2.7 kPa (0.028 kg/cm², 0.39 psi) Time to be waited after the pressure drawn in to the EVAP system and the pressure to be dropped: 60 seconds and the pressure should not be dropped more than 0.4 kPa (0.004 kg/cm², 0.06 psi).

If NG, go to EC-1033, "Diagnosis Procedure".

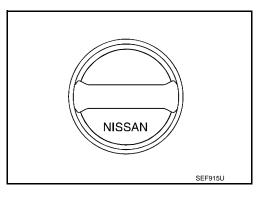
If OK, go to next step.

- 8. Disconnect GST.
- 9. Start engine and warm it up to normal operating temperature.
- 10. Turn ignition switch OFF and wait at least 10 seconds.
- 11. Restart engine and let it idle for 90 seconds.
- 12. Keep engine speed at 2,000 rpm for 30 seconds.
- 13. Turn ignition switch OFF.

NOTE:

For more information, refer to GST instruction manual.

Diagnosis Procedure


1. CHECK FUEL FILLER CAP DESIGN

- Turn ignition switch OFF.
- 2. Check for genuine NISSAN fuel filler cap design.

OK or NG

OK >> GO TO 2.

NG >> Replace with genuine NISSAN fuel filler cap.

2. CHECK FUEL FILLER CAP INSTALLATION

Check that the cap is tightened properly by rotating the cap clockwise.

OK or NG

OK >> GO TO 3.

NG >> 1. Open fuel filler cap, then clean cap and fuel filler neck threads using air blower.

EC-1033

2. Retighten until ratcheting sound is heard.

3. CHECK FUEL FILLER CAP FUNCTION

Check for air releasing sound while opening the fuel filler cap.

OK or NG

OK >> GO TO 5.

NG >> GO TO 4.

4. CHECK FUEL TANK VACUUM RELIEF VALVE

Refer to EC-664, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace fuel filler cap with a genuine one.

Adapter for EVAP service port

EVAP
service
port

Pressure pump

Α

EC

D

Е

F

G

Н

INFOID:0000000002955044

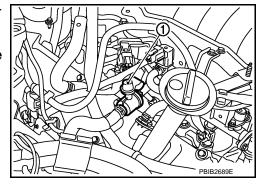
J

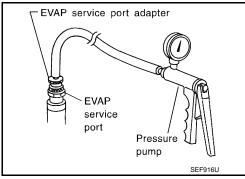
K

N

0

Р


2008 M35/M45


5. INSTALL THE PRESSURE PUMP

To locate the EVAP leak, install EVAP service port adapter and pressure pump to EVAP service port (1) securely.

NOTE:

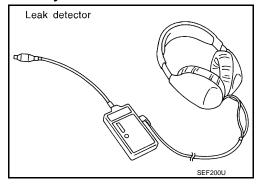
Improper installation of the EVAP service port adapter to the EVAP service port may cause leaking.

With CONSULT-III>>GO TO 6. Without CONSULT-III>>GO TO 7.

6. CHECK FOR EVAP LEAK

(P) With CONSULT-III

- 1. Turn ignition switch ON.
- 2. Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-III.
- Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph.


CAUTION:

- Do not use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 4. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to EC-662, "Description".

OK or NG

OK >> GO TO 8.

NG >> Repair or replace.

7. CHECK FOR EVAP LEAK

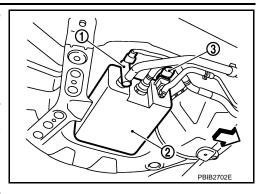
⊗ Without CONSULT-III

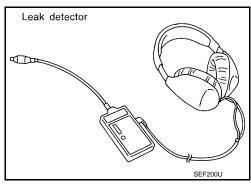
1. Turn ignition switch OFF.

DTC P0456 EVAP CONTROL SYSTEM

< SERVICE INFORMATION >

- Apply 12 volts DC to EVAP canister vent control valve (1). The valve will close. (Continue to apply 12 volts until the end of test.)
- Illustration shows the view from under the vehicle
- : Vehicle front
- EVAP canister (2)
- EVAP control system pressure sensor (3)
- 3. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (0.0133 to 0.028 kg/cm², 0.019 to 0.039 psi), then remove pump and EVAP service port adapter.


CAUTION:


- Do not use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 4. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to EC-662, "Description".

OK or NG

OK >> GO TO 8.

NG >> Repair or replace.

8.check evap canister vent control valve

Check the following.

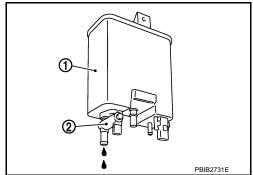
- EVAP canister vent control valve is installed properly. Refer to EC-666, "Removal and Installation".
- EVAP canister vent control valve. Refer to EC-1002, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Repair or replace EVAP canister vent control valve and O-ring.

9.CHECK IF EVAP CANISTER SATURATED WITH WATER


- Remove EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.
- Does water drain from the EVAP canister?
- EVAP canister (1)
- EVAP canister vent control valve (2)

Yes or No

Yes >> GO TO 10.

No (With CONSULT-III)>>GO TO 12.

No (Without CONSULT-III)>>GO TO 13.

10. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve and EVAP control system pressure sensor attached.

The weight should be less than 2.0 kg (4.4 lb).

OK or NG

OK (With CONSULT-III)>>GO TO 12.

OK (Without CONSULT-III)>>GO TO 13.

NG >> GO TO 11.

Α

[VK45DE]

EC

D

Н

K

M

N

11. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and vehicle frame for clogging or poor connection
 - >> Repair hose or replace EVAP canister.

12. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(P) With CONSULT-III

- 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- 4. Touch "Qu" on CONSULT-III screen to increase "PURG VOL CONT/V" opening to 100%.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

OK or NG

OK >> GO TO 15. NG >> GO TO 14.

13.check evap canister purge volume control solenoid valve operation

(R) Without CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 4. Start engine and let it idle for at least 80 seconds.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

Vacuum should exist.

OK or NG

OK >> GO TO 15. NG >> GO TO 14.

14. CHECK VACUUM HOSE

Check vacuum hoses for clogging or disconnection. Refer to EC-730, "Vacuum Hose Drawing".

OK or NG

OK >> GO TO 15.

NG >> Repair or reconnect the hose.

15. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-997, "Component Inspection".

OK or NG

OK >> GO TO 16.

NG >> Replace EVAP canister purge volume control solenoid valve.

16. CHECK FUEL TANK TEMPERATURE SENSOR

Refer to EC-936, "Component Inspection".

OK or NG

OK >> GO TO 17.

NG >> Replace fuel level sensor unit.

17. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-1017, "Component Inspection".

OK or NG

OK >> GO TO 18

NG >> Replace EVAP control system pressure sensor.

18. CHECK EVAP PURGE LINE

DTC P0456 EVAP CONTROL SYSTEM

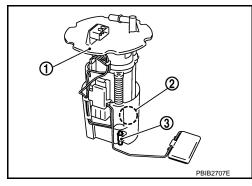
DIC P0430 EVAP CONTROL STSTEM	
< SERVICE INFORMATION > [VK	45DE]
Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks or improper connec	tion.
Refer to EC-662, "Description". OK or NG	А
OK 01 NG OK >> GO TO 19.	
NG >> Repair or reconnect the hose.	EC
19.clean evap purge line	
Clean EVAP purge line (pipe and rubber tube) using air blower.	
>> GO TO 20.	
20.CHECK EVAP/ORVR LINE	D
Check EVAP/ORVR line between EVAP canister and fuel tank for clogging, kink, looseness and improp	er con-
nection. For location, refer to <u>EC-668</u> . <u>OK or NG</u>	Е
OK >> GO TO 21.	
NG >> Repair or replace hoses and tubes.	F
21. CHECK RECIRCULATION LINE	Г
Check recirculation line between filler neck tube and fuel tank for clogging, kink, cracks, loosene	ss and
improper connection. OK or NG	G
OK	
NG >> Repair or replace hose, tube or filler neck tube.	Н
22.CHECK REFUELING EVAP VAPOR CUT VALVE	
Refer to EC-670, "Component Inspection".	
OK or NG	I
OK >> GO TO 23. NG >> Replace refueling EVAP vapor cut valve with fuel tank.	
23. CHECK FUEL LEVEL SENSOR	J
Refer to DI-24, "Electrical Component Inspection".	
OK or NG	K
OK >> GO TO 24.	
NG >> Replace fuel level sensor unit.	
24. CHECK INTERMITTENT INCIDENT	L
Refer to EC-763, "Diagnosis Procedure".	
NICE TO THE TAIL	M
>> INSPECTION END	
	N
	- *
	_
	0

Revision: 2009 February **EC-1037** 2008 M35/M45

INFOID:0000000002955045

DTC P0460 FUEL LEVEL SENSOR

Component Description


The fuel level sensor is mounted in the fuel level sensor unit.

The sensor detects a fuel level in the fuel tank and transmits a signal to the "unified meter and A/C amp.". The "unified meter and A/C amp." sends the fuel level sensor signal to the ECM through CAN communication line.

It consists of two parts, one is mechanical float and the other is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

- Fuel level sensor unit and fuel pump (1)
- Fuel pressure regulator (2)
- Fuel tank temperature sensor (3)

On Board Diagnosis Logic

INFOID:0000000002955046

NOTE:

- If DTC P0460 is displayed with DTC U1000 or U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to <u>EC-770</u>, "<u>DTC Confirmation Procedure</u>".
- If DTC P0460 is displayed with DTC U1010, first perform the trouble diagnosis for DTC U1010. Refer to EC-772, "DTC Confirmation Procedure".

When the vehicle is parked, naturally the fuel level in the fuel tank is stable. It means that output signal of the fuel level sensor does not change. If ECM senses sloshing signal from the sensor, fuel level sensor malfunction is detected.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0460 0460	Fuel level sensor circuit noise	Even though the vehicle is parked, a signal being varied is sent from the fuel level sensor to ECM.	Harness or connectors (The CAN communication line is open or shorted) Harness or connectors (The sensor circuit is open or shorted) Unified meter and A/C amp. Fuel level sensor

DTC Confirmation Procedure

INFOID:0000000002955047

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

- Start engine and wait maximum of 2 consecutive minutes.
- 2. Check 1st trip DTC.
- If 1st trip DTC is detected, go to EC-1038, "Diagnosis Procedure".

Diagnosis Procedure

INFOID:0000000002955048

 ${f 1}$.CHECK DTC WITH "UNIFIED METER AND A/C AMP."

Refer to DI-27, "CONSULT-III Function (METER/M&A)".

OK or NG

OK >> GO TO 2.

NG >> Go to DI-22, "Fuel Level Sensor Signal Inspection".

2.CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

>> INSPECTION END

DTC P0460 FUEL LEVEL SENSOR

< SERVICE INFORMATION >

[VK45DE]

Removal and Installation

INFOID:0000000002955049

FUEL LEVEL SENSOR Refer to<u>FL-4</u>

EC

Α

D

Е

F

G

Н

1

J

Κ

L

M

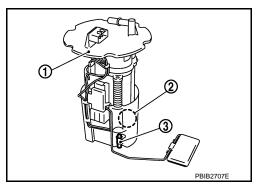
Ν

0

INFOID:0000000002955050

DTC P0461 FUEL LEVEL SENSOR

Component Description


The fuel level sensor is mounted in the fuel level sensor unit.

The sensor detects a fuel level in the fuel tank and transmits a signal to the "unified meter and A/C amp.". The "unified meter and A/C amp." sends the fuel level sensor signal to the ECM through CAN communication line.

It consists of two parts, one is mechanical float and the other is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

- Fuel level sensor unit and fuel pump (1)
- Fuel pressure regulator (2)
- Fuel tank temperature sensor (3)

On Board Diagnosis Logic

INFOID:0000000002955051

NOTE:

- If DTC P0461 is displayed with DTC U1000 or U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-770, "DTC Confirmation Procedure".
- If DTC P0461 is displayed with DTC U1010, first perform the trouble diagnosis for DTC U1010. Refer to EC-772, "DTC Confirmation Procedure".

Driving long distances naturally affect fuel gauge level.

This diagnosis detects the fuel gauge malfunction of the gauge not moving even after a long distance has been driven.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0461 0461	Fuel level sensor circuit range/performance	The output signal of the fuel level sensor does not change within the specified range even though the vehicle has been driven a long distance.	Harness or connectors (The CAN communication line is open or shorted) Harness or connectors (The sensor circuit is open or shorted) Unified meter and A/C amp. Fuel level sensor

Overall Function Check

INFOID:0000000002955052

Use this procedure to check the overall function of the fuel level sensor function. During this check, a 1st trip DTC might not be confirmed.

WARNING:

When performing following procedure, be sure to observe the handling of the fuel. Refer to FL-10. **TESTING CONDITION:**

Before starting overall function check, preparation of draining fuel and refilling fuel is required.

(P) WITH CONSULT-III

NOTE:

Start from step 10, if it is possible to confirm that the fuel cannot be drained by 30 ℓ (7-7/8 US gal, 6-5/ 8 Imp gal) in advance.

- 1. Prepare a fuel container and a spare hose.
- Release fuel pressure from fuel line, refer to EC-708, "Fuel Pressure Check".
- Remove the fuel feed hose on the fuel level sensor unit.
- Connect a spare fuel hose where the fuel feed hose was removed.
- Turn ignition switch OFF and wait at least 10 seconds then turn ON. 5.
- 6. Select "FUEL LEVEL SE" in "DATA MONITOR" mode with CONSULT-III.
- 7. Check "FUEL LEVEL SE" output voltage and note it.
- 8. Select "FUEL PUMP RELAY" in "ACTIVE TEST" mode with CONSULT-III.
- Touch "ON" and drain fuel approximately 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal) and stop it.
- 10. Check "FUEL LEVEL SE" output voltage and note it.
- 11. Fill fuel into the fuel tank for 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal).
- 12. Check "FUEL LEVEL SE" output voltage and note it.

DTC P0461 FUEL LEVEL SENSOR [VK45DE] < SERVICE INFORMATION > 13. Confirm whether the voltage changes more than 0.03V during step 7 to 10 and 10 to 12. If NG, go to EC-1041, "Diagnosis Procedure". Α WITH GST NOTE: EC Start from step 8, if it is possible to confirm that the fuel cannot be drained by 30 $\,\ell$ (7-7/8 US gal, 6-5/8 Imp gal) in advance. 1. Prepare a fuel container and a spare hose. Release fuel pressure from fuel line. Refer to EC-708, "Fuel Pressure Check". Remove the fuel feed hose on the fuel level sensor unit. Connect a spare fuel hose where the fuel feed hose was removed. Turn ignition switch ON. D Drain fuel by 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal) from the fuel tank using proper equipment. 7. Confirm that the fuel gauge indication varies. 8. Fill fuel into the fuel tank for 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal). Е 9. Confirm that the fuel gauge indication varies. 10. If NG, go to EC-1041, "Diagnosis Procedure". Diagnosis Procedure INFOID:0000000002955053 1. CHECK DTC WITH "UNIFIED METER AND A/C AMP." Refer to DI-27, "CONSULT-III Function (METER/M&A)". OK or NG OK >> GO TO 2. NG >> Go to DI-22, "Fuel Level Sensor Signal Inspection". Н 2.CHECK INTERMITTENT INCIDENT Refer to EC-763, "Diagnosis Procedure". >> INSPECTION END Removal and Installation INFOID:0000000002955054 FUEL LEVEL SENSOR Refer to FL-4. K

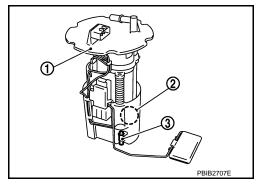
M

Ν

O

INFOID:0000000002955055

DTC P0462, P0463 FUEL LEVEL SENSOR CIRCUIT


Component Description

The fuel level sensor is mounted in the fuel level sensor unit.

The sensor detects a fuel level in the fuel tank and transmits a signal to the "unified meter and A/C amp.". The "unified meter and A/C amp." sends the fuel level sensor signal to the ECM through CAN communication line.

It consists of two parts, one is mechanical float and the other is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

- Fuel level sensor unit and fuel pump (1)
- Fuel pressure regulator (2)
- Fuel tank temperature sensor (3)

INFOID:0000000002955056

On Board Diagnosis Logic

NOTE:

- If DTC P0462 or P0463 is displayed with DTC U1000 or U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-770, "DTC Confirmation Procedure".
- If DTC P0462 or P0463 is displayed with DTC U1010, first perform the trouble diagnosis for DTC U1010. Refer to EC-772, "DTC Confirmation Procedure".

This diagnosis indicates the former, to detect open or short circuit malfunction.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0462 0462	Fuel level sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The CAN communication line is open or
P0463 0463	Fuel level sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	shorted) Harness or connectors (The sensor circuit is open or shorted) Unified meter and A/C amp. Fuel level sensor

DTC Confirmation Procedure

INFOID:0000000002955057

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at ignition switch ON.

- 1. Turn ignition switch ON and wait at least 5 seconds.
- 2. Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-1042, "Diagnosis Procedure"</u>.

Diagnosis Procedure

INFOID:0000000002955058

${f 1}$.CHECK DTC WITH "UNIFIED METER AND A/C AMP."

Refer to DI-27, "CONSULT-III Function (METER/M&A)".

OK or NG

OK >> GO TO 2.

NG >> Go to DI-22, "Fuel Level Sensor Signal Inspection".

2.CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

>> INSPECTION END

DTC P0462, P0463 FUEL LEVEL SENSOR CIRCUIT

< SERVICE INFORMATION >

[VK45DE]

Removal and Installation

INFOID:0000000002955059

FUEL LEVEL SENSOR Refer to FL-4.

EC

Α

D

Е

F

G

Н

ı

J

Κ

L

M

Ν

0

DTC P0500 VSS

Description

NOTE:

- If DTC P0500 is displayed with DTC U1000 or U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-770, "DTC Confirmation Procedure".
- If DTC P0500 is displayed with DTC U1010, first perform the trouble diagnosis for DTC U1010. Refer to EC-772, "DTC Confirmation Procedure".

The vehicle speed signal is sent to the "unified meter and A/C amp." from the "ABS actuator and electric unit (control unit)" by CAN communication line. The "unified meter and A/C amp." then sends a signal to the ECM by CAN communication line.

On Board Diagnosis Logic

INFOID:0000000002955061

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0500 0500	Vehicle speed sensor	The almost 0 km/h (0 MPH) signal from vehicle speed sensor is sent to ECM even when vehicle is being driven.	Harness or connectors (The CAN communication line is open or shorted) Harness or connectors (The vehicle speed signal circuit is open or shorted) Wheel sensor Unified meter and A/C amp. ABS actuator and electric unit (control unit)

DTC Confirmation Procedure

INFOID:0000000002955062

CAUTION:

Always drive vehicle at a safe speed.

NOTÉ:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Steps 1 and 2 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

(II) WITH CONSULT-III

- 1. Start engine (VDC switch OFF).
- Read "VHCL SPEED SE" in "DATA MONITOR" mode with CONSULT-III. The vehicle speed on CON-SULT-III should exceed 10 km/h (6 MPH) when rotating wheels with suitable gear position. If NG, go to EC-1045, "Diagnosis Procedure".

If OK, go to following step.

- 3. Select "DATA MONITOR" mode with CONSULT-III.
- 4. Warm engine up to normal operating temperature.
- 5. Maintain the following conditions for at least 50 consecutive seconds.

ENG SPEED	More than 1,550 rpm
COOLAN TEMP/S	More than 70°C (158°F)
B/FUEL SCHDL	5.4 - 31.8 msec
Selector lever	Except P or N position
PW/ST SIGNAL	OFF

- 6. Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-1045, "Diagnosis Procedure"</u>.

DTC P0500 VSS

[VK45DE] < SERVICE INFORMATION > **Overall Function Check** INFOID:0000000002955063

Use this procedure to check the overall function of the vehicle speed sensor circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Lift up drive wheels.
- Start engine.
- Read vehicle speed sensor signal in Service \$01 with GST. The vehicle speed sensor on GST should be able to exceed 10 km/h (6 MPH) when rotating wheels with suitable gear position.
- 4. If NG, go to EC-1045, "Diagnosis Procedure".

Diagnosis Procedure

 ${f 1.}$ CHECK DTC WITH "ABS ACTUATOR AND ELECTRIC UNIT (CONTROL UNIT)"

Refer to BRC-30, "CONSULT-III Function (ABS)".

OK or NG

OK >> GO TO 2.

NG >> Repair or replace.

2.CHECK DTC WITH "UNIFIED METER AND A/C AMP."

Refer to DI-6.

>> INSPECTION END

EC-1045 Revision: 2009 February 2008 M35/M45

EC

Α

D

Е

INFOID:0000000002955064

F

Н

K

L

M

Ν

DTC P0506 ISC SYSTEM

Description INFOID:0000000002955065

NOTE:

If DTC P0506 is displayed with other DTC, first perform the trouble diagnosis for the other DTC.

The ECM controls the engine idle speed to a specified level through the fine adjustment of the air, which is let into the intake manifold, by operating the electric throttle control actuator. The operating of the throttle valve is varied to allow for optimum control of the engine idling speed. The crankshaft position sensor (POS) detects the actual engine speed and sends a signal to the ECM.

The ECM controls the electric throttle control actuator so that the engine speed coincides with the target value memorized in the ECM. The target engine speed is the lowest speed at which the engine can operate steadily. The optimum value stored in the ECM is determined by taking into consideration various engine conditions, such as during warming up, deceleration, and engine load (air conditioner, power steering and cooling fan operation, etc.).

On Board Diagnosis Logic

INFOID:0000000002955066

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0506 0506	Idle speed control system RPM lower than expected	The idle speed is less than the target idle speed by 100 rpm or more.	Electric throttle control actuator Intake air leak

DTC Confirmation Procedure

INFOID:0000000002955067

NOTE:

- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
- If the target idle speed is out of the specified value, perform EC-707, "Idle Air Volume Learning", before conducting DTC Confirmation Procedure. For the target idle speed, refer to the EC-1278, "Idle Speed and Ignition Timing".

TESTING CONDITION:

- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.
- Always perform the test at a temperature above –10°C(14°F).
- Open engine hood.
- Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and run it for at least 1 minute at idle speed.
- 5. Check 1st trip DTC.
- If 1st trip DTC is detected, go to EC-1046, "Diagnosis Procedure".

Diagnosis Procedure

INFOID:000000002955068

1. CHECK INTAKE AIR LEAK

- Start engine and let it idle.
- 2. Listen for an intake air leak after the mass air flow sensor.

OK or NG

OK >> GO TO 2.

NG >> Discover air leak location and repair.

2.REPLACE ECM

- 1. Stop engine.
- 2. Replace ECM.
- Perform initialization of IVIS (NATS) system and registration of all IVIS (NATS) ignition key IDs. Refer to BL-221, "ECM Re-Communicating Function".
- Perform <u>EC-706</u>, "VIN Registration".
 Perform <u>EC-706</u>, "Accelerator Pedal Released Position Learning".
 Perform <u>EC-706</u>, "Throttle Valve Closed Position Learning".

DTC P0506 ISC SYSTEM

< SERVICE INFORMATION > [VK45DE]

7. Perform EC-707, "Idle Air Volume Learning".

>> INSPECTION END

Α

EC

С

D

Е

F

G

Н

1

J

K

L

M

Ν

0

Ρ

DTC P0507 ISC SYSTEM

Description INFOID:000000002955069

NOTE:

If DTC P0507 is displayed with other DTC, first perform the trouble diagnosis for the other DTC.

The ECM controls the engine idle speed to a specified level through the fine adjustment of the air, which is let into the intake manifold, by operating the electric throttle control actuator. The operating of the throttle valve is varied to allow for optimum control of the engine idling speed. The crankshaft position sensor (POS) detects the actual engine speed and sends a signal to the ECM.

The ECM controls the electric throttle control actuator so that the engine speed coincides with the target value memorized in the ECM. The target engine speed is the lowest speed at which the engine can operate steadily. The optimum value stored in the ECM is determined by taking into consideration various engine conditions, such as during warming up, deceleration, and engine load (air conditioner, power steering and cooling fan operation, etc.).

On Board Diagnosis Logic

INFOID:0000000002955070

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0507 0507	Idle speed control system RPM higher than expected	The idle speed is more than the target idle speed by 200 rpm or more.	Electric throttle control actuator Intake air leak PCV system

DTC Confirmation Procedure

INFOID:0000000002955071

NOTE:

- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
- If the target idle speed is out of the specified value, perform <u>EC-707</u>, "Idle Air Volume Learning", before conducting DTC Confirmation Procedure. For the target idle speed, refer to the <u>EC-1278</u>, "Idle <u>Speed and Ignition Timing"</u>.

TESTING CONDITION:

- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.
- Always perform the test at a temperature above –10°C(14°F).
- 1. Open engine hood.
- Start engine and warm it up to normal operating temperature.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Start engine and run it for at least 1 minute at idle speed.
- Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-1048</u>, "<u>Diagnosis Procedure</u>".

Diagnosis Procedure

INFOID:0000000002955072

2008 M35/M45

1. CHECK PCV HOSE CONNECTION

Confirm that PCV hose is connected correctly.

OK or NG

OK >> GO TO 2.

NG >> Repair or replace.

2.CHECK INTAKE AIR LEAK

- Start engine and let it idle.
- 2. Listen for an intake air leak after the mass air flow sensor.

OK or NG

OK >> GO TO 3.

NG >> Discover air leak location and repair.

3. REPLACE ECM

DTC P0507 ISC SYSTEM

[VK45DE] < SERVICE INFORMATION >

- Stop engine.
- 2. Replace ECM.
- Perform initialization of IVIS (NATS) system and registration of all IVIS (NATS) ignition key IDs. Refer to BL-221, "ECM Re-Communicating Function".
- Perform <u>EC-706</u>, "VIN Registration".
 Perform <u>EC-706</u>, "Accelerator Pedal Released Position Learning".
- Perform EC-706, "Throttle Valve Closed Position Learning".
- 7. Perform EC-707, "Idle Air Volume Learning".

>> INSPECTION END

EC

Α

D

Е

F

G

Н

K

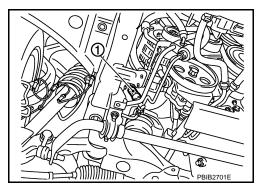
L

M

Ν

0

INFOID:0000000002955073


DTC P0550 PSP SENSOR

Component Description

Power steering pressure (PSP) sensor (1) is installed to the power steering high-pressure tube and detects a power steering load.

Illustration shows the view from under the vehicle.

This sensor is a potentiometer which transforms the power steering load into output voltage, and emits the voltage signal to the ECM. The ECM controls the electric throttle control actuator and adjusts the throttle valve opening angle to increase the engine speed and adjusts the idle speed for the increased load.

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002955074

Specification data are reference values.

MONITOR ITEM	CO	SPECIFICATION	
PW/ST SIGNAL	Engine: After warming up, idle the	Steering wheel: Not being turned	OFF
1 W/O1 OIOIVAL	engine	Steering wheel: Being turned	ON

On Board Diagnosis Logic

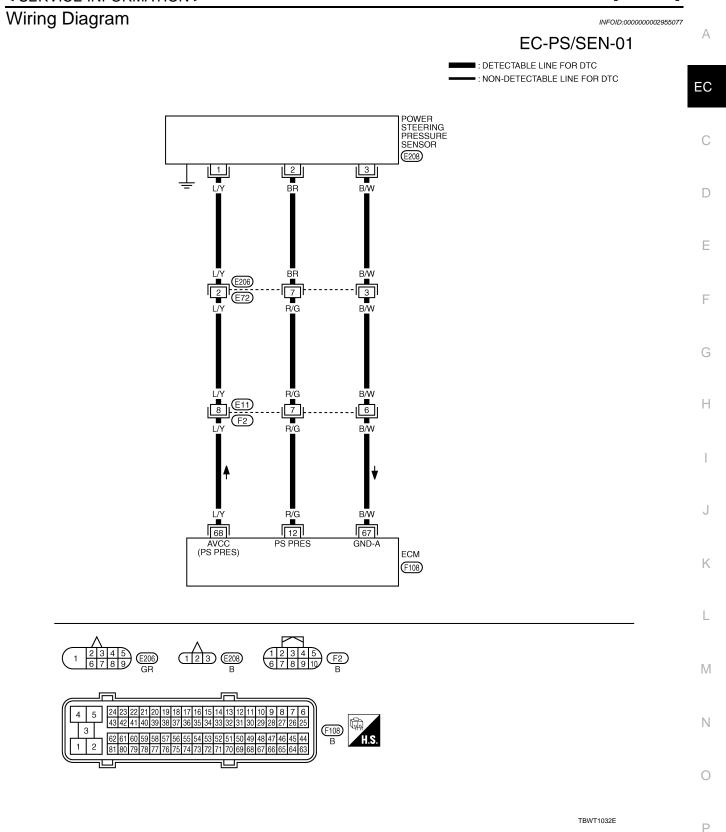
INFOID:0000000002955075

The MIL will not light up for this diagnosis.

NOTE:

If DTC P0550 is displayed with DTC P0643, first perform the trouble diagnosis for DTC P0643. Refer to <u>EC-1061, "DTC Confirmation Procedure"</u>.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0550 0550	Power steering pressure sensor circuit	An excessively low or high voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted) Power steering pressure sensor


DTC Confirmation Procedure

INFOID:0000000002955076

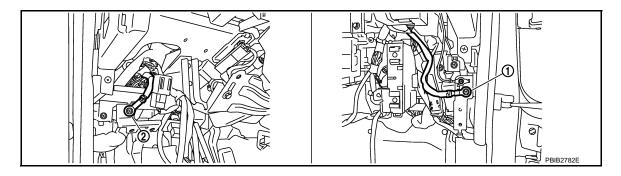
NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

- 1. Start engine and let it idle for at least 5 seconds.
- 2. Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-1052</u>, "<u>Diagnosis Procedure</u>".

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
12	R/G	Power steering pressure sensor	[Engine is running] • Steering wheel: Being turned	0.5 - 4.5V
12	N/G		[Engine is running] • Steering wheel: Not being turned	0.4 - 0.8V
67	B/W	Sensor ground (Power steering pressure sensor)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
68	L/Y	Sensor power supply (Power steering pressure sensor)	[Ignition switch: ON]	Approximately 5V

Diagnosis Procedure

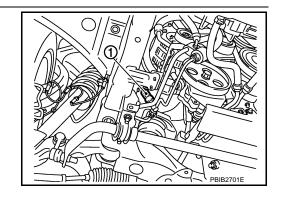
INFOID:0000000002955078

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten ground screws on the body. Refer to <u>EC-769</u>, "<u>Ground Inspection</u>".

1. Body ground M70

2. Body ground M16


OK or NG

OK >> GO TO 2.

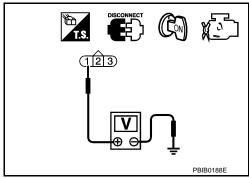
NG >> Repair or replace ground connections.

2.CHECK PSP SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect PSP sensor (1) harness connector.
- Illustration shows the view from under the vehicle.
- 2. Turn ignition switch ON.

DTC P0550 PSP SENSOR

< SERVICE INFORMATION >


[VK45DE]

Check voltage between PSP sensor terminal 1 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E206, E72
- Harness connectors E11, F2
- Harness for open or short between power steering pressure sensor and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

f 4.CHECK PSP SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- Disconnect ECM harness connector. 2.
- Check harness continuity between PSP sensor terminal 3 and ECM terminal 67. Refer to Wiring Diagram.

Continuity should exist.

Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E206, E72
- Harness connectors E11, F2
- Harness for open or short between power steering pressure sensor and ECM

>> Repair open circuit or short to ground short to power in harness or connectors.

$oldsymbol{6}$.CHECK PSP SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Check harness continuity between ECM terminal 12 and PSP sensor terminal 2. Refer to Wiring Diagram.

Continuity should exist.

Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E206, E72
- Harness connectors E11, F2
- Harness for open or short between power steering pressure sensor and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

Α

EC

Е

D

F

Н

M

N

< SERVICE INFORMATION >

8. CHECK PSP SENSOR

Refer to EC-1054, "Component Inspection".

OK or NG

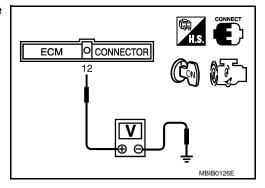
OK >> GO TO 9.

NG >> Replace PSP sensor.

9. CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

>> INSPECTION END


Component Inspection

INFOID:0000000002955079

POWER STEERING PRESSURE SENSOR

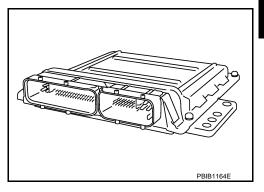
- 1. Reconnect all harness connectors disconnected.
- 2. Start engine and let it idle.
- 3. Check voltage between ECM terminal 12 and ground under the following conditions.

Condition	Voltage
Steering wheel: Being turned.	0.5 - 4.5V
Steering wheel: Not being turned.	0.4 - 0.8V

Removal and Installation

INFOID:0000000002955080

POWER STEERING PRESSURE SENSOR Refer to <u>PS-36</u>.


[VK45DE]

INFOID:0000000002955081

DTC P0603 ECM POWER SUPPLY

Component Description

Battery voltage is supplied to the ECM even when the ignition switch is turned OFF for the ECM memory function of the DTC memory, the air-fuel ratio feedback compensation value memory, the idle air volume learning value memory, etc.

On Board Diagnosis Logic

INFOID:0000000002955082

INFOID:0000000002955083

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0603 0603	ECM power supply circuit	ECM back-up RAM system does not function properly.	Harness or connectors [ECM power supply (back-up) circuit is open or shorted.] ECM

DTC Confirmation Procedure

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

- 1. Turn ignition switch ON and wait at least 1 second.
- 2. Start engine and let it idle for 1 second.
- 3. Turn ignition switch OFF, wait at least 10 seconds and then turn ON.
- 4. Repeat steps 3 and 4 for four times.
- 5. Check 1st trip DTC.
- 6. If 1st trip DTC is detected, go to EC-1057, "Diagnosis Procedure".

EC

Α

D

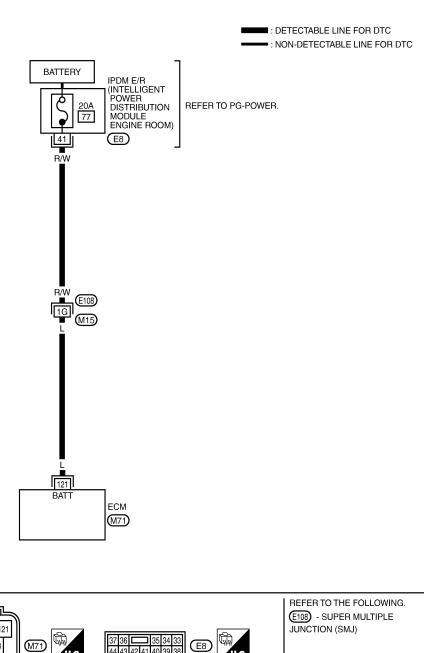
Е

F

Н

K

L


IVI

Ν

INFOID:0000000002955084

EC-ECM/PW-01

TBWT1995E

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
121	L	Power supply for ECM (Back-up)	[Ignition switch: OFF]	BATTERY VOLTAGE (11 - 14V)

INFOID:0000000002955085

Α

EC

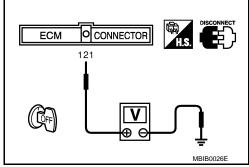
D

Е

Н

Ν

Diagnosis Procedure


1.CHECK ECM POWER SUPPLY

- Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check voltage between ECM terminal 121 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- 20A fuse
- IPDM E/R harness connector E8
- Harness for open or short between ECM and battery

>> Repair or replace harness or connectors.

3.CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

OK or NG

OK >> GO TO 4.

NG >> Repair or replace harness or connectors.

4. PERFORM DTC CONFIRMATION PROCEDURE

- Turn ignition switch ON.
- 2. Erase DTC.
- 3. Perform DTC Confirmation Procedure.

See EC-1055, "DTC Confirmation Procedure".

Is the 1st trip DTC P0603 displayed again?

Yes or No

Yes >> GO TO 5.

No >> INSPECTION END

5. REPLACE ECM

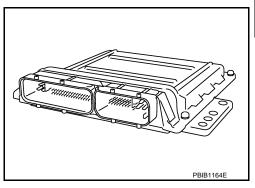
- 1. Replace ECM.
- 2. Perform initialization of IVIS (NATS) system and registration of all IVIS (NATS) ignition key IDs. Refer to BL-221, "ECM Re-Communicating Function".

EC-1057

- 3. Perform EC-706, "VIN Registration".
- Perform <u>EC-706</u>, "<u>Accelerator Pedal Released Position Learning</u>".
 Perform <u>EC-706</u>, "<u>Throttle Valve Closed Position Learning</u>".
- Perform EC-707, "Idle Air Volume Learning".

Revision: 2009 February

DTC P0603 ECM POWER SUPPLY


[VK45DE]

>> INSPECTION END

DTC P0605 ECM

Component Description

The ECM consists of a microcomputer and connectors for signal input and output and for power supply. The ECM controls the engine.

On Board Diagnosis Logic

This self-diagnosis has one or two trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition		Possible cause	
P0605 0605	Engine control module	A)	ECM calculation function is malfunctioning.		
		B)	ECM EEP-ROM system is malfunctioning.	• ECM	
		C)	ECM self shut-off function is malfunctioning.		

FAIL-SAFE MODE

ECM enters fail-safe mode when the malfunction A is detected.

Detected items	Engine operation condition in fail-safe mode			
Malfunction A	 ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring. ECM deactivates ASCD operation. 			

DTC Confirmation Procedure

Perform PROCEDURE FOR MALFUNCTION A first. If the 1st trip DTC cannot be confirmed, perform PROCEDURE FOR MALFUNCTION B. If there is no malfunction on PROCEDURE FOR MALFUNCTION B, perform PROCEDURE FOR MALFUNCTION C.

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

PROCEDURE FOR MALFUNCTION A

- 1. Turn ignition switch ON.
- Check 1st trip DTC.
- 3. If 1st trip DTC is detected, go to EC-1060, "Diagnosis Procedure".

PROCEDURE FOR MALFUNCTION B

- 1. Turn ignition switch ON and wait at least 1 second.
- Turn ignition switch OFF, wait at least 10 seconds, and then turn ON.
- Check 1st trip DTC.

Revision: 2009 February

4. If 1st trip DTC is detected, go to EC-1060, "Diagnosis Procedure".

PROCEDURE FOR MALFUNCTION C

- Turn ignition switch ON and wait at least 1 second.
- Turn ignition switch OFF, wait at least 10 seconds, and then turn ON. 2.
- Repeat step 3 for 32 times. 3.

EC

Α

D

INFOID:0000000002955087

INFOID:0000000002955088

INFOID:0000000002955086

2008 M35/M45

EC-1059

Е

F

M

Ν

DTC P0605 ECM

< SERVICE INFORMATION > [VK45DE]

- 4. Check 1st trip DTC.
- 5. If 1st trip DTC is detected, go to EC-1060, "Diagnosis Procedure".

Diagnosis Procedure

INFOID:0000000002955089

1. INSPECTION START

- 1. Turn ignition switch ON.
- 2. Erase DTC.
- 3. Perform DTC Confirmation Procedure.

See EC-1059, "DTC Confirmation Procedure".

4. Is the 1st trip DTC P0605 displayed again?

Yes or No

Yes >> GO TO 2.

No >> INSPECTION END

2.REPLACE ECM

- Replace ECM.
- 2. Perform initialization of IVIS (NATS) system and registration of all IVIS (NATS) ignition key IDs. Refer to BL-221, "ECM Re-Communicating Function".
- 3. Perform EC-706, "VIN Registration".
- 4. Perform EC-706, "Accelerator Pedal Released Position Learning".
- 5. Perform EC-706, "Throttle Valve Closed Position Learning".
- 6. Perform EC-707, "Idle Air Volume Learning".

>> INSPECTION END

DTC P0643 SENSOR POWER SUPPLY

< SERVICE INFORMATION >

[VK45DE]

DTC P0643 SENSOR POWER SUPPLY

On Board Diagnosis Logic

INFOID:0000000002955090

Α

EC

D

Е

F

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0643 0643	Sensor power supply circuit short	ECM detects a voltage of power source for sensor is excessively low or high.	Harness or connectors (APP sensor 1 circuit is shorted.) (EVAP control system pressure sensor is shorted.) (Refrigerant pressure sensor circuit is shorted.) (PSP sensor circuit is shorted.) (Battery current sensor circuit is shorted.) Accelerator pedal position sensor EVAP control system pressure sensor Refrigerant pressure sensor Power steering pressure sensor Battery current sensor

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operation condition in fail-safe mode

ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.

DTC Confirmation Procedure

INFOID:0000000002955091

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

- 1. Start engine and let it idle for 1 second.
- Check DTC.
- 3. If DTC is detected, go to EC-1063, "Diagnosis Procedure".

K

L

J

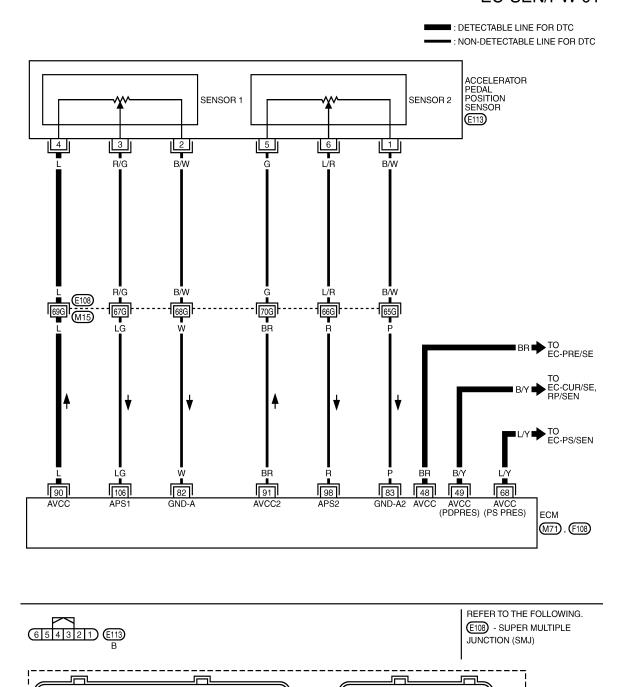
IVI

Ν

O

120 121

(M71)


TBWT1996E

2

Wiring Diagram

NEOID:000000000295509

EC-SEN/PW-01

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

(F108)

В

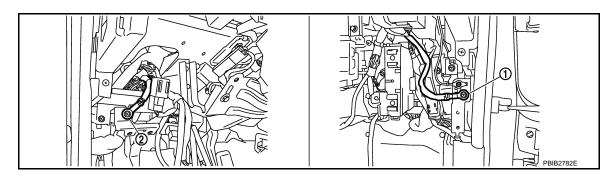
M

Ν

0

Р

INFOID:0000000002955093


				-			
TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)			
48	BR	Sensor power supply (EVAP control system pressure sensor)	[Ignition switch: ON]	Approximately 5V			
49	B/Y	Sensor power supply (Refrigerant pressure sensor, Battery current sensor)	[Ignition switch: ON]	Approximately 5V			
68	L/Y	Sensor power supply (Power steering pressure sensor)	[Ignition switch: ON]	Approximately 5V			
82	W	Sensor ground (APP sensor 1)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V			
83	Р	Sensor ground (APP sensor 2)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V			
90	L	Sensor power supply (APP sensor 1)	[Ignition switch: ON]	Approximately 5V	<u></u> -		
91	BR	Sensor power supply (APP sensor 2)	[Ignition switch: ON]	Approximately 5V			
00	D	Accelerator pedal position		Engine stopped Accelerator pedal position Accelerator pedal position Accelerator pedal: Fully released	Engine stopped	0.20 - 0.55V	
98 R	K			1.85 - 2.40V			
106 LG	1.0	Accelerator pedal position	[Ignition switch: ON] • Engine: Stopped • Accelerator pedal: Fully released	0.4 - 1.1V			
	Accelerator pedal position sensor 1	[Ignition switch: ON] • Engine: Stopped • Accelerator pedal: Fully depressed	3.7 - 4.8V				

Diagnosis Procedure

1. CHECK GROUND CONNECTIONS

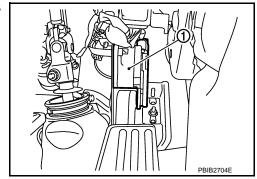
Turn ignition switch OFF.

Loosen and retighten ground screws on the body. Refer to <u>EC-769</u>. "Ground Inspection".

1. Body ground M70

2. Body ground M16

OK or NG

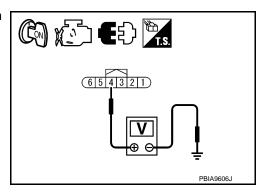

OK >> GO TO 2.

< SERVICE INFORMATION >

NG >> Repair or replace ground connections.

2.CHECK ACCELERATOR PEDAL POSITION SENSOR 1 POWER SUPPLY CIRCUIT

- Disconnect accelerator pedal position (APP) sensor (1) harness connector.
- 2. Turn ignition switch ON.



Check voltage between APP sensor terminal 4 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 5. >> GO TO 3. NG

3.CHECK SENSOR POWER SUPPLY CIRCUITS

Check harness for short to power and short to ground, between the following terminals.

ECM terminal	Sensor terminal	Reference Wiring Diagram
90	APP sensor terminal 4	EC-1062
48	EVAP control system pressure sensor terminal 3	EC-1014
49	Refrigerant pressure sensor terminal 1	EC-1260
43	Battery current sensor terminal 1	EC-1106
68	PSP sensor terminal 1	EC-1051

OK or NG

OK >> GO TO 4.

NG >> Repair short to ground or short to power in harness or connectors.

4. CHECK COMPONENTS

Check the following.

- EVAP control system pressure sensor (Refer to <u>EC-1017, "Component Inspection"</u>.)
 Refrigerant pressure sensor (Refer to <u>ATC-82, "Magnet Clutch Circuit"</u>.)
- Battery current sensor (Refer to EC-1109, "Component Inspection".)
- Power steering pressure sensor (Refer to EC-1054, "Component Inspection".)

OK or NG

OK >> GO TO 7.

NG >> Replace malfunctioning component.

5. CHECK APP SENSOR

Refer to EC-1192, "Component Inspection".

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

DTC P0643 SENSOR POWER SUPPLY [VK45DE] < SERVICE INFORMATION > 6. REPLACE ACCELERATOR PEDAL ASSEMBLY Replace accelerator pedal assembly. Perform <u>EC-706</u>, "<u>Accelerator Pedal Released Position Learning</u>".
 Perform <u>EC-706</u>, "<u>Throttle Valve Closed Position Learning</u>". EC 4. Perform EC-707, "Idle Air Volume Learning". >> INSPECTION END 7. CHECK INTERMITTENT INCIDENT Refer to EC-763, "Diagnosis Procedure". D >> INSPECTION END Е F Н K L M Ν 0

DTC P0850 PNP SWITCH

Component Description

INFOID:0000000002955094

When the selector lever position is P or N, transmission range switch is ON. ECM detects the position because the continuity of the line (the ON signal) exists.

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002955095

Specification data are reference values.

MONITOR ITEM	IITOR ITEM CONDITION		SPECIFICATION
P/N POSI SW	Ignition switch: ON	Selector lever: P or N	ON
	• Ignition switch: ON	Selector lever: Except above	OFF

On Board Diagnosis Logic

INFOID:0000000002955096

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0850 0850	Park/neutral position switch	The signal of the transmission range switch is not changed in the process of engine starting and driving.	Harness or connectors [The transmission range switch circuit is open or shorted.] Transmission range switch Unified meter and A/C amp. TCM

DTC Confirmation Procedure

INFOID:0000000002955097

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-III

- Turn ignition switch ON.
- Select "P/N POSI SW" in "DATA MONITOR" mode with CONSULT-III. Then check the "P/N POSI SW" signal under the following conditions.

Position (Selector lever)	Known-good signal
N or P position	ON
Except above position	OFF

If NG, go to EC-1069, "Diagnosis Procedure".

If OK, go to the following step.

- 3. Start engine and warm it up to normal operating temperature.
- 4. Maintain the following conditions for at least 50 consecutive seconds.

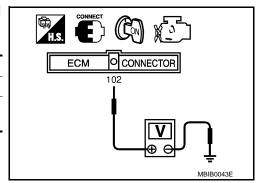
ENG SPEED	1,300 - 6,375 rpm
COOLAN TEMP/S	More than 70°C (158°F)
B/FUEL SCHDL	3.0 - 31.8 msec
VHCL SPEED SE	More than 64 km/h (40 MPH)
Selector lever	Suitable position

- 5. Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-1069</u>. "<u>Diagnosis Procedure</u>".

[VK45DE]

Overall Function Check

INFOID:0000000002955098


Use this procedure to check the overall function of the transmission range switch circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Turn ignition switch ON.
- Check voltage between ECM terminal 102 (PNP signal) and ground under the following conditions.

Position (Selector lever)	Voltage (Known good data)	
P or N position	Approx. 0V	
Except above position	BATTERY VOLTAGE (11 - 14V)	

EC

Α

D

Е

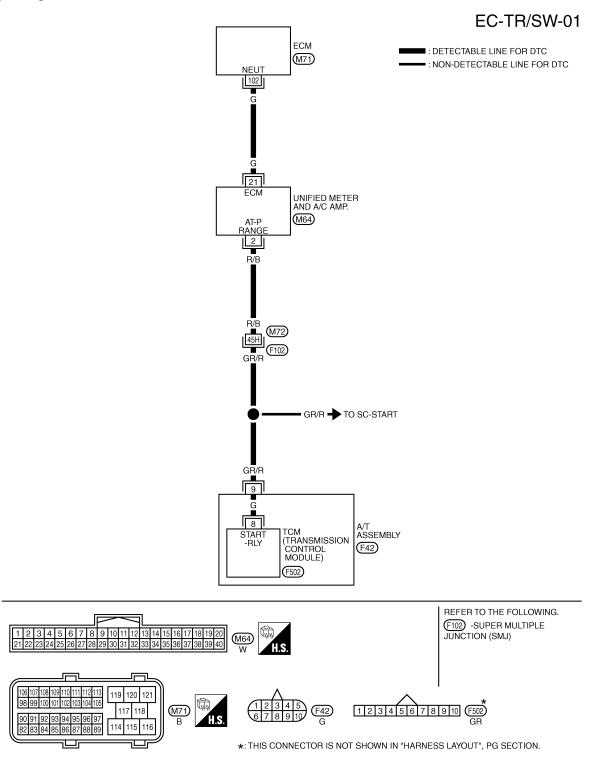
F

G

Н

J

Κ


L

M

Ν

0

Wiring Diagram

TBWT1052E

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

[VK45DE]

Α

EC

D

Е

< SERVICE INFORMATION >

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
102 G	Tananai ai aa a	[Ignition switch: ON] • Selector lever: P or N	Approximately 0V	
	G		[Ignition switch: ON] • Selector lever: Except above	BATTERY VOLTAGE (11 - 14V)

Diagnosis Procedure

INFOID:0000000002955100

1. CHECK DTC WITH TCM

Refer to AT-40, "OBD-II Diagnostic Trouble Code (DTC)".

OK or NG

OK >> GO TO 2.

NG >> Repair or replace.

2.CHECK STARTING SYSTEM

Turn ignition switch OFF, then turn it to START.

Does starter motor operate?

Yes or No

Yes >> GO TO 3. No >> Refer to SC-8.

Н

3.CHECK PNP INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT-I

- 1. Turn ignition switch OFF.
- 2. Disconnect A/T assembly harness connector.
- Disconnect "unified meter and A/C amp." harness connector.
- 4. Check harness continuity between A/T assembly terminal 9 and "unified meter and A/C amp." terminal 2. Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

L

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M72, F102
- Harness for open or short between A/T assembly and "unified meter and A/C amp."

>> Repair open circuit or short to ground or short to power in harness or connectors.

5.CHECK PNP INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT-II

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 102 and "unified meter and A/C amp." terminal 21. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

6.CHECK PNP INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT-III

L

N

DTC P0850 PNP SWITCH

< SERVICE INFORMATION >

[VK45DE]

 Check harness continuity between A/T assembly terminal 9 and TCM terminal 8. Refer to AT-98.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

OK or NG

OK >> GO TO 8.

NG >> Repair or replace.

 $8.\mathtt{REPLACE}$ "UNIFIED METER AND A/C AMP."

Refer to DI-26.

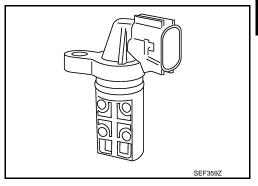
>> INSPECTION END

DTC P1140, P1145 IVT CONTROL POSITION SENSOR

< SERVICE INFORMATION >

[VK45DE]

INFOID:0000000002955101


DTC P1140, P1145 IVT CONTROL POSITION SENSOR

Component Description

Intake valve timing control position sensors are located in the front of cylinder heads in both bank 1 and bank 2.

This sensor uses a Hall IC.

The cam position is determined by the intake primary cam sprocket concave (in four places). The ECM provides feedback to the intake valve timing control for appropriate target valve open-close timing according to drive conditions based on detected cam position.

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002955102

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
INITA/ TIM/ (D4)	Engine: After warming up	Idle	–5° - 5°CA
INT/V TIM (B1) INT/V TIM (B2)	Selector lever: P or NAir conditioner switch: OFFNo load	2,000 rpm	Approx. 0° - 20°CA

On Board Diagnosis Logic

INFOID:0000000002955103

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1140 1140 (bank 1)			Harness or connectors (Intake valve timing control position sensor circuit is open or shorted)
P1145 1145 (bank 2)	Intake valve timing control position sensor circuit	An excessively high or low voltage from the sensor is sent to ECM.	 Intake valve timing control position sensor Crankshaft position sensor (POS) Camshaft position sensor (PHASE) Accumulation of debris to the signal pick-up portion of the camshaft sprocket

DTC Confirmation Procedure

INFOID:0000000002955104

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

1. Start engine and let it idle for 10 seconds.

- Check 1st trip DTC.
- If 1st trip DTC is detected, go to EC-1075, "Diagnosis Procedure".

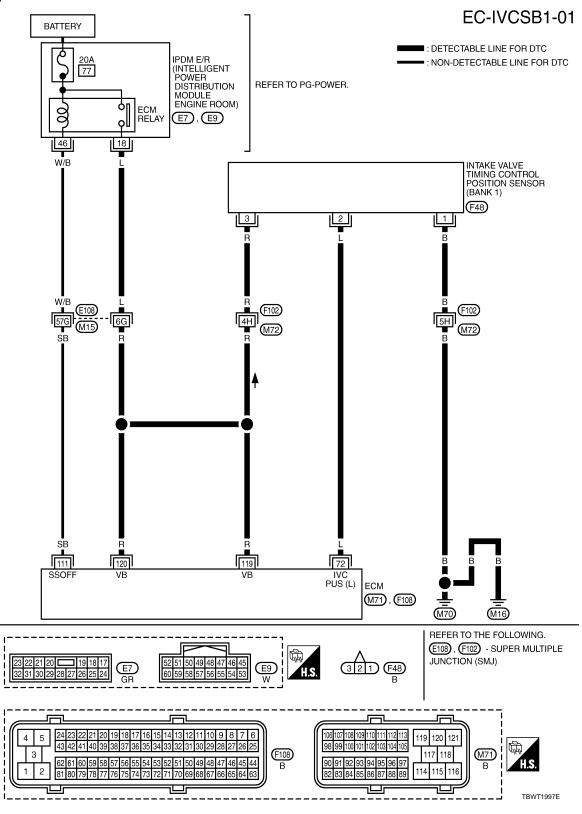
EC

Α

D

Е

F


Ν

[VK45DE]

Wiring Diagram

INFOID:0000000002955105

BANK 1

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III. CAUTION:

DTC P1140, P1145 IVT CONTROL POSITION SENSOR

< SERVICE INFORMATION >

[VK45DE]

Α

D

Е

F

Н

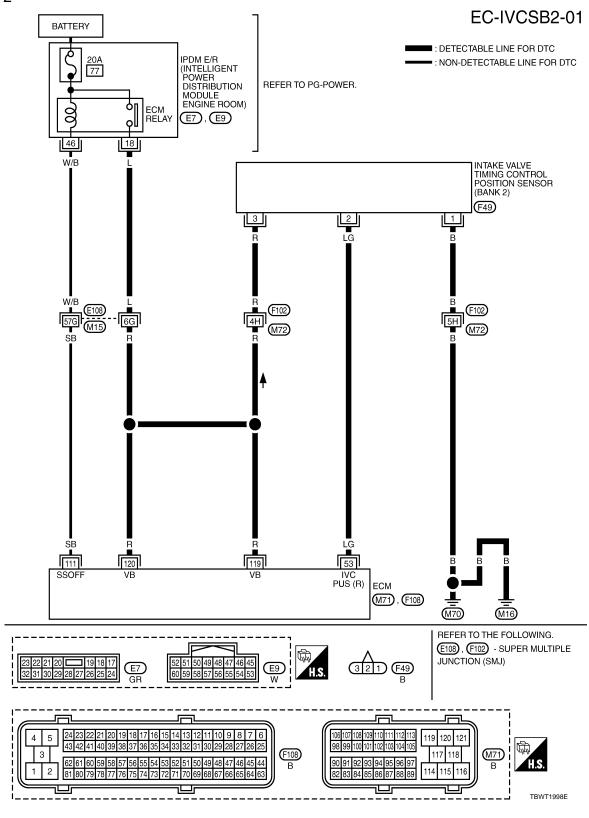
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
		Intake valve timing control	[Engine is running] • Warm-up condition • Idle speed	0 - 1.0V★
72 L	L	position sensor (bank 1)	[Engine is running] • Engine speed: 2,000rpm	0 - 1.0V★
111	SB	ECM relay (Self shut-off)	[Engine is running] [Ignition switch: OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V
			[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
119 120	R R	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

K

L


M

Ν

0

[VK45DE]

BANK 2

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

CAUTION:

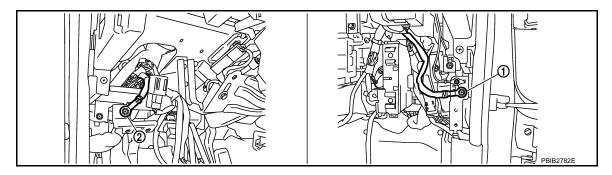
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

DTC P1140, P1145 IVT CONTROL POSITION SENSOR

< SERVICE INFORMATION >

[VK45DE]

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
-	Intake valve timing control		[Engine is running] • Warm-up condition • Idle speed	0 - 1.0V★
53 L	LG	position sensor (bank 2)	[Engine is running] • Engine speed: 2,000 rpm	0 - 1.0V★
111	SB	ECM relay (Self shut-off)	[Engine is running] [Ignition switch: OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V
		(Seil Stiut-Oll)	[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
119 120	R R	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)


^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnosis Procedure

1. CHECK GROUND CONNECTIONS

Turn ignition switch OFF.

Loosen and retighten ground screws on the body. Refer to EC-769, "Ground Inspection".

1. Body ground M70

2. Body ground M16

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.check intake valve timing control position sensor power supply circuit

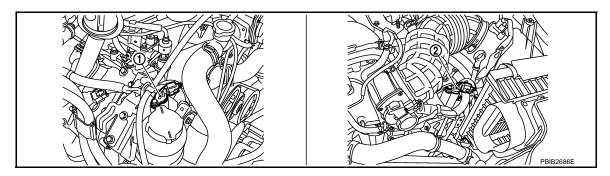
Disconnect intake valve timing control position sensor harness connector.

EC

Α

D

Е

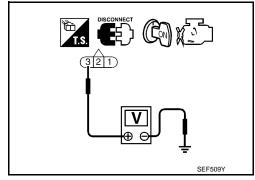

F

INFOID:0000000002955106

K

Ν

Ρ



- Intake valve timing control position sensor (bank 2)
- 2. Intake valve timing control position sensor (bank 1)
- 2. Turn ignition switch ON.
- 3. Check voltage between intake valve timing control position sensor terminal 3 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- Harness connectors F102, M72
- Harness for open or short between intake valve timing control position sensor and IPDM E/R
- Harness for open or short between intake valve timing control position sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK INTAKE VALVE TIMING CONTROL POSITION SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- Check harness continuity between intake valve timing control position sensor terminal 1 and ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5.DETECT MALFUNCTIONING PART

Check the following.

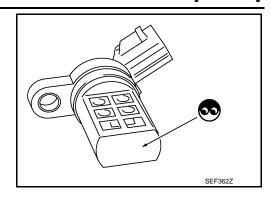
- Harness connectors F102, M72
- Harness for open or short between intake valve timing control position sensor and ground
 - >> Repair open circuit or short to power in harness or connectors.

6.CHECK INTAKE VALVE TIMING CONTROL POSITION SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

1. Disconnect ECM harness connector.

DTC P1140, P1145 IVT CONTROL POSITION SENSOR

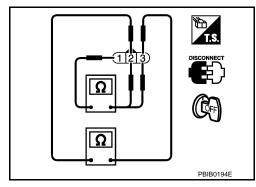
< SERVICE INFORMATION >	[VK45DE]
 Check harness continuity between the following; ECM terminal 72 and intake valve timing control position sensor (bank 1) terminal 2 or ECM terminal 53 and intake valve timing control position sensor (bank 2) terminal 2. Refer to Wiring Diagram. 	А
Continuity should exist.	EC
Also check harness for short to ground and short to power.	
OK or NG	С
OK >> GO TO 7. NG >> Repair open circuit or short to ground or short to power in harness or connectors.	
NG >> Repair open circuit or short to ground or short to power in harness or connectors. 7.CHECK INTAKE VALVE TIMING CONTROL POSITION SENSOR	D
Refer to EC-1077, "Component Inspection".	
OK or NG	E
OK >> GO TO 8.	L
NG >> Replace intake valve timing control position sensor. 8.CHECK CRANKSHAFT POSITION SENSOR (POS)	_
Refer to EC-962, "Component Inspection".	F
OK or NG	
OK >> GO TO 9.	G
NG >> Replace crankshaft position sensor (POS). 9.CHECK CAMSHAFT POSITION SENSOR (PHASE)	
Refer to EC-967, "Component Inspection".	H
OK or NG	
OK >> GO TO 10.	I
NG >> Replace camshaft position sensor (PHASE). 10.CHECK CAMSHAFT SPROCKET	
Check accumulation of debris to the signal pick-up portion of the camshaft sprocket. Refer to EM-2	 J
OK or NG	<u>.02</u> .
OK >> GO TO 11.	K
NG >> Remove debris and clean the signal pick-up cutout of camshaft sprocket. 11.CHECK INTERMITTENT INCIDENT	
Refer to EC-763, "Diagnosis Procedure".	L
110.07 to <u>10 7001 Plagitodio i 10000010</u> .	
>> INSPECTION END	M
Component Inspection	DID:0000000002955107
INTAKE VALVE TIMING CONTROL POSITION SENSOR	N
Disconnect intake valve timing control position sensor harness connector.	IV
Loosen the fixing bolt of the sensor.	
3. Remove the sensor.	0
	Р


Revision: 2009 February **EC-1077** 2008 M35/M45

DTC P1140, P1145 IVT CONTROL POSITION SENSOR

< SERVICE INFORMATION >

[VK45DE]


4. Visually check the sensor for chipping.

5. Check resistance as shown below.

Terminal No. (Polarity)	Resistance Ω [at 25°C (77°F)]	
3 (+) - 1 (-)		
2 (+) - 1 (-)	Except 0 or ∞	
3 (+) - 2 (-)	7	

6. If NG, replace intake valve timing control position sensor.

INFOID:0000000002955108

Removal and Installation

INTAKE VALVE TIMING CONTROL POSITION SENSOR Refer to EM-202.

DTC P1148, P1168 CLOSED LOOP CONTROL

< SERVICE INFORMATION >

[VK45DE]

DTC P1148, P1168 CLOSED LOOP CONTROL

On Board Diagnosis Logic

INFOID:0000000002955109

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1148 1148 (Bank 1)	Closed loop control function	The closed loop control function for bank 1 does not operate even when vehicle is driving in the specified condition.	Harness or connectors (The A/F sensor 1 circuit is open or shorted.) A/F sensor 1 A/F sensor 1 heater
P1168 1168 (Bank 2)		The closed loop control function for bank 2 does not operate even when vehicle is driving in the specified condition.	

NOTE:

DTC P1148 or P1168 is displayed with another DTC for A/F sensor 1. Perform the trouble diagnosis for the corresponding DTC.

EC

Α

Е

F

D

Н

J

Κ

L

M

Ν

0

DTC P1211 TCS CONTROL UNIT

< SERVICE INFORMATION >

[VK45DE]

DTC P1211 TCS CONTROL UNIT

Description INFOID:000000002955110

The malfunction information related to TCS is transferred through the CAN communication line from "ABS actuator and electric unit (control unit)" to ECM.

Be sure to erase the malfunction information such as DTC not only for "ABS actuator and electric unit (control unit)" but also for ECM after TCS related repair.

On Board Diagnosis Logic

INFOID:0000000002955111

Freeze frame data is not stored in the ECM for this self-diagnosis. The MIL will not light up for this self-diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1211 1211	TCS control unit	ECM receives a malfunction information from "ABS actuator electric unit (control unit)"	ABS actuator and electric unit (control unit) TCS related parts

DTC Confirmation Procedure

INFOID:0000000002955112

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V at idle.

- 1. Start engine and let it idle for at least 60 seconds.
- 2. Check 1st trip DTC.
- 3. If 1st trip DTC is detected, go to EC-1080, "Diagnosis Procedure".

Diagnosis Procedure

INFOID:0000000002955113

Go to BRC-30, "CONSULT-III Function (ABS)".

DTC P1212 TCS COMMUNICATION LINE

< SERVICE INFORMATION >

[VK45DE]

INFOID:0000000002955115

DTC P1212 TCS COMMUNICATION LINE

Description INFOID:0000000002955114

NOTE:

- If DTC P1212 is displayed with DTC U1000 or U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-770, "DTC Confirmation Procedure".
- If DTC P1212 is displayed with DTC U1010, first perform the trouble diagnosis for DTC U1010. Refer to EC-772, "DTC Confirmation Procedure".

This CAN communication line is used to control the smooth engine operation during the TCS operation. Pulse signals are exchanged between ECM and "ABS actuator and electric unit (control unit)".

Be sure to erase the malfunction information such as DTC not only for "ABS actuator and electric unit (control unit)" but also for ECM after TCS related repair.

On Board Diagnosis Logic

Freeze frame data is not stored in the ECM for this self-diagnosis. The MIL will not light up for this selfdiagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1212 1212	TCS communication line	ECM can not receive the information from "ABS actuator and electric unit (control unit)" continuously.	Harness or connectors (The CAN communication line is open or shorted.) ABS actuator and electric unit (control unit) Dead (Weak) battery

DTC Confirmation Procedure

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V at idle.

- Start engine and let it idle for at least 10 seconds.
- 2. Check 1st trip DTC.
- If 1st trip DTC is detected, go to EC-1081, "Diagnosis Procedure".

Diagnosis Procedure

Go to BRC-30, "CONSULT-III Function (ABS)".

INFOID:0000000002955117

INFOID:0000000002955116

EC

Α

Е

F

N

DTC P1217 ENGINE OVER TEMPERATURE

Description INFOID:000000002955118

SYSTEM DESCRIPTION

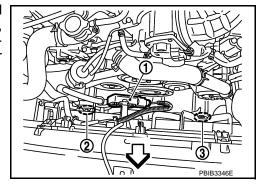
NOTE:

- If DTC P1217 is displayed with DTC U1000 or U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to <u>EC-770</u>, "<u>DTC Confirmation Procedure</u>".
- If DTC P1217 is displayed with DTC U1010, first perform the trouble diagnosis for DTC U1010. Refer to EC-772, "DTC Confirmation Procedure".

Cooling Fan Control

Sensor	Input signal to ECM	ECM function	Actuator
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed*1		
Battery	Battery voltage*1		
Wheel sensor	Vehicle speed*2		IPDM E/R
Engine coolant temperature sensor	Engine coolant temperature	Cooling fan	Cooling fan relay Cooling fan control mad
Air conditioner switch	Air conditioner ON signal*2	control	Cooling fan control mod- ule
Refrigerant pressure sensor	Refrigerant pressure		
Unified meter and A/C amp.	Target A/C evaporator temperature*2		
Intake sensor	A/C evaporator temperature*2		

^{*1:} The ECM determines the start signal status by the signals of engine speed and battery voltage.


ECM controls cooling fan speed corresponding to vehicle speed, engine coolant temperature, air conditioner ON signal, refrigerant pressure, target A/C evaporator temperature and A/C evaporator temperature. Cooling fan control signal is sent to IPDM E/R from ECM by CAN communication line. Then, IPDM E/R sends ON/OFF pulse duty signal to cooling fan control module. Corresponding to this ON/OFF pulse duty signal, cooling fan control module gives cooling fan motor operating voltage to cooling fan motors. Cooling fan speed is controlled by duty cycle of cooling fan motor operating voltage sent from cooling fan control module.

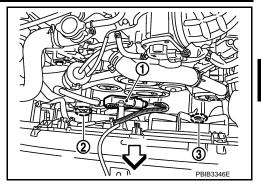
COMPONENT DESCRIPTION

Cooling Fan Control Module

Cooling fan control module (1) receives ON/OFF pulse duty signal from IPDM E/R. Corresponding to this ON/OFF pulse duty signal, cooling fan control module sends cooling fan motor operating voltage to cooling fan motor. The revolution speed of cooling fan motor is controlled by duty cycle of the voltage.

- <□: Vehicle front
- Cooling fan motor-2 (2)
- Cooling fan motor-1 (3)

Cooling Fan Motor


^{*2:} This signal is sent to ECM through CAN communication line.

< SERVICE INFORMATION >

[VK45DE]

Cooling fan motor receives cooling fan motor operating voltage from cooling fan control module (1). The revolution speed of cooling fan motor is controlled by duty cycle of the voltage.

- <□: Vehicle front
- Cooling fan motor-2 (2)
- Cooling fan motor-1 (3)

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002955119

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
FAN DUTY	Engine: Running	0 - 100%

On Board Diagnosis Logic

INFOID:0000000002955120

If the cooling fan or another component in the cooling system malfunctions, engine coolant temperature will

When the engine coolant temperature reaches an abnormally high temperature condition, a malfunction is indicated.

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1217 1217	Engine over temperature (Overheat)	 Cooling fan does not operate properly (Overheat). Cooling fan system does not operate properly (Overheat). Engine coolant was not added to the system using the proper filling method. Engine coolant is not within the specified range. 	Harness or connectors (The cooling fan circuit is open or shorted.) IPDM E/R Cooling fan control module Cooling fan motor Radiator hose Radiator Radiator cap Water pump Thermostat Water control valve For more information, refer to EC-1090, "Main 13 Causes of Overheating".

CAUTION:

When a malfunction is indicated, be sure to replace the coolant. Refer to CO-38, "Changing Engine Coolant". Also, replace the engine oil. Refer to LU-24, "Changing Engine Oil".

- Fill radiator with coolant up to specified level with a filling speed of 2 liters per minute. Be sure to use coolant with the proper mixture ratio. Refer to MA-10, "Anti-Freeze Coolant Mixture Ratio".
- 2. After refilling coolant, run engine to ensure that no water-flow noise is emitted.

Overall Function Check

INFOID:0000000002955121

Use this procedure to check the overall function of the cooling fan. During this check, a DTC might not be confirmed.

WARNING:

Never remove the radiator cap when the engine is hot. Serious burns could be caused by high pressure fluid escaping from the radiator.

Wrap a thick cloth around cap. Carefully remove the cap by turning it a quarter turn to allow built-up pressure to escape. Then turn the cap all the way off.

(P) WITH CONSULT-III

EC-1083 Revision: 2009 February 2008 M35/M45

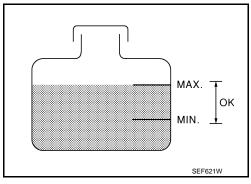
EC

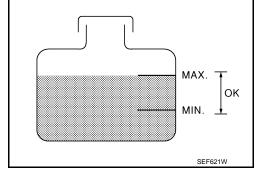
Α

D

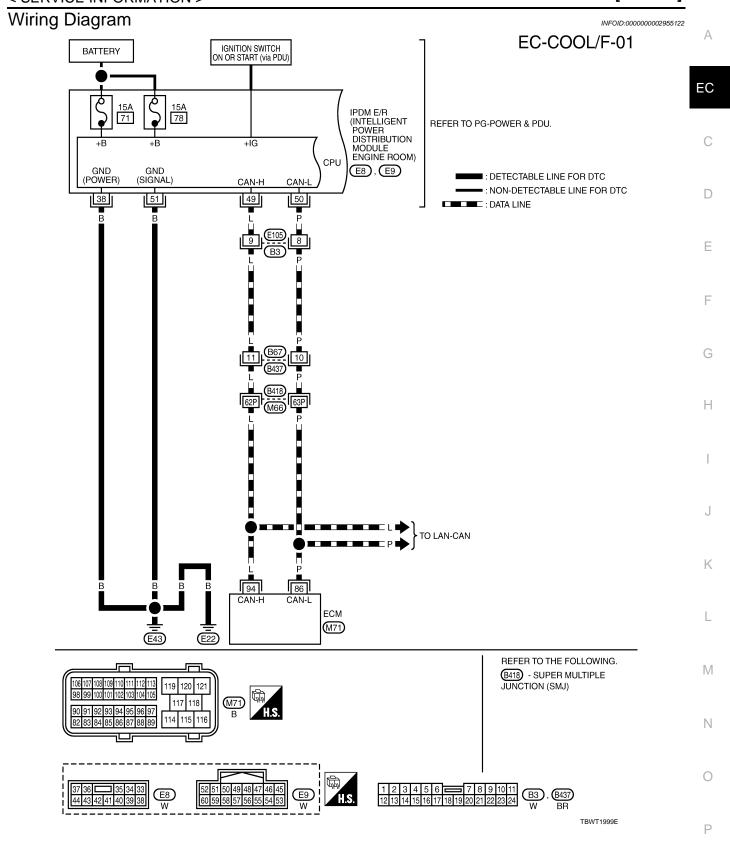
Н

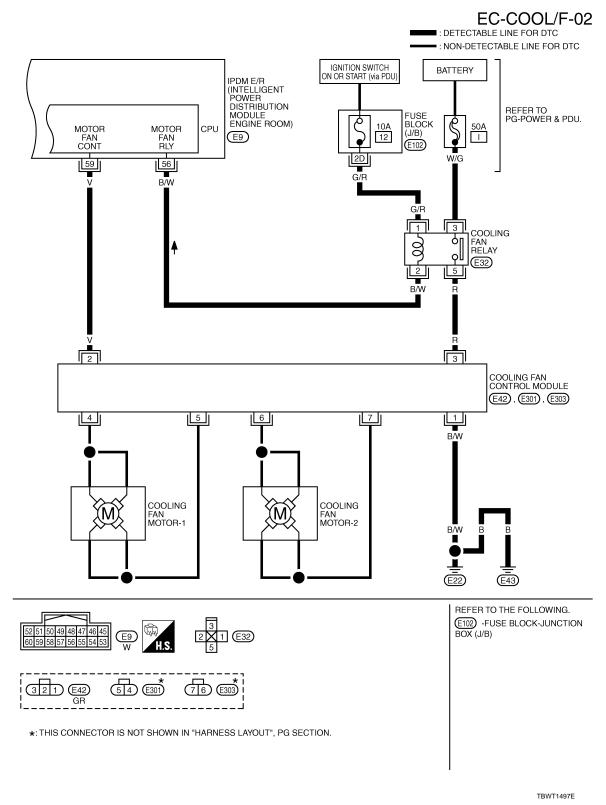
< SERVICE INFORMATION >


[VK45DE]


- Check the coolant level in the reservoir tank and radiator.
 Allow engine to cool before checking coolant level.
 If the coolant level in the reservoir tank and/or radiator is below the proper range, skip the following steps and go to <u>EC-1086</u>.

 "Diagnosis Procedure".
- 2. Confirm whether customer filled the coolant or not. If customer filled the coolant, skip the following steps and go to EC-1086, "Diagnosis Procedure".
- 3. Turn ignition switch ON.
- Perform "FAN DUTY CONTROL" in "ACTIVE TEST" mode with CONSULT-III.
- 5. Make sure that cooling fan speed varies according to the percent.
- 6. If the results are NG, go to EC-1086, "Diagnosis Procedure".


WITH GST


- Check the coolant level in the reservoir tank and radiator.
 Allow engine to cool before checking coolant level.
 If the coolant level in the reservoir tank and/or radiator is below the proper range, skip the following steps and go to <u>EC-1086</u>, "Diagnosis Procedure".
- 2. Confirm whether customer filled the coolant or not. If customer filled the coolant, skip the following steps and go to EC-1086, "Diagnosis Procedure".
- 3. Perform IPDM E/R auto active test and check cooling fan motors operation, refer to <u>PG-22</u>, "Auto Active Test".
- 4. If NG, go to EC-1086, "Diagnosis Procedure".

[VK45DE]

Diagnosis Procedure

INFOID:0000000002955123

1. Check cooling fan operation

(I) With CONSULT-III

- Turn ignition switch ON.
- 2. Perform "FAN DUTY CONTROL" in "ACTIVE TEST" mode with CONSULT-III.
- Make sure that cooling fan speed varies according to the percent.

< SERVICE INFORMATION > [VK45DE]

Without CONSULT-III

- 1. Perform IPDM E/R auto active test and check cooling fan motors operation, refer to PG-22, "Auto Active Test".
- 2. Make sure that cooling fan operates.

OK or NG

OK >> GO TO 2. NG >> GO TO 6.

2. CHECK COOLING SYSTEM FOR LEAK

Apply pressure to the cooling system with a tester, and check if the pressure drops.

Testing pressure: 157 kPa (1.6 kg/cm², 23 psi)

CAUTION:

Higher than the specified pressure may cause radiator damage. Pressure should not drop.

OK or NG

OK >> GO TO 3.

NG >> Check the following for leak. Refer to CO-38, "Inspection"

- Hose
- Radiator
- Water pump

3. CHECK RADIATOR CAP

Apply pressure to cap with a tester.

Radiator cap relief pressure:

59 - 98 kPa (0.6 - 1.0 kg/cm², 9 - 14 psi)

OK or NG

OK >> GO TO 4.

NG >> Replace radiator cap.

EG17650301 (J33984-A) SLC756A

4. CHECK THERMOSTAT

Check the following.

- Thermostat. (Refer to CO-53.)
- Water control valve. (Refer to CO-53.)
- Engine coolant temperature sensor. (Refer to EC-832, "Component Inspection".)

OK or NG

OK >> GO TO 5.

NG >> Replace malfunctioning component.

5. CHECK MAIN 13 CAUSES

If the cause cannot be isolated, go to EC-1090, "Main 13 Causes of Overheating".

>> INSPECTION END

6. CHECK COOLING FAN CONTROL MODULE POWER SUPPLY CIRCUIT-I

1. Turn ignition switch OFF.

EG17650301 (J33984-A) Hose adapter EC

Α

Е

D

F

Н

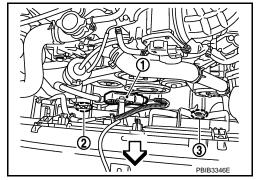
ı

J

K

M

Ν

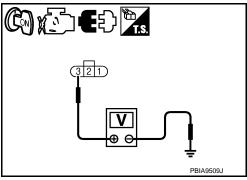

0

< SERVICE INFORMATION >

[VK45DE]

2008 M35/M45

- Disconnect cooling fan control module (1) harness connector E42.
- <: Vehicle front
- Cooling fan motor-2 (2)
- Cooling fan motor-1 (3)
- 3. Turn ignition switch ON.



4. Check voltage between cooling fan control module terminal 3 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 7. NG >> GO TO 12.

7.CHECK COOLING FAN CONTROL MODULE GROUND CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Check harness continuity between cooling fan control module terminal 1 and ground. Refer to wiring diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 8.

NG >> Repair open circuit or short to power in harness or connectors.

8.CHECK IPDM E/R GROUND CIRCUIT

- 1. Disconnect IPDM E/R harness connector E8, E9.
- Check harness continuity between IPDM E/R terminal 38, 51 and ground. Refer to wiring diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 9.

NG >> Repair open circuit or short to power in harness or connectors.

9.CHECK COOLING FAN CONTROL SIGNAL CIRCUIT

 Check harness continuity between IPDM E/R terminal 59 and cooling fan control module terminal 2. Refer to wiring diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 10.

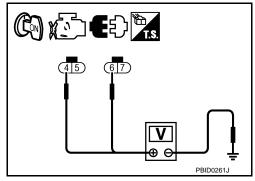
Revision: 2009 February

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

10.CHECK COOLING FAN CONTROL MODULE OUTPUT SIGNAL CIRCUIT

< SERVICE INFORMATION >

[VK45DE]


- Reconnect all harness connectors disconnected.
- Disconnect cooling fan control module harness connectors E301, E303.
- 3. Turn ignition switch ON.
- 4. Check voltage between cooling fan control module terminals 4, 6 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 11.

NG >> Replace cooling fan control module.

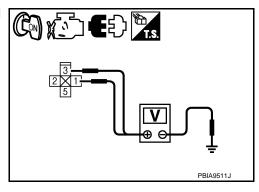
11. CHECK COOLING FAN MOTORS -1 AND -2

Refer to EC-1091, "Component Inspection".

OK or NG

OK >> GO TO 16.

NG >> Replace cooling fan motor.


12. CHECK COOLING FAN CONTROL MODULE POWER SUPPLY CIRCUIT-II

- Turn ignition switch OFF.
- Disconnect cooling fan relay.
- 3. Turn ignition switch ON.
- 4. Check voltage between cooling fan relay terminals 1, 3 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 14. NG >> GO TO 13.

13. DETECT MALFUNCTIONING PART

Check the following.

- 10A fuse
- Fuse block (J/B) connector E102
- 50A fusible link
- Harness for open or short between cooling fan relay and fuse
- Harness for open or short between cooling fan relay and battery

>> Repair open circuit or short to ground or short to power in harness or connectors.

14. CHECK COOLING FAN CONTROL MODULE POWER SUPPLY CIRCUIT-III

- Turn ignition switch OFF.
- 2. Disconnect IPDM E/R harness connector E9.
- Check harness continuity between the following; Cooling fan relay terminal 2 and IPDM E/R terminal 56, Cooling fan relay terminal 5 and cooling fan control module terminal 3. Refer to wiring diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

EC-1089 Revision: 2009 February 2008 M35/M45

EC

Α

D

Е

F

N

DICFIZIT ENGINE OVER TEMPERATOR

OK >> GO TO 15.

< SERVICE INFORMATION >

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

15. CHECK COOLING FAN RELAY

Refer to EC-1091, "Component Inspection".

OK or NG

OK >> GO TO 16.

NG >> Replace cooling fan relay.

16. CHECK INTERMITTENT INCIDENT

Perform EC-763, "Diagnosis Procedure".

OK or NG

OK >> Replace IPDM E/R. Refer to PG-19.

NG >> Repair or replace harness connectors.

Main 13 Causes of Overheating

INFOID:0000000002955124

[VK45DE]

Engine	Step	Inspection item	Equipment	Standard	Reference page
OFF	1	Blocked radiator Blocked condenser Blocked radiator grille Blocked bumper	Visual	No blocking	_
•	2	Coolant mixture	Coolant tester	50 - 50% coolant mixture	<u>MA-10</u>
	3	Coolant level	Visual	Coolant up to MAX level in reservoir tank and radiator filler neck	CO-38
	4	Radiator cap	Pressure tester	59 - 98 kPa	<u>CO-43</u>
				(0.6 - 1.0 kg/cm ² , 9 - 14 psi) (Limit)	
ON* ²	5	Coolant leaks	Visual	No leaks	<u>CO-38</u>
ON* ²	6	Thermostat	Touch the upper and lower radiator hoses	Both hoses should be hot	<u>CO-53</u>
ON*1	7	Cooling fan	CONSULT-III	Operating	See trouble diagnosis for DTC P1217 (EC-1082).
OFF	8	Combustion gas leak	Color checker chemical tester 4 Gas analyzer	Negative	_
ON* ³	9	Coolant temperature gauge	Visual	Gauge less than 3/4 when driving	_
		Coolant overflow to reservoir tank	Visual	No overflow during driving and idling	CO-38
OFF* ⁴	10	Coolant return from reservoir tank to radiator	Visual	Should be initial level in reservoir tank	CO-38
OFF	11	Water control valve	Remove and inspect the valve	Within the specified value	CO-53
OFF	12	Cylinder head	Straight gauge feeler gauge	0.1 mm (0.004 in) Maximum distortion (warping)	EM-230
	13	Cylinder block and pistons	Visual	No scuffing on cylinder walls or piston	EM-249

^{*1:} Turn the ignition switch ON.

For more information, refer to CO-35.

Revision: 2009 February **EC-1090** 2008 M35/M45

^{*2:} Engine running at 3,000 rpm for 10 minutes.

^{*3:} Drive at 90 km/h (55 MPH) for 30 minutes and then let idle for 10 minutes.

^{*4:} After 60 minutes of cool down time.

Component Inspection

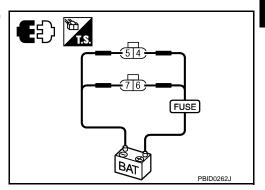
INFOID:0000000002955125

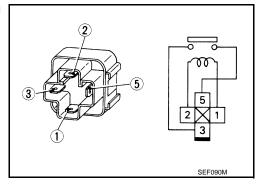
COOLING FAN MOTORS -1 AND -2

- 1. Disconnect cooling fan control module harness connectors.
- 2. Supply cooling fan control module terminals with battery voltage and check operation.

Cooling fan motor	Term	ninals
Cooling lan motor	(+)	(-)
1	4	5
2	6	7

Make sure that cooling fan operates.


If NG, replace cooling fan motor.


COOLING FAN RELAY

- 1. Disconnect cooling fan relay harness connector.
- 2. Check continuity between terminals 3 and 5 under the following conditions.

Conditions	Continuity
12V direct current supply between terminals 1 and 2	Yes
No current supply	No

If NG, replace cooling fan relay.

EC

Α

С

D

Е

F

G

Н

K

L

M

Ν

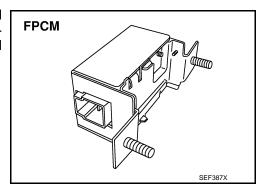
0

DTC P1220 FUEL PUMP CONTROL MODULE (FPCM)

Description INFOID:000000002955126

SYSTEM DESCRIPTION

Sensor	Input Signal to ECM	ECM function	Actuator
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed*		
Mass air flow sensor	Amount of intake air	Fuel pump control	Fuel pump control module (FPCM)
Engine coolant temperature sensor	Engine coolant temperature		(I I OW)
Battery	Battery voltage*		


^{*:} ECM determines the start signal status by the signals of engine speed and battery voltage.

This system controls the fuel pump operation. The amount of fuel flow delivered from the fuel pump is altered between two flow rates by the FPCM operation. The FPCM determines the voltage supplied to the fuel pump (and therefore fuel flow) according to the following conditions.

Conditions	Amount of fuel flow	Supplied voltage
 Engine cranking Engine coolant temperature is below 10°C (50°F). Engine is running under heavy load and high speed conditions 	high	Battery voltage (11 - 14V)
Except the above	low	Approximately 8V

COMPONENT DESCRIPTION

The FPCM adjusts the voltage supplied to the fuel pump to control the amount of fuel flow. When the FPCM increases the voltage supplied to the fuel pump, the fuel flow is increased. When the FPCM decreases the voltage, the fuel flow is decreased.

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002955127

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
	Engine: Cranking	HI
FPCM	Engine: Idle Engine coolant temperature: More than 10°C (50°F)	LOW

On Board Diagnosis Logic

INFOID:0000000002955128

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1220 1220	Fuel pump control module (FPCM)	An improper voltage signal from the FPCM, which is supplied to a point between the fuel pump and the dropping resistor, is detected by ECM.	 Harness or connectors (FPCM circuit is shorted.) Dropping resistor FPCM

DTC Confirmation Procedure

INFOID:0000000002955129

CAUTION:

< SERVICE INFORMATION >

Always drive vehicle at a safe speed.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V with ignition switch ON.

(II) WITH CONSULT-III

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-III.
- Make sure that "COOLAN TEMP/S" indicates less than 70°C (158°F). If not, cool down the engine.
- 3. Start engine.
- Hold vehicle at the following conditions for 12 seconds.

ENG SPEED	1,375 - 3,475 rpm
VHCL SPEED SE	More than 70 km/h (43 MPH)
B/FUEL SCHDL	1.5 - 23.0 msec
Selector lever	Suitable position

- 5. Check 1st trip DTC.
- If 1st trip DTC is detected, go to EC-1095, "Diagnosis Procedure".

WITH GST

Follow the procedure "WITH CONSULT-III" above.

EC

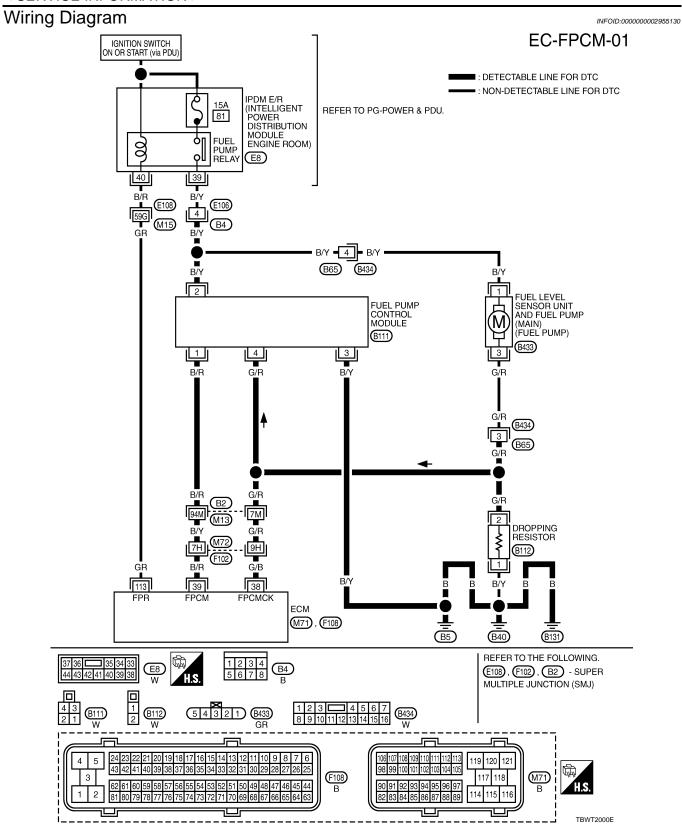
Α

[VK45DE]

C

D

Е


F

Н

K

L

Ν

Specification data are reference values and are measured between each terminal and ground. **CAUTION**:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

< SERVICE INFORMATION >

[VK45DE]

Α

EC

D

Е

F

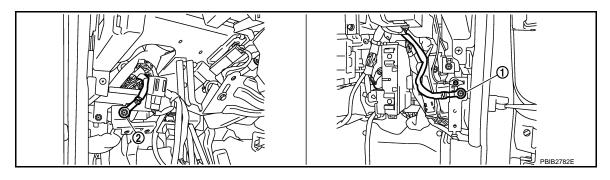
Н

M

Ν

0

INFOID:0000000002955131


	1			
TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[When cranking engine]	Approximately 0V
38	G/B	Fuel pump control module (FPCM) check	[Engine is running]Warm-up conditionIdle speed	4 - 6V
			[When cranking engine]	0 - 0.5V
39	B/R	Fuel pump control module (FPCM)	[Engine is running] • Warm-up condition • Idle speed	8 - 12V
440	GR	Fuel nump relay	[Ignition switch: ON] • For 1 second after turning ignition switch ON [Engine is running]	0 - 1.5V
113	GN	Fuel pump relay	[Ignition switch: ON] • More than 1 second after turning ignition switch ON	BATTERY VOLTAGE (11 - 14V)

Diagnosis Procedure

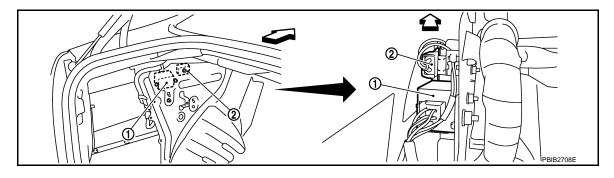
1. CHECK GROUND CONNECTIONS

1. Turn ignition switch OFF.

 Loosen and retighten ground screws on the body. Refer to <u>EC-769</u>, "Ground Inspection".

1. Body ground M70

2. Body ground M16


OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

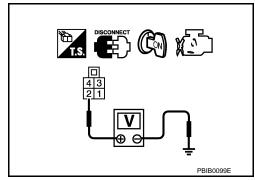
2. CHECK FPCM POWER SUPPLY CIRCUIT

1. Disconnect fuel pump control module (FPCM) harness connector.

⟨□ : Vehicle front

1. FPCM

2. Dropping resistor


< SERVICE INFORMATION > [VK45DE]

- 2. Turn ignition switch ON.
- 3. Check voltage between FPCM terminal 2 and ground with CON-SULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E106, B4
- Harness for open or short between FPCM and harness connector B4
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

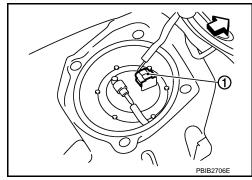
4. CHECK FPCM GROUND CIRCUIT-I FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Check harness continuity between FPCM terminal 3 and ground. Refer to Wiring Diagram.

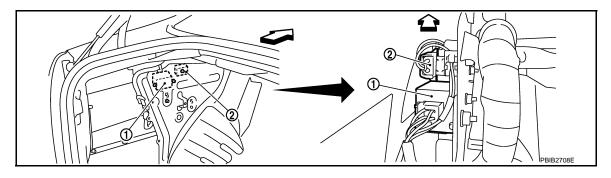
Continuity should exist.

3. Also check harness for short to power.

OK or NG


OK >> GO TO 5.

NG >> Repair open circuit or short to power in harness or connectors.


5. CHECK FPCM GROUND CIRCUIT-II FOR OPEN AND SHORT

- 1. Disconnect "fuel level sensor unit and fuel pump" harness connector (1).
- Illustration shows the view with rear seat cushion and inspection hole cover (RH) removed.

Revision: 2009 February

2. Disconnect dropping resistor harness connector.

∠□: Vehicle front

1. FPCM

Dropping resistor

< S	ERVICE INFORMATION >	[VK45DE]
3.	Check harness continuity between the following; "fuel level sensor unit and fuel pump" terminal 3 and dropping resistor terminal 2, FPCM terminal 4 and dropping resister terminal 2. Refer to Wiring Diagram.	А
	Continuity should exist.	EC
4.	Check harness continuity between the following; "fuel level sensor and fuel pump" terminal 3 and ground, FPCM terminal 4 and ground. Refer to Wiring Diagram.	С
	Continuity should not exist.	D
	Also check harness for short to power. or NG	E
Oł NO		
	DETECT MALFUNCTIONING PART	F
H:H:	eck the following. arness connectors B434, B65 arness for open or short between "fuel level sensor unit and fuel pump" and dropping resistor arness for open or short between FPCM and dropping resistor arness for open or short between "fuel level sensor unit and fuel pump" and ground	G
	arness for open or short between FPCM and ground	Н
	>> Repair open circuit or short to ground or short to power in harness or connectors. CHECK FPCM INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT	
	Disconnect ECM harness connector. Check harness continuity between ECM terminal 38 and FPCM terminal 4. Refer to Wiring Diagram.	J
	Continuity should exist.	
3.	Check harness continuity between ECM terminal 38 and ground. Refer to Wiring Diagram.	К
	Continuity should not exist.	L
	Also check harness for short to power.	
Ok Oł NO		M
8.	DETECT MALFUNCTIONING PART	N
• H	eck the following. arness connectors B2, M13 arness connectors M72, F102 arness for open or short between ECM and FPCM	0
9.0	>> Repair open circuit or short to ground or short to power in harness or connectors. CHECK FPCM OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT	Р
1.	Check harness continuity between ECM terminal 39 and FPCM terminal 1. Refer to Wiring Diagram.	

Continuity should exist.

2. Also check harness for short to ground and short to power.

Revision: 2009 February **EC-1097** 2008 M35/M45

< SERVICE INFORMATION >

[VK45DE]

OK or NG

OK >> GO TO 11.

NG >> GO TO 10.

10. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B2, M13
- Harness connectors M72, F102
- Harness for open or short between ECM and FPCM

>> Repair open circuit or short to ground or short to power in harness or connectors.

11.CHECK FPCM

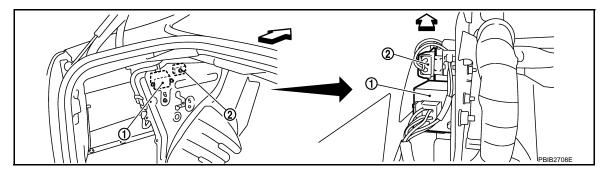
Refer to EC-1098, "Component Inspection".

OK or NG

OK >> GO TO 12.

NG >> Replace FPCM.

12. CHECK INTERMITTENT INCIDENT

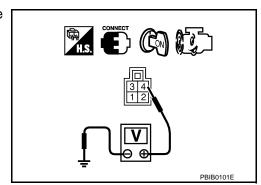

Refer to EC-763, "Diagnosis Procedure".

>> INSPECTION END

Component Inspection

INFOID:0000000002955132

FUEL PUMP CONTROL MODULE

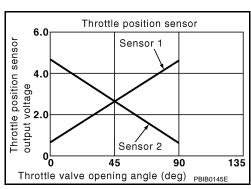

⟨□ : Vehicle front

1. FPCM

- 2. Dropping resistor
- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Check voltage between FPCM terminal 4 and ground under the following conditions.

Condition	Voltage
When engine cranking	Approx. 0V
After starting engine	Approx. 5V

4. If NG, replace fuel pump control module.


INFOID:0000000002955133

DTC P1225 TP SENSOR

Component Description

Electric throttle control actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

On Board Diagnosis Logic

The MIL will not light up for this diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1225 1225	Closed throttle position learning performance	Closed throttle position learning value is excessively low.	Electric throttle control actuator (TP sensor 1 and 2)

DTC Confirmation Procedure

NOTE

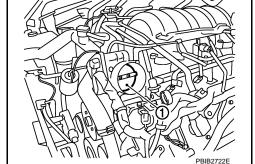
If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

- Turn ignition switch ON.
- 2. Turn ignition switch OFF, wait at least 10 seconds.
- Turn ignition switch ON.
- 4. Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-1099</u>. "<u>Diagnosis Procedure</u>".

Diagnosis Procedure


1. CHECK ELECTRIC THROTTLE CONTROL ACTUATOR VISUALLY

- Turn ignition switch OFF.
- 2. Remove the intake air duct.
- 3. Check if foreign matter is caught between the throttle valve (1) and the housing.
- This illustration shows the view with intake air duct removed.

OK or NG

OK >> GO TO 2.

NG >> Remove the foreign matter and clean the electric throttle control actuator inside.

2. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- Perform <u>EC-706</u>, "Throttle Valve Closed Position Learning".
- Perform EC-707, "Idle Air Volume Learning".

Revision: 2009 February **EC-1099** 2008 M35/M45

EC

Α

Е

INFOID:0000000002955134

G

ш

Н

INFOID:0000000002955135

INFOID:0000000002955136

K

M

N

0

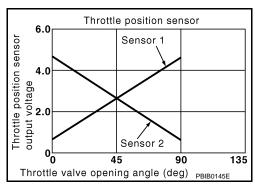
DTC P1225 TP SENSOR

< SERVICE INFORMATION > [VK45DE]

>> INSPECTION END

Removal and Installation

ELECTRIC THROTTLE CONTROL ACTUATOR Refer to $\underline{\mathsf{EM-}177}$.


INFOID:0000000002955138

DTC P1226 TP SENSOR

Component Description

Electric throttle control actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

On Board Diagnosis Logic

The MIL will not light up for this diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1226 1226	Closed throttle position learning performance	Closed throttle position learning is not performed successfully, repeatedly.	Electric throttle control actuator (TP sensor 1 and 2)

DTC Confirmation Procedure

NOTE:

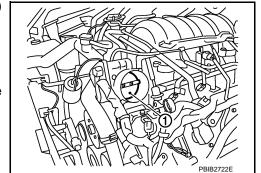
If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

- Turn ignition switch ON.
- Turn ignition switch OFF, wait at least 10 seconds.
- Turn ignition switch ON.
- Repeat steps 2 and 3 for 32 times.
- Check 1st trip DTC.
- If 1st trip DTC is detected, go to EC-1101, "Diagnosis Procedure".

Diagnosis Procedure


1. CHECK ELECTRIC THROTTLE CONTROL ACTUATOR VISUALLY

- Turn ignition switch OFF.
- Remove the intake air duct.
- Check if foreign matter is caught between the throttle valve (1) and the housing.
- This illustration shows the view with intake air duct removed.

OK or NG

OK >> GO TO 2.

NG >> Remove the foreign matter and clean the electric throttle control actuator inside.

2.replace electric throttle control actuator

- Replace the electric throttle control actuator.
- Perform EC-706, "Throttle Valve Closed Position Learning".

EC-1101 Revision: 2009 February 2008 M35/M45

EC

Α

Е

INFOID:0000000002955139

INFOID:0000000002955140

INFOID:0000000002955141

M

N

DTC P1226 TP SENSOR

< SERVICE INFORMATION >

[VK45DE]

3. Perform EC-707, "Idle Air Volume Learning".

>> INSPECTION END

Removal and Installation

INFOID:0000000002955142

ELECTRIC THROTTLE CONTROL ACTUATOR Refer to $\underline{\mathsf{EM-}177}$.

DTC P1421 COLD START CONTROL

[VK45DE] < SERVICE INFORMATION >

DTC P1421 COLD START CONTROL

Description INFOID:0000000003356537

ECM controls ignition timing and engine idle speed when engine is started with prewarming up condition. This control promotes the activation of three way catalyst by heating the catalyst and reduces emissions.

On Board Diagnosis Logic

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1421 1421	Cold start emission reduction strategy monitoring	ECM does not control ignition timing and engine idle speed properly when engine is started with prewarming up condition.	Lack of intake air volumeFuel injection systemECM

DTC Confirmation Procedure

NOTE:

- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
- If DTC P1421 is displayed with other DTC, first perform the trouble diagnosis for other DTC. **TESTING CONDITION:**

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

- (P) WITH CONSULT-III
- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-III. 3.
- Check that the "COOLAN TEMP/S" indication is between 4°C (39°F) and 36°C (97°F). If "COOLAN TEMP/S" indication is within the specified value, go to the following step. If "COOLAN TEMP/S" indication is out of the specified value, cool engine down or warm engine up and go to step 1.
- Start engine and let it idle for 5 minutes.
- Check 1st trip DTC.
- If 1st trip DTC is detected, go to EC-1103, "Diagnosis Procedure".

WITH GST

Follow the procedure "WITH CONSULT-III" above.

Diagnosis Procedure

${f 1}$.PERFORM IDLE AIR VOLUME LEARNING

Perform EC-82, "Idle Air Volume Learning".

Is Idle Air Volume Learning carried out successfully?

Yes or No

Yes >> GO TO 2.

>> Follow the instruction of Idle Air Volume Learning. No

2. CHECK INTAKE SYSTEM

Check for the cause of intake air volume lacking. Refer to the following.

- Crushed intake air passage
- Intake air passage clogging

OK or NG

OK >> GO TO 3.

NG >> Repair or replace malfunctioning part

3.check fuel injection system function

INFOID:0000000003356538

INFOID:0000000003356539

EC

Α

D

Е

Н

K

INFOID:0000000003356540

M

N

P

EC-1103 Revision: 2009 February

2008 M35/M45

DTC P1421 COLD START CONTROL

< SERVICE INFORMATION >

[VK45DE]

Perform EC-280. "DTC Confirmation Procedure" in DTC P0171, P0174 FUEL INJECTION SYSTEM FUNC-TION.

OK or NG

OK >> GO TO 4.

>> Go to EC-287, "Diagnosis Procedure". NG

4.PERFORM DTC CONFIRMATION PROCEDURE

(P) With CONSULT-III

- 1. Turn ignition switch ON.
- 2. Erase DTC.
- 3. Perform DTC Confirmation Procedure.

See EC-1103, "DTC Confirmation Procedure".

4. Is the 1st trip DTC P1421 displayed again?

Yes or No

Yes >> GO TO 5.

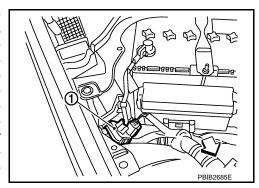
No >> INSPECTION END

5.REPLACE ECM

- 1. Replace ECM.
- 2. Perform initialization of IVIS (NATS) system and registration of all IVIS (NATS) ignition key IDs. Refer to BL-221, "ECM Re-Communicating Function".
- 3. Perform EC-81, "VIN Registration".
- Perform EC-82, "Accelerator Pedal Released Position Learning".
 Perform EC-82, "Throttle Valve Closed Position Learning".
- 6. Perform EC-82, "Idle Air Volume Learning".

>> INSPECTION END

INFOID:0000000002955143


INFOID:0000000002955144

INFOID:0000000002955145

DTC P1550 BATTERY CURRENT SENSOR

Component Description

The power generation voltage variable control enables fuel consumption to be decreased by reducing the engine load which is caused by the power generation of the generator. The battery current sensor (1) is installed to the battery cable at the negative terminal. The sensor measures the charging/discharging current of the battery. Based on the sensor signal, ECM judges whether or not the power generation voltage variable control is performed. When performing the power generation voltage variable control, ECM calculates the target power generation voltage based on the sensor signal. And ECM sends the calculated value as the power generation command value to IPDM E/R. For the details of the power generation voltage variable control, refer to SC section.

CAUTION:

Do not connect the electrical component or the ground wire directly to the battery terminal. The connection causes the malfunction of the power generation voltage variable control, and then the battery discharge may occur.

CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM

CONDITION

• Engine speed: Idle
• Battery: Fully charged*
• Selector lever: P or N
• Air conditioner switch: OFF
• No load

CONDITION

SPECIFICATION

Approx. 2,600 - 3,500mV

On Board Diagnosis Logic

The MIL will not light up for this diagnosis.

NOTE:

If DTC P1550 is displayed with DTC P0643, first perform the trouble diagnosis for DTC P0643. Refer to EC-1061, "DTC Confirmation Procedure".

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1550 1550	Battery current sensor circuit range/performance	The output voltage of the battery current sensor remains within the specified range while engine is running.	Harness or connectors (The sensor circuit is open or shorted.) Battery current sensor

DTC Confirmation Procedure

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 8V at idle.

- 1. Start engine and wait at least 10 seconds.
- 2. Check 1st trip DTC.
- 3. If 1st trip DTC is detected, go to EC-1107, "Diagnosis Procedure".

EC

Α

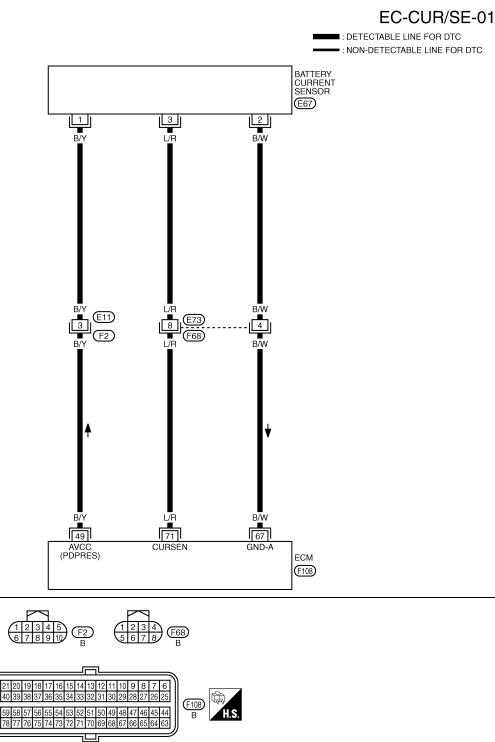
D

Е

G

I

Ν


0

Р

2008 M35/M45

^{*:} Before measuring the terminal voltage, confirm that the battery is fully charged. Refer to SC-4, "How to Handle Battery".

Wiring Diagram INFOID:0000000002955147

TBWT1064E

Specification data are reference values and are measured between each terminal and ground.

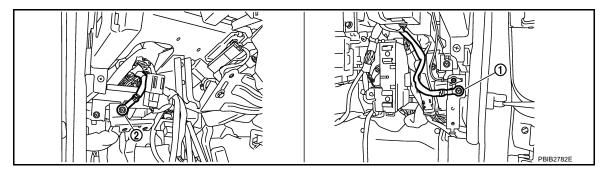
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

DTC P1550 BATTERY CURRENT SENSOR

< SERVICE INFORMATION >

[VK45DE]


TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
49	B/Y	Sensor power supply (Battery current sensor)	[Ignition switch: ON]	Approximately 5V
67	B/W	Sensor ground (Battery current sensor)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
71	L/R	Battery current sensor	[Engine is running] • Battery: Fully charged* • Idle speed	Approximately 2.6 - 3.5V

^{*:} Before measuring the terminal voltage, confirm that the battery is fully charged. Refer to SC-4, "How to Handle Battery".

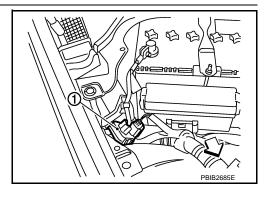
Diagnosis Procedure

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten ground screws on the body. Refer to <u>EC-769</u>, "Ground Inspection".

1. Body ground M70

2. Body ground M16


OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. CHECK BATTERY CURRENT SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect battery current sensor (1) harness connector.
- Turn ignition switch ON.

EC

Α

D

Е

INFOID:0000000002955148

G

Н

K

M

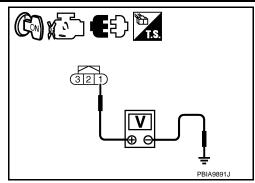
Ν

0

Ρ

DTC P1550 BATTERY CURRENT SENSOR

< SERVICE INFORMATION >


[VK45DE]

Check voltage between battery current sensor terminal 1 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E11, F2
- Harness for open or short between battery current sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK BATTERY CURRENT SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check harness continuity between battery current sensor terminal 2 and ECM terminal 67. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E73, F68
- Harness for open or short between battery current sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

6.CHECK BATTERY CURRENT SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between battery current sensor terminal 3 and ECM terminal 71. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E73, F68
- Harness for open or short between battery current sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK BATTERY CURRENT SENSOR

Refer to EC-1109, "Component Inspection".

Revision: 2009 February **EC-1108** 2008 M35/M45

DTC P1550 BATTERY CURRENT SENSOR

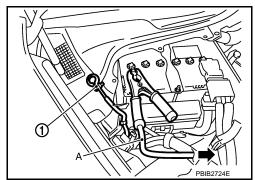
< SERVICE INFORMATION > [VK45DE]

OK or NG

OK >> GO TO 9.

NG >> Replace battery negative cable assembly.

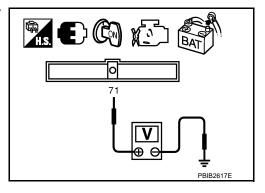
9. CHECK INTERMITTENT INCIDENT


Refer to EC-763, "Diagnosis Procedure".

>> INSPECTION END

Component Inspection

BATTERY CURRENT SENSOR


- 1. Reconnect harness connectors disconnected.
- 2. Disconnect battery negative cable (1).
 - **-**: To body ground
- 3. Install jumper cable A between battery negative terminal and body ground.
- Turn ignition switch ON.

Check voltage between ECM terminal 71 (battery current sensor signal) and ground.

Voltage: Approximately 2.5V

6. If NG, replace battery negative cable assembly.

EC

D

Е

F

Н

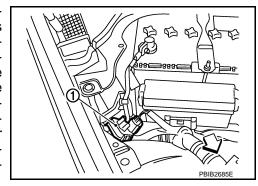
INFOID:0000000002955149

Α

M

K

Ν


0

INFOID:0000000002955150

DTC P1551, P1552 BATTERY CURRENT SENSOR

Component Description

The power generation voltage variable control enables fuel consumption to be decreased by reducing the engine load which is caused by the power generation of the generator. The battery current sensor (1) is installed to the battery cable at the negative terminal. The sensor measures the charging/discharging current of the battery. Based on the sensor signal, ECM judges whether or not the power generation voltage variable control is performed. When performing the power generation voltage variable control, ECM calculates the target power generation voltage based on the sensor signal. And ECM sends the calculated value as the power generation command value to IPDM E/R. For the details of the power generation voltage variable control, refer to SC section.

CAUTION:

Do not connect the electrical component or the ground wire directly to the battery terminal. The connection causes the malfunction of the power generation voltage variable control, and then the battery discharge may occur.

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002955151

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
BAT CUR SEN	 Engine speed: Idle Battery: Fully charged* Selector lever: P or N Air conditioner switch: OFF No load 	Approx. 2,600 - 3,500mV

^{*:} Before measuring the terminal voltage, confirm that the battery is fully charged. Refer to SC-4, "How to Handle Battery".

On Board Diagnosis Logic

INFOID:0000000002955152

The MIL will not light up for thes diagnoses.

NOTE:

If DTC P1551 or P1552 is displayed with DTC P0643, first perform the trouble diagnosis for DTC P0643. Refer to EC-1061, "DTC Confirmation Procedure".

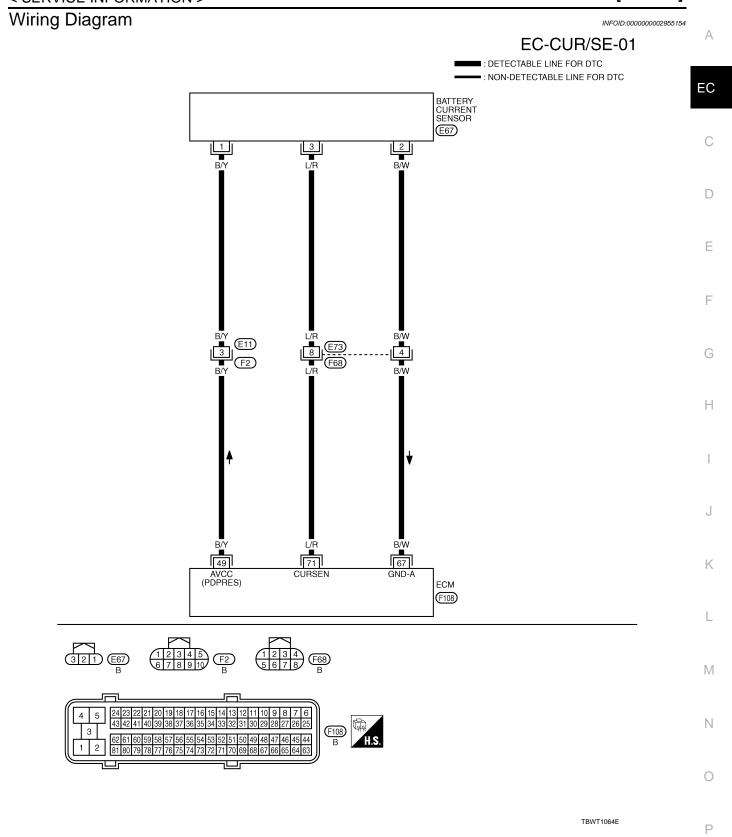
DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1551 1551	Battery current sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)
P1552 1552	Battery current sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	Battery current sensor

DTC Confirmation Procedure

INFOID:0000000002955153

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:


Before performing the following procedure, confirm that battery voltage is more than 8V with ignition switch ON

- 1. Turn ignition switch ON and wait at least 10 seconds.
- Check 1st trip DTC.
- If 1st trip DTC is detected, go to EC-1112, "Diagnosis Procedure".

DTC P1551, P1552 BATTERY CURRENT SENSOR

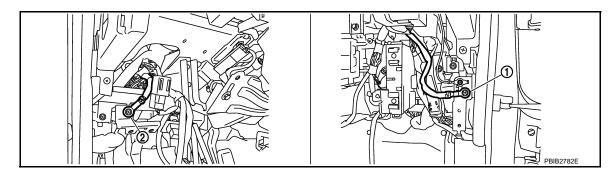
< SERVICE INFORMATION >

[VK45DE]

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
49	В/Ү	Sensor power supply (Battery current sensor)	[Ignition switch: ON]	Approximately 5V
67	B/W	Sensor ground (Battery current sensorr)	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
71	L/R	Battery current sensor	[Engine is running] • Battery: Fully charged* • Idle speed	Approximately 2.6 - 3.5V


^{*:} Before measuring the terminal voltage, confirm that the battery is fully charged. Refer to SC-4, "How to Handle Battery".

Diagnosis Procedure

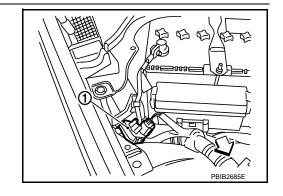
INFOID:0000000002955155

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten ground screws on the body. Refer to <u>EC-769</u>, "Ground Inspection".

1. Body ground M70

2. Body ground M16


OK or NG

OK >> GO TO 2.

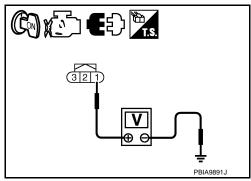
NG >> Repair or replace ground connections.

2. CHECK BATTERY CURRENT SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect battery current sensor (1) harness connector.
- 2. Turn ignition switch ON.

DTC P1551, P1552 BATTERY CURRENT SENSOR

< SERVICE INFORMATION >


[VK45DE]

Check voltage between battery current sensor terminal 1 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E11, F2
- Harness for open or short between battery current sensor and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

f 4.CHECK BATTERY CURRENT SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between battery current sensor terminal 2 and ECM terminal 67. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

${f 5.}$ DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E73, F68
- Harness for open or short between battery current sensor and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

$oldsymbol{6}$.CHECK BATTERY CURRENT SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Check harness continuity between battery current sensor terminal 3 and ECM terminal 71. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E73, F68
- Harness for open or short between battery current sensor and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

8.CHECK BATTERY CURRENT SENSOR

Refer to EC-1114, "Component Inspection".

EC-1113 Revision: 2009 February 2008 M35/M45

Α

EC

D

Е

F

Н

N

DTC P1551, P1552 BATTERY CURRENT SENSOR

< SERVICE INFORMATION >

OK or NG

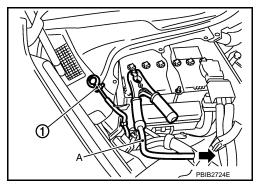
OK >> GO TO 9.

NG >> Replace battery negative cable assembly.

9. CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

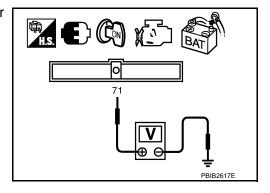
>> INSPECTION END


Component Inspection

INFOID:0000000002955156

[VK45DE]

BATTERY CURRENT SENSOR


- 1. Reconnect harness connectors disconnected.
- 2. Disconnect battery negative cable (1).
 - 🖛: To body ground
- 3. Install jumper cable A between battery negative terminal and body ground.
- 4. Turn ignition switch ON.

Check voltage between ECM terminal 71 (battery current sensor signal) and ground.

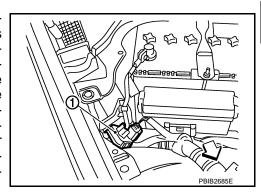
Voltage: Approximately 2.5V

6. If NG, replace battery negative cable assembly.

INFOID:0000000002955157

INFOID:0000000002955158

INFOID:0000000002955159


INFOID:0000000002955160

2008 M35/M45

DTC P1553 BATTERY CURRENT SENSOR

Component Description

The power generation voltage variable control enables fuel consumption to be decreased by reducing the engine load which is caused by the power generation of the generator. The battery current sensor (1) is installed to the battery cable at the negative terminal. The sensor measures the charging/discharging current of the battery. Based on the sensor signal, ECM judges whether or not the power generation voltage variable control is performed. When performing the power generation voltage variable control, ECM calculates the target power generation voltage based on the sensor signal. And ECM sends the calculated value as the power generation command value to IPDM E/R. For the details of the power generation voltage variable control, refer to SC section.

CAUTION:

Do not connect the electrical component or the ground wire directly to the battery terminal. The connection causes the malfunction of the power generation voltage variable control, and then the battery discharge may occur.

CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
BAT CUR SEN	 Engine speed: Idle Battery: Fully charged* Selector lever: P or N Air conditioner switch: OFF No load 	Approx. 2,600 - 3,500mV

^{*:} Before measuring the terminal voltage, confirm that the battery is fully charged. Refer to SC-4, "How to Handle Battery".

On Board Diagnosis Logic

The MIL will not light up for this diagnosis.

NOTE:

If DTC P1553 is displayed with DTC P0643, first perform the trouble diagnosis for DTC P0643. Refer to EC-1061, "DTC Confirmation Procedure".

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1553 1553	Battery current sensor performance	The signal voltage transmitted from the sensor to ECM is higher than the amount of the maximum power generation.	 Harness or connectors (The sensor circuit is open or shorted.) Battery current sensor

DTC Confirmation Procedure

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 8V at idle.

- 1. Start engine and wait at least 10 seconds.
- Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-1117</u>, "<u>Diagnosis Procedure</u>".

EC

Α

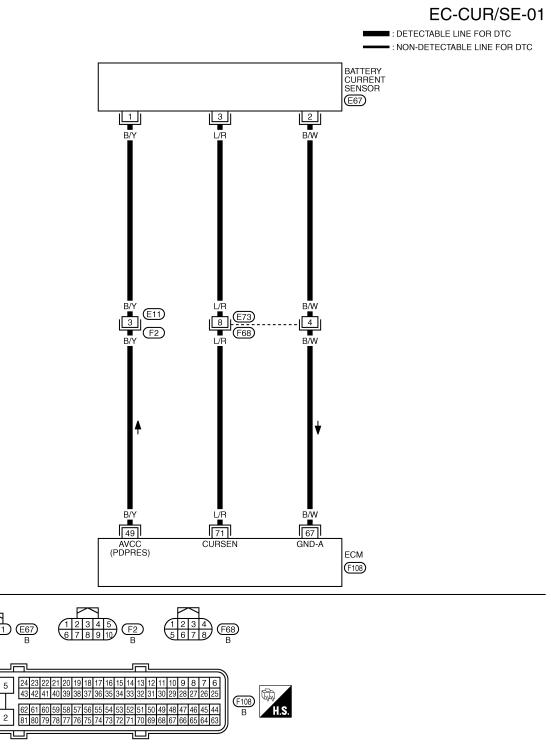
0

Е

D

F

Н


K

L

N

C

Wiring Diagram

TBWT1064E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

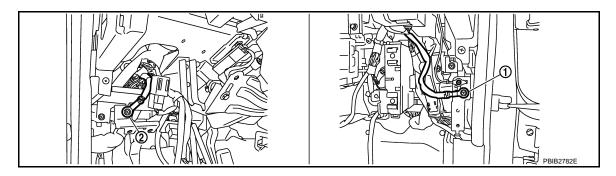
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

< SERVICE INFORMATION >

[VK45DE]

INFOID:0000000002955162

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
49	B/Y	Sensor power supply (Battery current sensor)	[Ignition switch: ON]	Approximately 5V
67	B/W	Sensor ground (Battery current sensor)	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
71	L/R	Battery current sensor	[Engine is running] • Battery: Fully charged* • Idle speed	Approximately 2.6 - 3.5V


^{*:} Before measuring the terminal voltage, confirm that the battery is fully charged. Refer to SC-4, "How to Handle Battery".

Diagnosis Procedure

1. CHECK GROUND CONNECTIONS

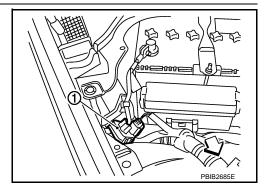
1. Turn ignition switch OFF.

2. Loosen and retighten ground screws on the body. Refer to <u>EC-769</u>, "<u>Ground Inspection</u>".

EC-1117

1. Body ground M70

2. Body ground M16


OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. CHECK BATTERY CURRENT SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect battery current sensor (1) harness connector.
- Turn ignition switch ON.

EC

Α

D

Е

G

Н

.1

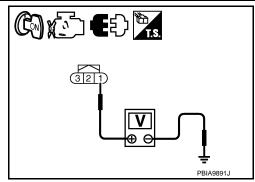
K

M

Ν

0

< SERVICE INFORMATION >


[VK45DE]

Check voltage between battery current sensor terminal 1 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E11, F2
- Harness for open or short between battery current sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK BATTERY CURRENT SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between battery current sensor terminal 2 and ECM terminal 67. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E73, F68
- Harness for open or short between battery current sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK BATTERY CURRENT SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between battery current sensor terminal 3 and ECM terminal 71. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E73, F68
- Harness for open or short between battery current sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK BATTERY CURRENT SENSOR

Refer to EC-1119, "Component Inspection".

Revision: 2009 February **EC-1118** 2008 M35/M45

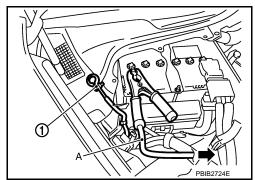
< SERVICE INFORMATION > [VK45DE]

OK or NG

OK >> GO TO 9.

NG >> Replace battery negative cable assembly.

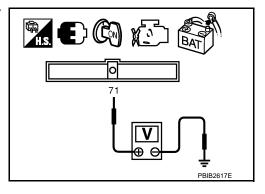
9. CHECK INTERMITTENT INCIDENT


Refer to EC-763, "Diagnosis Procedure".

>> INSPECTION END

Component Inspection

BATTERY CURRENT SENSOR


- 1. Reconnect harness connectors disconnected.
- 2. Disconnect battery negative cable (1).
 - ←: To body ground
- Install jumper cable A between battery negative terminal and body ground.
- 4. Turn ignition switch ON.

Check voltage between ECM terminal 71 (battery current sensor signal) and ground.

Voltage: Approximately 2.5V

6. If NG, replace battery negative cable assembly.

EC

D

Е

F

Н

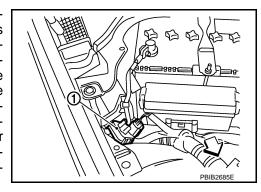
INFOID:0000000002955163

Α

K

M

Ν


0

INFOID:0000000002955164

DTC P1554 BATTERY CURRENT SENSOR

Component Description

The power generation voltage variable control enables fuel consumption to be decreased by reducing the engine load which is caused by the power generation of the generator. The battery current sensor (1) is installed to the battery cable at the negative terminal. The sensor measures the charging/discharging current of the battery. Based on the sensor signal, ECM judges whether or not the power generation voltage variable control is performed. When performing the power generation voltage variable control, ECM calculates the target power generation voltage based on the sensor signal. And ECM sends the calculated value as the power generation command value to IPDM E/R. For the details of the power generation voltage variable control, refer to SC section.

CAUTION:

Do not connect the electrical component or the ground wire directly to the battery terminal. The connection causes the malfunction of the power generation voltage variable control, and then the battery discharge may occur.

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002955165

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
BAT CUR SEN	 Engine speed: Idle Battery: Fully charged* Selector lever: P or N Air conditioner switch: OFF No load 	Approx. 2,600 - 3,500mV

^{*:} Before measuring the terminal voltage, confirm that the battery is fully charged. Refer to SC-4, "How to Handle Battery".

On Board Diagnosis Logic

INFOID:0000000002955166

The MIL will not light up for this diagnosis.

NOTE:

If DTC P1554 is displayed with DTC P0643, first perform the trouble diagnosis for DTC P0643. Refer to EC-1061, "DTC Confirmation Procedure".

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1554 1554	Battery current sensor performance	The output voltage of the battery current sensor is lower than the specified value while the battery voltage is high enough.	(The sensor circuit is open or shorted.)

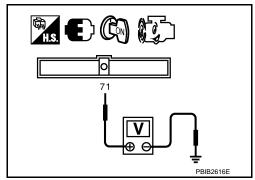
Overall Function Check

INFOID:0000000002955167

Use this procedure to check the overall function of the battery current sensor circuit. During this check, a 1st trip DTC might not be confirmed.

TESTING CONDITION:

- Before performing the following procedure, confirm that battery voltage is more than 12.8V at idle.
- Before performing the following procedure, confirm that all load switches and A/C switch are turned OFF.


(P) WITH CONSULT-III

- 1. Start engine and let it idle.
- Select "BAT CUR SEN" in "DATA MONITOR" mode with CONSULT-III.
- Check "BAT CUR SEN" indication for 10 seconds.
 "BAT CUR SEN" should be above 2,300mV at least once.
- If NG, go to EC-1123, "Diagnosis Procedure".

< SERVICE INFORMATION > [VK45DE]

WITH GST

- 1. Start engine and let it idle.
- Check voltage between ECM terminal 71 (battery current sensor signal) and ground for 10 seconds.
 - The voltage should be above 2.3V at least once.
- 3. If NG, go to EC-1123, "Diagnosis Procedure".

EC

Α

С

D

Е

G

F

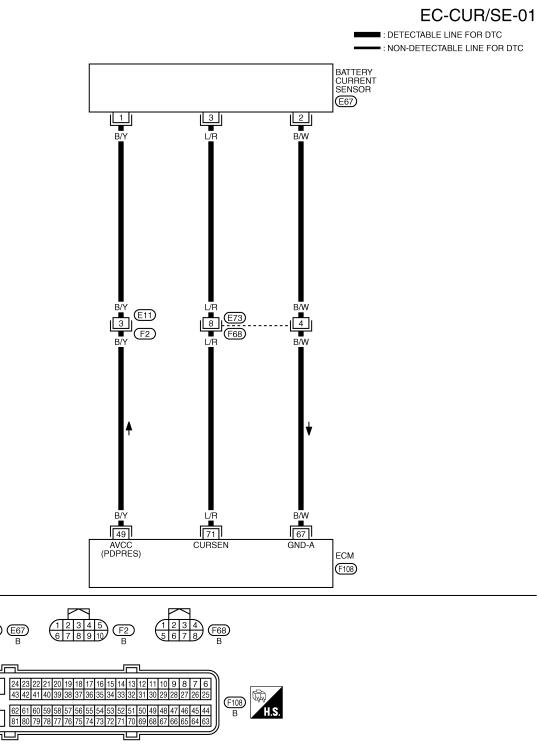
Н

ı

J

Κ

L


M

Ν

0

[VK45DE]

Wiring Diagram INFOID:0000000002955168

TBWT1064E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

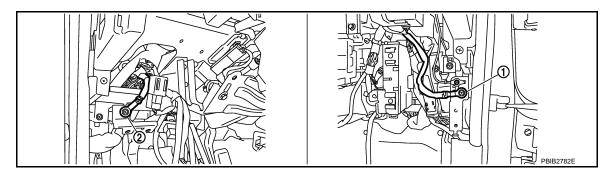
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

< SERVICE INFORMATION >

[VK45DE]

INFOID:0000000002955169

TER- MI- NAL	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
NO.				
49	B/Y	Sensor power supply (Battery current sensor)	[Ignition switch: ON]	Approximately 5V
67	B/W	Sensor ground (Battery current sensor)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
71	L/R	Battery current sensor	[Engine is running] • Battery: Fully charged* • Idle speed	Approximately 2.6 - 3.5V


^{*:} Before measuring the terminal voltage, confirm that the battery is fully charged. Refer to SC-4, "How to Handle Battery".

Diagnosis Procedure

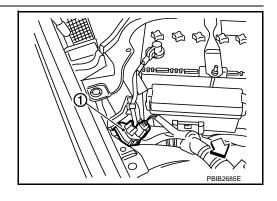
1. CHECK GROUND CONNECTIONS

1. Turn ignition switch OFF.

2. Loosen and retighten ground screws on the body. Refer to <u>EC-769</u>, "<u>Ground Inspection</u>".

1. Body ground M70

2. Body ground M16


OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. CHECK BATTERY CURRENT SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect battery current sensor (1) harness connector.
- Turn ignition switch ON.

EC

Α

C

D

Е

_

.1

K

M

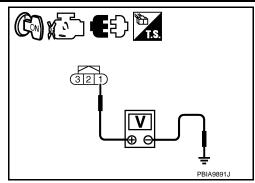
N

Р

2008 M35/M45

< SERVICE INFORMATION >

[VK45DE]


2008 M35/M45

Check voltage between battery current sensor terminal 1 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E11, F2
- Harness for open or short between battery current sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK BATTERY CURRENT SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between battery current sensor terminal 2 and ECM terminal 67. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E73, F68
- Harness for open or short between battery current sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK BATTERY CURRENT SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between battery current sensor terminal 3 and ECM terminal 71. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E73, F68
- Harness for open or short between battery current sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK BATTERY CURRENT SENSOR

Refer to EC-1125, "Component Inspection".

Revision: 2009 February EC-1124

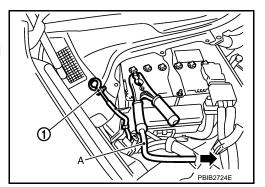
< SERVICE INFORMATION > [VK45DE]

OK or NG

OK >> GO TO 9.

NG >> Replace battery negative cable assembly.

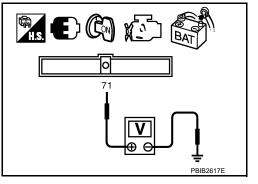
9. CHECK INTERMITTENT INCIDENT


Refer to EC-763, "Diagnosis Procedure".

>> INSPECTION END

Component Inspection

BATTERY CURRENT SENSOR


- 1. Reconnect harness connectors disconnected.
- 2. Disconnect battery negative cable (1).
 - ←: To body ground
- Install jumper cable A between battery negative terminal and body ground.
- 4. Turn ignition switch ON.

Check voltage between ECM terminal 71 (battery current sensor signal) and ground.

Voltage: Approximately 2.5V

6. If NG, replace battery negative cable assembly.

EC

D

Е

F

INFOID:0000000002955170

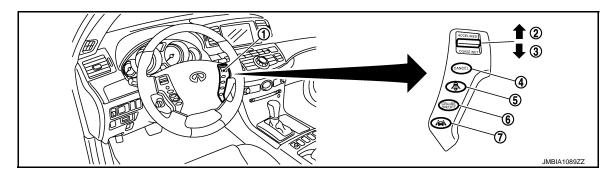
Α

Н

K

M

Ν


0

DTC P1564 ICC STEERING SWITCH

Component Description

INFOID:0000000002955171

ICC steering switch has variant values of electrical resistance for each button. ECM reads voltage variation of switch, and determines which button is operated. Refer to ACS-9 for the ICC function.

- 1. ASCD steering switch
- 4. CANCEL switch
- 7. LDP ON switch

- 2. RESUME/ACCELERATE switch
- 5. DISTANCE switch
- 3. SET/COAST switch
- 6. MAIN switch

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002955172

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION	
MAIN SW	a Ignition quitable ON	MAIN switch: Pressed	ON	
IVIAIN 5VV	Ignition switch: ON	MAIN switch: Released	OFF	
CANCEL SW	a Ignition quitable ONI	CANCEL switch: Pressed	ON	
CANCEL SW	Ignition switch: ON	CANCEL switch: Released	OFF	
DECLINE A CC CW	a legition quitable ON	RESUME/ACCELERATE switch: Pressed	ON	
RESUME/ACC SW	Ignition switch: ON	RESUME/ACCELERATE switch: Released	OFF	
SET SW	• Ignition quitable ON	SET/COAST switch: Pressed	ON	
SELSW	Ignition switch: ON	SET/COAST switch: Released	OFF	
DIST SW	• Ignition quitable ON	DISTANCE switch: Pressed	ON	
DIST SW	Ignition switch: ON	DISTANCE switch: Released	OFF	

On Board Diagnosis Logic

INFOID:0000000002955173

This self-diagnosis has the one trip detection logic.

The MIL will not light up for this diagnosis.

NOTE:

If DTC P1564 is displayed with DTC P0605, first perform the trouble diagnosis for DTC P0605. Refer to <u>EC-1059</u>, "<u>DTC Confirmation Procedure"</u>.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1564 1564	ICC steering switch	 An excessively high voltage signal from the ICC steering switch is sent to ECM. ECM detects that input signal from the ICC steering switch is out of the specified range. ECM detects that the ICC steering switch is stuck ON. 	Harness or connectors (The switch circuit is open or shorted.) ICC steering switch ECM

DTC P1564 ICC STEERING SWITCH

< SERVICE INFORMATION >

[VK45DE]

DTC Confirmation Procedure

INFOID:0000000002955174

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

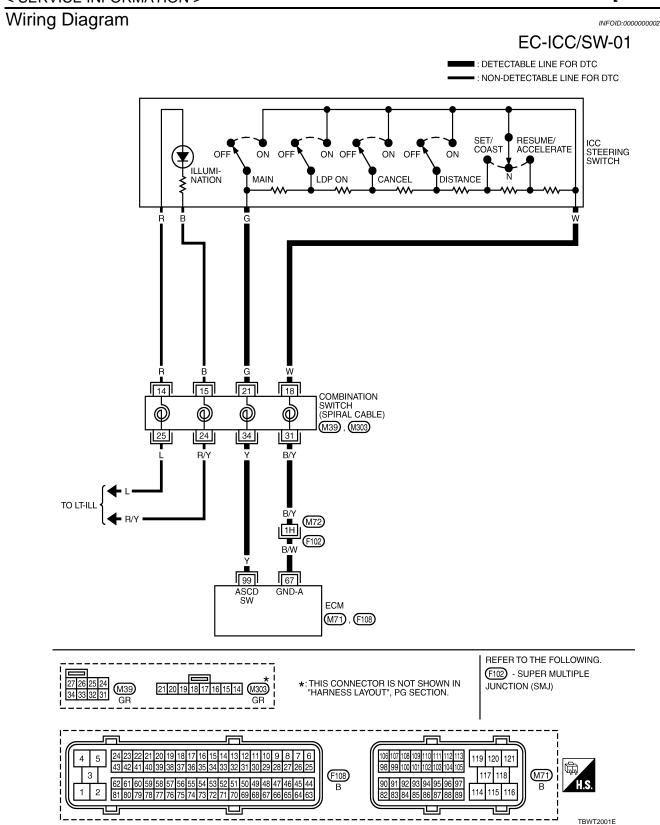
- Turn ignition switch ON and wait at least 10 seconds.
- 2. Press MAIN switch for at least 10 seconds, then release it and wait at least 10 seconds.
- Press CANCEL switch for at least 10 seconds, then release it and wait at least 10 seconds.
- Press RESUME/ACCELERATE switch for at least 10 seconds, then release it and wait at least 10 seconds.
- 5. Press SET/COAST switch for at least 10 seconds, then release it and wait at least 10 seconds.
- Press DISTANCE switch for at least 10 seconds, then release it and wait at least 10 seconds.
- 7. Press LDP ON switch for at least 10 seconds, then release it and wait at least 10 seconds.
- Check DTC.
- If DTC is detected, go to EC-1129, "Diagnosis Procedure".

EC

Α

D

Е


F

Н

K

L

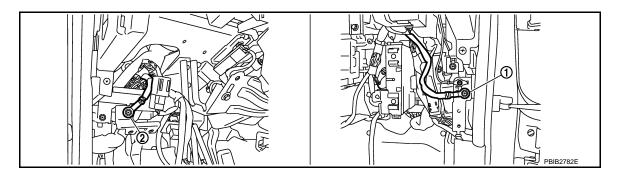
Ν

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

DTC P1564 ICC STEERING SWITCH

< SERVICE INFORMATION >


[VK45DE]

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
67	B/W	Sensor ground (ICC steering switch)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
		Y ICC steering switch	[Ignition switch: ON] • ICC steering switch: OFF	Approximately 4.3V
	Υ		[Ignition switch: ON] • MAIN switch: Pressed	Approximately 0V
			[Ignition switch: ON] • CANCEL switch: Pressed	Approximately 1.9V
99			[Ignition switch: ON] • RESUME/ACCELERATE switch: Pressed	Approximately 3.8V
			[Ignition switch: ON] • SET/COAST switch: Pressed	Approximately 3.3V
			[Ignition switch: ON] • DISTANCE switch: Pressed	Approximately 2.6V
			[Ignition switch: ON] • LDP ON switch: Pressed	Approximately 1.1V

Diagnosis Procedure

1. CHECK GROUND CONNECTIONS

- Turn ignition switch OFF.
- Loosen and retighten ground screws on the body. Refer to EC-769, "Ground Inspection".

1. Body ground M70

2. Body ground M16

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. CHECK ICC STEERING SWITCH CIRCUIT

1. Turn ignition switch ON.

EC

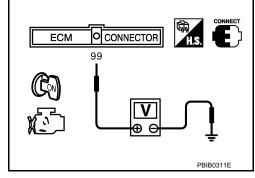
Α

D

Е

F

INFOID:0000000002955176


M

Ν

< SERVICE INFORMATION >

Check voltage between ECM terminal 99 and ground with pressing each button.

Switch	Condition	Voltage [V]
MAIN switch	Pressed	Approx. 0
WAIN SWILCH	Released	Approx. 4.3
CANCEL switch	Pressed	Approx. 1.9
CANCEL SWILCH	Released	Approx. 4.3
RESUME/ACCELERATE	Pressed	Approx. 3.8
switch	Released	Approx. 4.3
SET/COAST switch	Pressed	Approx. 3.3
SET/COAST SWIICH	Released	Approx. 4.3
DISTANCE switch	Pressed	Approx. 2.6
DISTANCE SWILLI	Released	Approx. 4.3
LDP ON switch	Pressed	Approx. 1.1
LDF ON SWILCH	Released	Approx. 4.3

OK or NG

OK >> GO TO 8. NG >> GO TO 3.

3.check icc steering switch ground circuit for open and short

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Disconnect combination switch harness connector M303.
- Check harness continuity between combination switch terminal 18 and ECM terminal 67. Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M72, F102
- Combination switch (spiral cable)
- · Harness for open and short between ECM and combination switch

>> Repair open circuit or short to ground or short to power in harness or connectors.

5.check icc steering switch input signal circuit for open and short

 Check harness continuity between ECM terminal 99 and combination switch terminal 21. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

DTC P1564 ICC STEERING SWITCH

< SERVICE INFORMATION >

- Combination switch (spiral cable)
- · Harness for open and short between ECM and combination switch

>> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK ICC STEERING SWITCH

Refer to EC-1131, "Component Inspection".

OK or NG

OK >> GO TO 8.

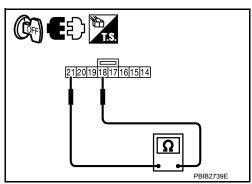
NG >> Replace ICC steering switch.

8. CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

>> INSPECTION END

Component Inspection


ICC STEERING SWITCH

1. Disconnect combination switch (spiral cable) harness connector M303.

2. Check continuity between combination switch terminals 18 and 21 with pushing each switch.

Switch	Condition	Resistance $[\Omega]$
MAIN switch	Pressed	Approx. 0
WAIN SWILCH	Released	Approx. 5,410
CANCEL switch	Pressed	Approx. 610
CANCEL SWIICH	Released	Approx. 5,410
RESUME/ACCELERATE	Pressed	Approx. 3,000
switch	Released	Approx. 5,410
SET/COAST switch	Pressed	Approx. 1,800
SET/COAST SWIICH	Released	Approx. 5,410
DISTANCE switch	Pressed	Approx. 1090
DISTANCE SWILLI	Released	Approx. 5,410
LDP ON switch	Pressed	Approx. 270
LDF ON SWILCH	Released	Approx. 5,410

If NG, replace ICC steering switch.

EC

Α

[VK45DE]

INFOID:0000000002955177

Е

D

F

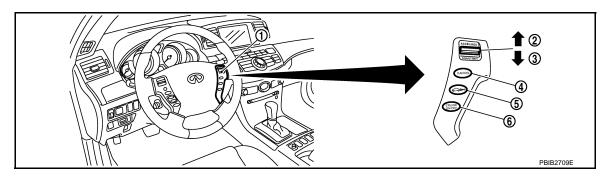
Н

.

Κ

Ν

0


INFOID:0000000002955178

DTC P1564 ASCD STEERING SWITCH

Component Description

ASCD steering switch has variant values of electrical resistance for each button. ECM reads voltage variation of switch, and determines which button is operated.

Refer to EC-659, "System Description" for the ASCD function.

- 1. ASCD steering switch
- 2. RESUME/ACCELERATE switch
- 3. SET/COAST switch

4. CANCEL switch

5. DISTANCE switch (Models with ICC) 6. MAIN switch

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002955179

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
MAIN SW	• Ignition quitable ON	MAIN switch: Pressed	ON
MAIN SW	Ignition switch: ON	MAIN switch: Released	OFF
CANCEL SW	Ignition switch: ON	CANCEL switch: Pressed	ON
CANCEL 3W	Igrillion Switch. On	CANCEL switch: Released	OFF
RESUME/ACC SW	Ignition switch: ON	RESUME/ACCELERATE switch: Pressed	ON
RESUME/ACC SW	• Igrition switch. ON	RESUME/ACCELERATE switch: Released	OFF
SET SW	Ignition switch: ON	SET/COAST switch: Pressed	ON
SL I SVV	• Igrillion Switch. ON	SET/COAST switch: Released	OFF

On Board Diagnosis Logic

INFOID:0000000002955180

This self-diagnosis has the one trip detection logic.

The MIL will not light up for this diagnosis.

NOTE:

If DTC P1564 is displayed with DTC P0605, first perform the trouble diagnosis for DTC P0605. Refer to EC-1059, "DTC Confirmation Procedure".

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1564 1564	ASCD steering switch	 An excessively high voltage signal from the ASCD steering switch is sent to ECM. ECM detects that input signal from the ASCD steering switch is out of the specified range. ECM detects that the ASCD steering switch is stuck ON. 	Harness or connectors (The switch circuit is open or shorted.) ASCD steering switch ECM

DTC Confirmation Procedure

INFOID:0000000002955181

NOTE:

DTC P1564 ASCD STEERING SWITCH

< SERVICE INFORMATION >

[VK45DE]

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

- 1. Turn ignition switch ON and wait at least 10 seconds.
- 2. Press MAIN switch for at least 10 seconds, then release it and wait at least 10 seconds.
- 3. Press CANCEL switch for at least 10 seconds, then release it and wait at least 10 seconds.
- Press RESUME/ACCELERATE switch for at least 10 seconds, then release it and wait at least 10 seconds.
- 5. Press SET/COAST switch for at least 10 seconds, then release it and wait at least 10 seconds.
- 6. Check DTC.
- 7. If DTC is detected, go to EC-1135, "Diagnosis Procedure".

EC

Α

С

D

F

Е

G

Н

J

K

M

L

N

0

2

< SERVICE INFORMATION > Wiring Diagram INFOID:0000000002955182 EC-ASC/SW-01 : DETECTABLE LINE FOR DTC : NON-DETECTABLE LINE FOR DTC SET/ COAST RESUME/ ACCELERATE ASCD STEERING SWITCH ON ON OF ILLUMI-CANCEL MAIN NATION COMBINATION SWITCH (SPIRAL CABLE) (M39), (M303) TO LT-ILL 99 67 ASCD SW GND-A ECM M71), (F108) REFER TO THE FOLLOWING. (F102) - SUPER MULTIPLE *: THIS CONNECTOR IS NOT SHOWN IN "HARNESS LAYOUT", PG SECTION. JUNCTION (SMJ) (M303) GR 120 121

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

(F108)

В

M71)

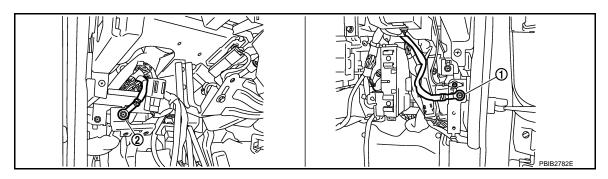
TBWT2002E

DTC P1564 ASCD STEERING SWITCH

< SERVICE INFORMATION >

[VK45DE]

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
67	B/W	Sensor ground (ASCD steering switch	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
	Y	Y ASCD steering switch	[Ignition switch: ON] • ASCD steering switch: OFF	Approximately 4V
			[Ignition switch: ON] • MAIN switch: Pressed	Approximately 0V
99			[Ignition switch: ON] • CANCEL switch: Pressed	Approximately 1V
			[Ignition switch: ON] • RESUME/ACCELERATE switch: Pressed	Approximately 3V
			[Ignition switch: ON] • SET/COAST switch: Pressed	Approximately 2V


Diagnosis Procedure

INFOID:0000000002955183

1. CHECK GROUND CONNECTIONS

Turn ignition switch OFF.

Loosen and retighten ground screws on the body. 2. Refer to EC-769, "Ground Inspection".

1. Body ground M70

2. Body ground M16

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK ASCD STEERING SWITCH CIRCUIT

(P) With CONSULT-III

Turn ignition switch ON.

Select "MAIN SW", "CANCEL SW", "RESUME/ACC SW" and "SET SW" in "DATA MONITOR" mode with CONSULT-III.

Check each item indication under the following conditions.

Switch	Monitor item	Condition	Indication
MAIN switch	MAIN SW	Pressed	ON
WAIN SWILCH	WAIN SW	Released	OFF
CANCEL switch	CANCEL SW	Pressed	ON
CANOLL SWILLI	OANOLL SW	Released	OFF

EC-1135 Revision: 2009 February 2008 M35/M45

Α

D

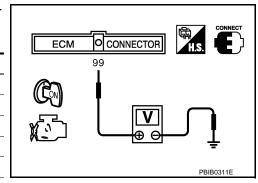
Е

F

Н

M

Ν


< SERVICE INFORMATION >

Switch	Monitor item	Condition	Indication
RESUME/ACCELERATE switch RESUME/ACC SW -		Pressed	ON
		Released	OFF
SET/COAST switch	SET SW	Pressed (
SET/OUAST SWITCH	OLI OW	Released	OFF

(X) Without CONSULT-III

- 1. Turn ignition switch ON.
- Check voltage between ECM terminal 99 and ground with pressing each button.

Switch	Condition	Voltage [V]
MAIN switch	Pressed	Approx. 0
MAIN SWILCH	Released	Approx. 4
CANCEL switch	Pressed	Approx. 1
CANCEL SWITCH	Released	Approx. 4
RESUME/ACCELERATE	Pressed	Approx. 3
switch	Released	Approx. 4
SET/COAST switch	Pressed	Approx. 2
OL 1/OOAOT SWIICH	Released	Approx. 4

OK or NG

OK >> GO TO 8. NG >> GO TO 3.

${f 3.}$ CHECK ASCD STEERING SWITCH GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Disconnect combination switch harness connector M303.
- Check harness continuity between combination switch terminal 18 and ECM terminal 67. Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M72, F102
- Combination switch (spiral cable)
- · Harness for open and short between ECM and combination switch

>> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK ASCD STEERING SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal 99 and combination switch terminal 21. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

DTC P1564 ASCD STEERING SWITCH

< SERVICE INFORMATION > [VK45DE]

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Combination switch (spiral cable)
- · Harness for open and short between ECM and combination switch

>> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK ASCD STEERING SWITCH

Refer to EC-1137, "Component Inspection".

OK or NG

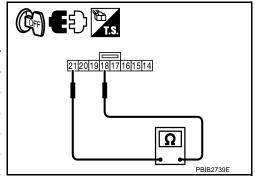
OK >> GO TO 8.

NG >> Replace ASCD steering switch.

8. CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

>> INSPECTION END


Component Inspection

ASCD STEERING SWITCH

1. Disconnect combination switch (spiral cable) harness connector M303.

Check continuity between combination switch terminals 18 and 21 with pushing each switch.

Switch	Condition	Resistance [Ω]
MAIN switch	Pressed	Approx. 0
WAIN SWILCH	Released	Approx. 4,000
CANCEL switch	Pressed	Approx. 250
CANCEL SWILLI	Released	Approx. 4,000
RESUME/ACCELERATE	Pressed	Approx. 1,480
switch	Released	Approx. 4,000
SET/COAST switch	Pressed	Approx. 660
3L1/COA31 SWIICH	Released	Approx. 4,000

EC

Α

Е

D

F

INFOID:0000000002955184

Н

J

1 \

M

Ν

Ρ

[VK45DE]

DTC P1568 ICC FUNCTION

On Board Diagnosis Logic

INFOID:0000000002955185

This self-diagnosis has the one trip detection logic.

The MIL will not light up for this diagnosis.

NOTE:

- If DTC P1568 is displayed with DTC U1000 or U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-770, "DTC Confirmation Procedure".
- If DTC P1568 is displayed with DTC U1010, first perform the trouble diagnosis for DTC U1010. Refer to <u>EC-772</u>, "<u>DTC Confirmation Procedure</u>".
- If DTC P1568 is displayed with DTC P0605, first perform the trouble diagnosis for DTC P0605. Refer to EC-1059, "DTC Confirmation Procedure".

DTC No.	Trouble Diagnosis Name	DTC Detecting Condition	Possible Cause
P1568 1568	ICC function	ECM detects a difference between signals from ICC unit is out of specified range.	Harness or connectors (The CAN communication line is open or shorted.) ICC sensor integrated unit ECM

DTC Confirmation Procedure

INFOID:0000000002955186

CAUTION:

Always drive vehicle at a safe speed.

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Step 4 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

- Turn ignition switch ON.
- 2. Press MAIN switch on ICC steering switch.
- 3. Drive the vehicle at more than 40 km/h (25 MPH).
- 4. Press SET/COAST switch.
- 5. Check DTC.
- If DTC is detected, go to <u>EC-1138</u>. "<u>Diagnosis Procedure</u>".

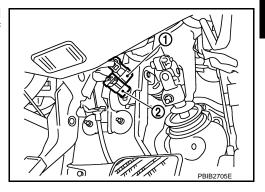
Diagnosis Procedure

INFOID:0000000002955187

1. REPLACE ICC SENSOR INTEGRATED UNIT

- 1. Replace ICC sensor integrated unit.
- Perform ACS-14.
- Check DTC of ICC sensor integrated unit. Refer to <u>ACS-40</u>.

>> INSPECTION END


[VK45DE]

INFOID:0000000002955188

DTC P1572 ICC BRAKE SWITCH

Component Description

When the brake pedal is depressed, ICC brake switch (2) is turned OFF and stop lamp switch (1) is turned ON. ECM detects the state of the brake pedal by this input of two kinds (ON/OFF signal). Refer to ACS-9 for the ICC function.

CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
BRAKE SW1	Ignition switch: ON	Brake pedal: Fully released	ON
(ICC brake switch)	1 Igrition Switch. ON	Brake pedal: Slightly depressed	OFF
BRAKE SW2	Ignition switch: ON	Brake pedal: Fully released	OFF
(Stop lamp switch)	- Igillion switch. ON	Brake pedal: Slightly depressed	ON

On Board Diagnosis Logic

This diagnosis has the one trip detection logic.

The MIL will not light up for this diagnosis.

NOTE:

- If DTC P1572 is displayed with DTC P0605, first perform the trouble diagnosis for DTC P0605. Refer to EC-1059, "DTC Confirmation Procedure".
- This self-diagnosis has the one trip detection logic. When malfunction A is detected, DTC is not stored in ECM memory. And in that case, 1st trip DTC and 1st trip freeze frame data are displayed. 1st trip DTC is erased when ignition switch OFF. And even when malfunction A is detected in two consecutive trips, DTC is not stored in ECM memory.

DTC No.	Trouble diagnosis name		DTC detecting condition	Possible cause
		A)	When the vehicle speed is above 30 km/h (19MPH), ON signals from the stop lamp switch and the ICC brake switch are sent to ECM at the same time.	Harness or connectors (The stop lamp switch circuit is shorted.) Harness or connectors (The ICC brake switch circuit is shorted.)
P1572 1572	ICC brake switch	B)	ICC brake switch signal is not sent to ECM for extremely long time while the vehicle is driving	Stop lamp switch ICC brake switch ICC brake hold relay Incorrect stop lamp switch installation Incorrect ICC brake switch installation ECM

DTC Confirmation Procedure

INFOID:0000000002955191

CAUTION:

Always drive vehicle at a safe speed. NOTE:

- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
- Procedure for malfunction B is not described here. It takes extremely long time to complete procedure for malfunction B. By performing procedure for malfunction A, the incident that causes malfunction B can be detected.

С

EC

Α

Е

F

INFOID:0000000002955189

INFOID:0000000002955190

J

K

L

Ν

P

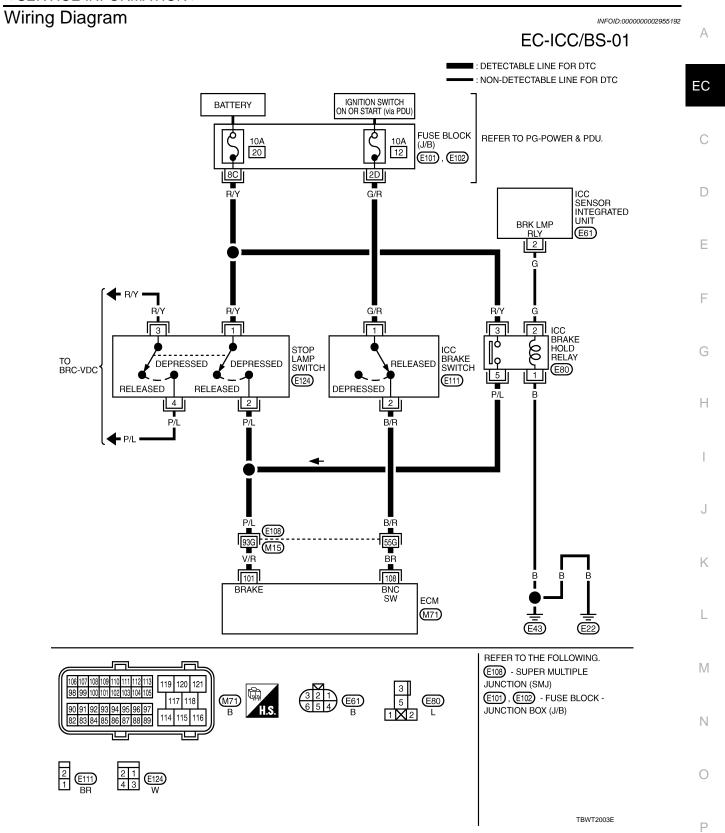
DTC P1572 ICC BRAKE SWITCH

[VK45DE]

< SERVICE INFORMATION >

TESTING CONDITION:

Steps 3 and 6 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.


- Start engine (VDC switch OFF).
- 2. Press MAIN switch and make sure that CRUISE lamp lights up.
- 3. Drive the vehicle for at least 5 consecutive seconds under the following conditions.

Vehicle speed	More than 30 km/h (19 MPH)
Selector lever	Suitable position

- 4. Check 1st trip DTC.
- 5. If 1st trip DTC is detected, go to <u>EC-1142, "Diagnosis Procedure"</u>. If 1st trip DTC is not detected, go to the following step.
- 6. Drive the vehicle for at least 5 consecutive seconds under the following conditions.

Vehicle speed	More than 30 km/h (19 MPH)
Selector lever	Suitable position
Driving location	Depress the brake pedal for more than five seconds so as not to come off from the above-mentioned vehicle speed.

- 7. Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-1142, "Diagnosis Procedure"</u>.

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

< SERVICE INFORMATION >

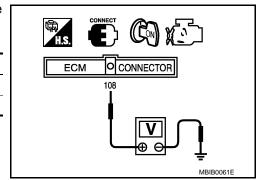
TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
101	101	Oten leave southle	[Ignition switch: OFF] • Brake pedal: Fully released	Approximately 0V
101 V/R	Stop lamp switch	[Ignition switch: OFF] • Brake pedal: Slightly depressed	BATTERY VOLTAGE (11 - 14V)	
400	108 BR	R ICC brake switch	[Ignition switch: ON] • Brake pedal: Slightly depressed	Approximately 0V
108			[Ignition switch: ON] • Brake pedal: Fully released	BATTERY VOLTAGE (11 - 14V)

Diagnosis Procedure

INFOID:0000000002955193

1. CHECK OVERALL FUNCTION-I

(I) With CONSULT-III


- Turn ignition switch ON.
- 2. Select "BRAKE SW1" in "DATA MONITOR" mode with CONSULT-III.
- 3. Check "BRAKE SW1" indication under the following conditions.

CONDITION	INDICATION
Brake pedal: Slightly depressed	OFF
Brake pedal: Fully released	ON

Without CONSULT-III

- 1. Turn ignition switch ON.
- 2. Check voltage between ECM terminal 108 and ground under the following conditions.

CONDITION	VOLTAGE
Brake pedal: Slightly depressed	Approximately 0V
Brake pedal: Fully released	Battery voltage

OK or NG

OK >> GO TO 2. NG >> GO TO 3.

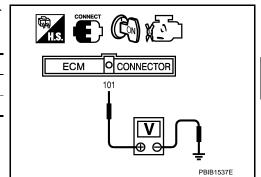
2. CHECK OVERALL FUNCTION-II

(P) With CONSULT-III

Check "BRAKE SW2" indication in "DATA MONITOR" mode.

CONDITION	INDICATION
Brake pedal: Fully released	OFF
Brake pedal: Slightly depressed	ON

⊗ Without CONSULT-III

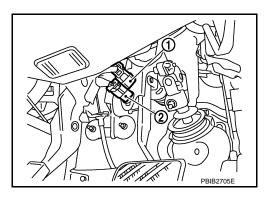

DTC P1572 ICC BRAKE SWITCH

< SERVICE INFORMATION >

[VK45DE]

Check voltage between ECM terminal 101 and ground under the following conditions.

CONDITION	VOLTAGE
Brake pedal: Fully released	Approximately 0V
Brake pedal: Slightly depressed	Battery voltage

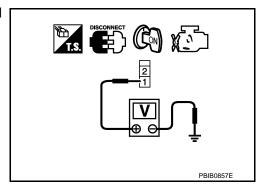


OK or NG

OK >> GO TO 15. NG >> GO TO 8.

3.CHECK ICC BRAKE SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect ICC brake switch (2) harness connector.
- Stop lamp switch (1)
- 3. Turn ignition switch ON.



4. Check voltage between ICC brake switch terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E102
- 10A fuse
- Harness for open or short between ICC brake switch and fuse

>> Repair open circuit or short to ground or short to power in harness or connectors.

${f 5.}$ CHECK ICC BRAKE SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ICC brake switch terminal 2 and ECM terminal 108. Refer Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

Revision: 2009 February

EC-1143

Α

EC

С

D

Е

F

G

Н

J

K

_

В. Л

Ν

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- Harness for open or short between ICC brake switch and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK ICC BRAKE SWITCH

Refer to EC-1146, "Component Inspection".

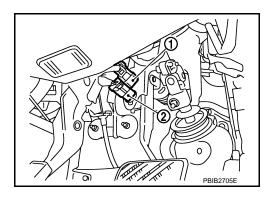
OK or NG

OK >> GO TO 15.

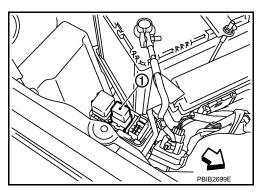
NG >> Replace ICC brake switch.

8. CHECK DTC WITH ICC SENSOR INTEGRATED UNIT

Refer to ACS-40.

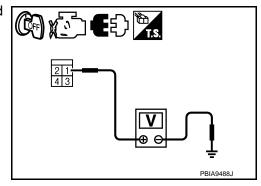

OK or NG

OK >> GO TO 9.


NG >> Repair or replace.

9. CHECK STOP LAMP SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect stop lamp switch (1) harness connector.
- ICC brake switch (2)



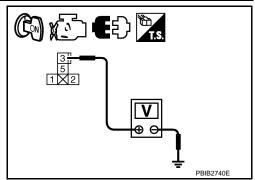
- 3. Disconnect ICC brake hold relay (1) harness connector.
- <□: Vehicle front

 Check voltage between stop lamp switch terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage

DTC P1572 ICC BRAKE SWITCH

< SERVICE INFORMATION >


[VK45DE]

Check voltage between ICC brake hold relay terminal 3 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 11. >> GO TO 10. NG

10. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E101
- 10A fuse
- · Harness for open or short between battery and stop lamp switch
- Harness for open or short between battery and ICC brake hold relay

>> Repair open circuit or short to ground or short to power in harness or connectors.

11. CHECK STOP LAMP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector.
- 2. Check harness continuity between the following: ECM terminal 101 and stop lamp switch terminal 2, ECM terminal 101 and ICC brake hold relay terminal 5. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 13. NG >> GO TO 12.

12. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- Harness for open or short between ECM and stop lamp switch
- Harness for open or short between ECM and ICC brake hold relay

>> Repair open circuit or short to ground or short to power in harness or connectors.

13. CHECK STOP LAMP SWITCH

Refer to EC-1146, "Component Inspection".

OK or NG

OK >> GO TO 14.

NG >> Replace stop lamp switch.

14. CHECK ICC BRAKE HOLD RELAY

Refer to EC-1146, "Component Inspection".

OK >> GO TO 15.

NG >> Replace ICC brake hold relay.

15. CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

Α

EC

Е

D

F

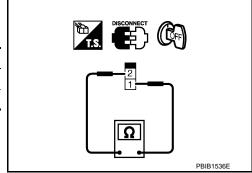
Н

K

N

>> INSPECTION END

Component Inspection

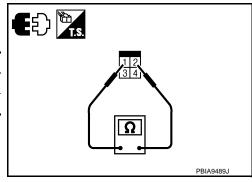

INFOID:0000000002955194

ICC BRAKE SWITCH

- 1. Turn ignition switch OFF.
- Disconnect ICC brake switch harness connector.
- 3. Check continuity between ICC brake switch terminals 1 and 2 under the following conditions.

Condition	Continuity
Brake pedal: Fully released	Should exist
Brake pedal: Slightly depressed	Should not exist

4. If NG, adjust ICC brake switch installation, refer to <u>BR-6</u>, and perform step 3 again.

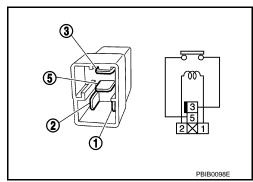


STOP LAMP SWITCH

- 1. Turn ignition switch OFF.
- 2. Disconnect stop lamp switch harness connector.
- 3. Check continuity between stop lamp switch terminals 1 and 2 under the following conditions.

Condition	Continuity
Brake pedal: Fully released	Should not exist
Brake pedal: Slightly depressed	Should exist

4. If NG, adjust stop lamp switch installation, refer to <u>BR-6</u>, and perform step 3 again.

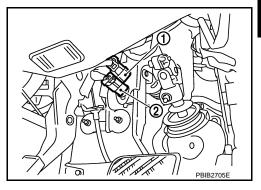


ICC BRAKE HOLD RELAY

 Check continuity between ICC brake hold relay terminals 3 and 5 under the following conditions.

Condition	Continuity
12V direct current supply between terminals 1 and 2	Should not exist
No current supply	Should exist

2. If NG, replace ICC brake hold relay.


[VK45DE]

INFOID:0000000002955195

DTC P1572 ASCD BRAKE SWITCH

Component Description

When the brake pedal is depressed, ASCD brake switch (2) is turned OFF and stop lamp switch (1) is turned ON. ECM detects the state of the brake pedal by this input of two kinds (ON/OFF signal). Refer to EC-659, "System Description" for the ASCD function.

CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
BRAKE SW1	Ignition switch: ON	Brake pedal: Fully released	ON
(ASCD brake switch)	· Igrillori switch. ON	Brake pedal: Slightly depressed	OFF
BRAKE SW2	Ignition switch: ON	Brake pedal: Fully released	OFF
(Stop lamp switch)	- ignition switch. ON	Brake pedal: Slightly depressed	ON

On Board Diagnosis Logic

This self-diagnosis has the one trip detection logic.

The MIL will not light up for this diagnosis.

NOTE:

- If DTC P1572 is displayed with DTC P0605, first perform the trouble diagnosis for DTC P0605. Refer to EC-1059, "DTC Confirmation Procedure".
- This self-diagnosis has the one trip detection logic. When malfunction A is detected, DTC is not stored in ECM memory. And in that case, 1st trip DTC and 1st trip freeze frame data are displayed. 1st trip DTC is erased when ignition switch OFF. And even when malfunction A is detected in two consecutive trips, DTC is not stored in ECM memory.

DTC No.	Trouble diagnosis name	DTC detecting condition		Possible cause
Direc		A)	When the vehicle speed is above 30 km/h (19 MPH), ON signals from the stop lamp switch and the ASCD brake switch are sent to the ECM at the same time.	Harness or connectors (The stop lamp switch circuit is shorted.) Harness or connectors (The ASCD brake switch circuit is short-
P1572 1572	ASCD brake switch	B)	ASCD brake switch signal is not sent to ECM for extremely long time while the vehicle is driving.	ed.) • Stop lamp switch • ASCD brake switch • Incorrect stop lamp switch installation • Incorrect ASCD brake switch installation • ECM

DTC Confirmation Procedure

C Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed. NOTE:

- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
- Procedure for malfunction B is not described here. It takes extremely long time to complete procedure for malfunction B. By performing procedure for malfunction A, the incident that causes malfunction B can be detected.

EC

Α

С

Е

F

INFOID:0000000002955196

INFOID:0000000002955197

nd woit ot

N

P

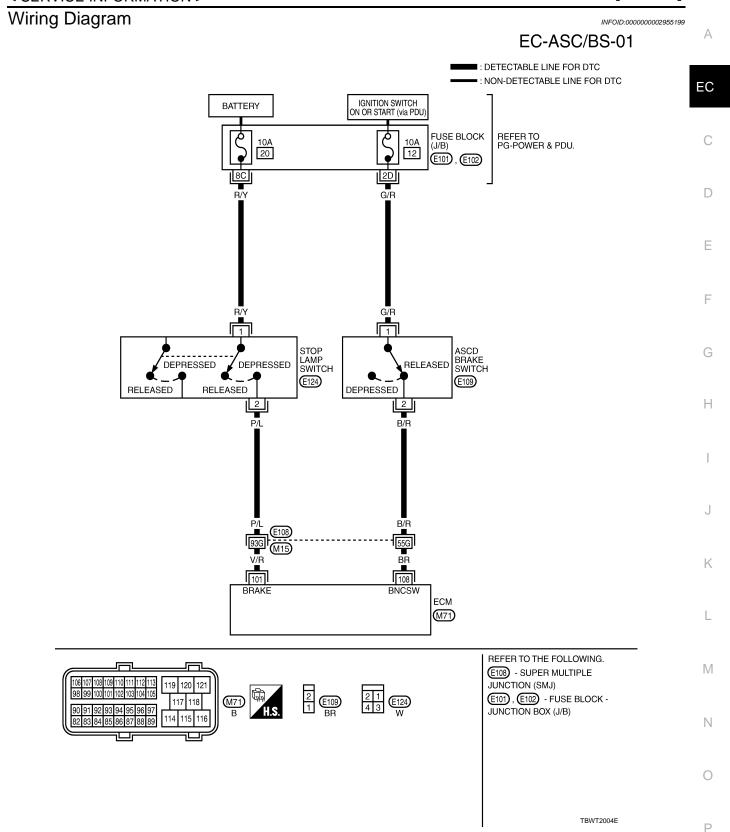
DTC P1572 ASCD BRAKE SWITCH

< SERVICE INFORMATION >

[VK45DE]

TESTING CONDITION:

Steps 4 and 5 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.


- 1. Start engine (VDC switch OFF).
- 2. Press MAIN switch and make sure that CRUISE lamp lights up.
- 3. Drive the vehicle for at least 5 consecutive seconds under the following conditions.

Vehicle speed	More than 30 km/h (19 MPH)
Selector lever	Suitable position

- 4. Check 1st trip DTC.
- 5. If 1st trip DTC is detected, go to <u>EC-1150</u>, "<u>Diagnosis Procedure</u>". If 1st trip DTC is not detected, go to the following step.
- 6. Drive the vehicle for at least 5 consecutive seconds under the following conditions.

Vehicle speed	More than 30 km/h (19 MPH)
Selector lever	Suitable position
Driving location	Depress the brake pedal for more than five seconds so as not to come off from the above-mentioned vehicle speed.

- 7. Check 1st trip DTC.
- 8. If 1st trip DTC is detected, go to EC-1150, "Diagnosis Procedure".

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

< SERVICE INFORMATION >

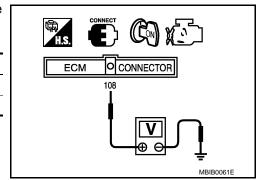
TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
101	101 V/R Stop lamp switch	Stan Jama quitab	[Ignition switch: OFF] • Brake pedal: Fully released	Approximately 0V
101		[Ignition switch: OFF] • Brake pedal: Slightly depressed	BATTERY VOLTAGE (11 - 14V)	
108	BR	ASCD brake switch	[Ignition switch: ON] • Brake pedal: Slightly depressed	Approximately 0V
100	DIX	AGOD DIANE SWILLII	[Ignition switch: ON] • Brake pedal: Fully released	BATTERY VOLTAGE (11 - 14V)

Diagnosis Procedure

INFOID:0000000002955200

1. CHECK OVERALL FUNCTION-I

(P) With CONSULT-III


- 1. Turn ignition switch ON.
- 2. Select "BRAKE SW1" in "DATA MONITOR" mode with CONSULT-III.
- 3. Check "BRAKE SW1" indication under the following conditions.

CONDITION	INDICATION
Brake pedal: Slightly depressed	OFF
Brake pedal: Fully released	ON

⊗ Without CONSULT-III

- 1. Turn ignition switch ON.
- Check voltage between ECM terminal 108 and ground under the following conditions.

CONDITION	VOLTAGE
Brake pedal: Slightly depressed	Approximately 0V
Brake pedal: Fully released	Battery voltage

OK or NG

OK >> GO TO 2. NG >> GO TO 3.

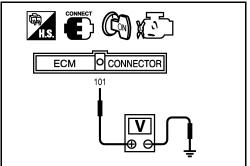
2. CHECK OVERALL FUNCTION-II

(P) With CONSULT-III

Check "BRAKE SW2" indication in "DATA MONITOR" mode.

CONDITION	INDICATION
Brake pedal: Fully released	OFF
Brake pedal: Slightly depressed	ON

⋈ Without CONSULT-III

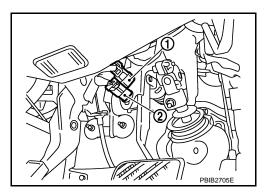

Check voltage between ECM terminal 101 and ground under the following conditions.

DTC P1572 ASCD BRAKE SWITCH

< SERVICE INFORMATION >

[VK45DE]

CONDITION	VOLTAGE
Brake pedal: Fully released	Approximately 0V
Brake pedal: Slightly depressed	Battery voltage

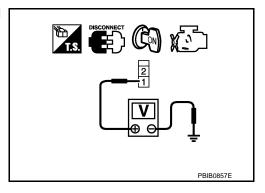


OK or NG

OK >> GO TO 13. NG >> GO TO 8.

3. CHECK ASCD BRAKE SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect ASCD brake switch (2) harness connector.
- Stop lamp switch (1)
- Turn ignition switch ON.



Check voltage between ASCD brake switch terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E102
- 10A fuse
- Harness for open or short between ASCD brake switch and fuse

>> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK ASCD BRAKE SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 108 and ASCD brake switch terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

Revision: 2009 February **EC-1151** 2008 M35/M45

Α

EC

D

Е

F

G

Н

I

J

K

V

Ν

0

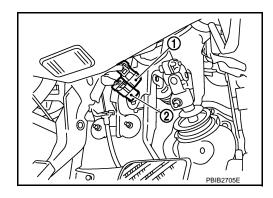
6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- Harness for open or short between ECM and ASCD brake switch
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK ASCD BRAKE SWITCH

Refer to EC-1153, "Component Inspection"

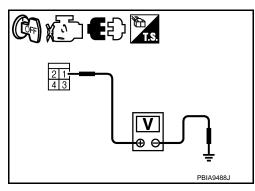

OK or NG

OK >> GO TO 13.

NG >> Replace ASCD brake switch.

8. CHECK STOP LAMP SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect stop lamp switch (1) harness connector.
- ASCD brake switch (2)



3. Check voltage between stop lamp switch terminal 1 and ground with CONSULT -III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 10. NG >> GO TO 9.

9. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E101
- 10A fuse
- · Harness for open or short between stop lamp switch and battery

>> Repair open circuit or short to ground or short to power in harness or connectors.

10. CHECK STOP LAMP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 101 and stop lamp switch terminal 2. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 12.

Revision: 2009 February **EC-1152** 2008 M35/M45

DTC P1572 ASCD BRAKE SWITCH

< SERVICE INFORMATION >

[VK45DE]

NG >> GO TO 11.

11. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- · Harness for open or short between ECM and stop lamp switch

>> Repair open circuit or short to ground or short to power in harness or connectors.

12. CHECK STOP LAMP SWITCH

Refer to EC-1153, "Component Inspection"

OK or NG

OK >> GO TO 13.

NG >> Replace stop lamp switch.

13. CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

>> INSPECTION END

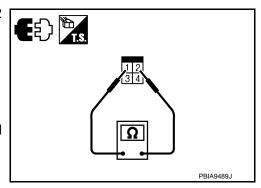
Component Inspection

ASCD BRAKE SWITCH

- 1. Turn ignition switch OFF.
- 2. Disconnect ASCD brake switch harness connector.
- 3. Check continuity between ASCD brake switch terminals 1 and 2 under the following conditions.

Condition	Continuity
Brake pedal: Fully released	Should exist
Brake pedal: Slightly depressed	Should not exist

If NG, adjust ASCD brake switch installation, refer to BR-6, and perform step 3 again.


PBIB1536E

STOP LAMP SWITCH

- 1. Turn ignition switch OFF.
- Disconnect stop lamp switch harness connector.
- 3. Check continuity between stop lamp switch terminals 1 and 2 under the following conditions.

Condition	Continuity
Brake pedal: Fully released	Should not exist
Brake pedal: Slightly depressed	Should exist

If NG, adjust stop lamp switch installation, refer to BR-6, and perform step 3 again.

EC

Α

D

Е

INFOID:0000000002955201

F

Н

M

Ν

INFOID:0000000002955202

DTC P1574 ICC VEHICLE SPEED SENSOR

Component Description

The ECM receives two vehicle speed signals via CAN communication line. One is sent from "unified meter and A/C amp.", and the other is from TCM (Transmission control module). The ECM uses these signals for ICC control. Refer to ACS-9 for ICC functions.

On Board Diagnosis Logic

INFOID:0000000002955203

This self-diagnosis has the one trip detection logic.

The MIL will not light up for this diagnosis.

NOTE:

- If DTC P1574 is displayed with DTC U1000, U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to <u>EC-770, "DTC Confirmation Procedure"</u>.
- If DTC P1574 is displayed with DTC U1010, first perform the trouble diagnosis for DTC U1010. Refer to EC-772, "DTC Confirmation Procedure".
- If DTC P1574 is displayed with DTC P0500, first perform the trouble diagnosis for DTC P0500. Refer to EC-1044, "DTC Confirmation Procedure".
- If DTC P1574 is displayed with DTC P0605, first perform the trouble diagnosis for DTC P0605. Refer to <u>EC-1059</u>, "DTC Confirmation Procedure".

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1574 1574	ICC vehicle speed sensor	ECM detects a difference between two vehicle speed signals is out of the specified range.	Harness or connectors (The CAN communication line is open or shorted.) Unified meter and A/C amp. ABS actuator and electric unit (control unit) Wheel sensor TCM ECM

DTC Confirmation Procedure

INFOID:0000000002955204

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Step 3 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

- 1. Start engine (VDC switch OFF).
- 2. Drive the vehicle at more than 40 km/h (25MPH).
- 3. Check DTC.
- If DTC is detected, go to <u>EC-1154</u>, "<u>Diagnosis Procedure</u>".

Diagnosis Procedure

INFOID:0000000002955205

1. CHECK DTC WITH TCM

Check DTC with TCM. Refer to AT-40, "OBD-II Diagnostic Trouble Code (DTC)".

OK or NG

OK >> GO TO 2.

NG >> Perform trouble shooting relevant to DTC indicated.

2.CHECK DTC WITH "ABS ACTUATOR AND ELECTRIC UNIT (CONTROL UNIT)"

Refer to BRC-30, "CONSULT-III Function (ABS)".

OK or NG

OK >> GO TO 3.

DTC P1574 ICC VEHICLE SPEED SENSOR [VK45DE] < SERVICE INFORMATION > >> Repair or replace. NG ${\bf 3.}$ CHECK DTC WITH "UNIFIED METER AND A/C AMP." Α Check combination meter function. Refer to DI-26. EC >> INSPECTION END D Е F Н Κ

Revision: 2009 February **EC-1155** 2008 M35/M45

0

Ν

L

M

INFOID:0000000002955206

DTC P1574 ASCD VEHICLE SPEED SENSOR

Component Description

The ECM receives two vehicle speed sensor signals via CAN communication line. One is sent from "unified meter and A/C amp.", and the other is from TCM (Transmission control module). The ECM uses these signals for ASCD control. Refer to <u>EC-659</u>, "System Description" for ASCD functions.

On Board Diagnosis Logic

INFOID:0000000002955207

This self-diagnosis has the one trip detection logic.

The MIL will not light up for this diagnosis.

NOTE:

- If DTC P1574 is displayed with DTC U1000, U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to <u>EC-770, "DTC Confirmation Procedure"</u>.
- If DTC P1574 is displayed with DTC U1010, first perform the trouble diagnosis for DTC U1010. Refer to <u>EC-772</u>, "<u>DTC Confirmation Procedure</u>".
- If DTC P1574 is displayed with DTC P0500, first perform the trouble diagnosis for DTC P0500. Refer to EC-1044, "DTC Confirmation Procedure".
- If DTC P1574 is displayed with DTC P0605, first perform the trouble diagnosis for DTC P0605. Refer to <u>EC-1059</u>, "<u>DTC Confirmation Procedure</u>".

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1574 1574	ASCD vehicle speed sensor	ECM detects a difference between two vehicle speed signals is out of the specified range.	Harness or connectors (The CAN communication line is open or shorted.) Unified meter and A/C amp. ABS actuator and electric unit (control unit) Wheel sensor TCM ECM

DTC Confirmation Procedure

INFOID:0000000002955208

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Step 3 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

- 1. Start engine (VDC switch OFF).
- 2. Drive the vehicle at more than 40 km/h (25 MPH).
- 3. Check DTC.
- 4. If DTC is detected, go to EC-1156, "Diagnosis Procedure".

Diagnosis Procedure

INFOID:0000000002955209

1. CHECK DTC WITH TCM

Check DTC with TCM. Refer to AT-40, "OBD-II Diagnostic Trouble Code (DTC)".

OK or NG

OK >> GO TO 2.

NG >> Perform trouble shooting relevant to DTC indicated.

2.CHECK DTC WITH "ABS ACTUATOR AND ELECTRIC UNIT (CONTROL UNIT)"

Refer to BRC-30, "CONSULT-III Function (ABS)".

OK or NG

OK >> GO TO 3.

DTC P1574 ASCD VEHICLE SPEED SENSOR

Refer to DI-26.

>> INSPECTION END

EC

Α

D

Е

F

Н

J

Κ

L

M

Ν

0

DTC P1715 INPUT SPEED SENSOR

Description INFOID:000000002955210

ECM receives Input speed sensor signal from TCM through CAN communication line. ECM uses this signal for engine control.

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002955211

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
I/P PULLY SPD	Vehicle speed: More than 20 km/h (12MPH)	Almost the same speed as the tachometer indication

On Board Diagnosis Logic

INFOID:0000000002955212

NOTE:

- If DTC P1715 is displayed with DTC U1000, U1001 first perform the trouble diagnosis for DTC U1000, U1001. Refer to <u>EC-770, "DTC Confirmation Procedure"</u>.
- If DTC P1715 is displayed with DTC U1010, first perform the trouble diagnosis for DTC U1010. Refer to EC-772, "DTC Confirmation Procedure".
- If DTC P1715 is displayed with DTC P0605, first perform the trouble diagnosis for DTC P0605. Refer to EC-1059, "DTC Confirmation Procedure".
- If DTC P1715 is displayed with DTC P0335, first perform the trouble diagnosis for DTC P0335. Refer to EC-958, "DTC Confirmation Procedure".
- If DTC P1715 is displayed with DTC P0340, first perform the trouble diagnosis for DTC P0340. Refer to EC-963, "DTC Confirmation Procedure".

The MIL will not light up for this diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1715 1715	Input speed sensor (TCM output)	Input speed sensor signal is different from the theoretical value calculated by ECM from revolution sensor signal and engine rpm signal.	Harness or connectors (The CAN communication line is open or shorted) Harness or connectors (Input speed sensor circuit is open or shorted) TCM

Diagnosis Procedure

INFOID:0000000002955213

1. CHECK DTC WITH TCM

Check DTC with TCM. Refer to AT-40.

OK or NG

OK >> GO TO 2.

NG >> Perform trouble shooting relevant to DTC indicated.

2.REPLACE TCM

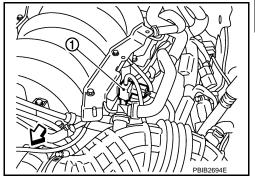
Replace TCM. Refer to AT-43.

>> INSPECTION END

DTC P1800 VIAS CONTROL SOLENOID VALVE

< SERVICE INFORMATION >

[VK45DE]


INFOID:0000000002955214

DTC P1800 VIAS CONTROL SOLENOID VALVE

Component Description

The VIAS control solenoid valve (1) cuts the intake manifold vacuum signal for power valve actuator. It responds to ON/OFF signals from the ECM. When the solenoid is off, the vacuum signal from the intake manifold is cut. When the ECM sends an ON signal the coil pulls the plunger downward and feeds the vacuum signal to the power valve actuator.

← : Vehicle front

CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
	Selector lever: P or N	ON
VIAS S/V-1	Engine speed: More than 5,000 rpm	
	Selector lever: Except P or N Engine speed: Less than 5,000 rpm	OFF

On Board Diagnosis Logic

The MIL will not light up for this self-diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1800 1800	VIAS control solenoid valve circuit	An excessively low or high voltage signal is sent to ECM through the valve	Harness or connectors (The solenoid valve circuit is open or shorted.) VIAS control solenoid valve

DTC Confirmation Procedure

INFOID:0000000002955217

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is between 11V at idle.

- Start engine and let it idle for at least 5 seconds.
- Check 1st trip DTC. 2.
- If 1st trip DTC is detected, go to EC-1161, "Diagnosis Procedure".

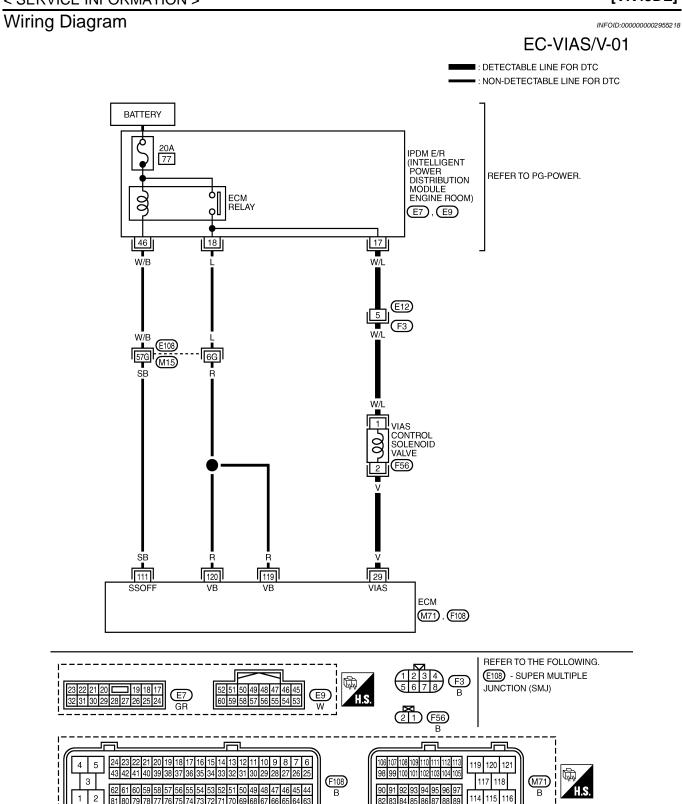
EC

Α

Е

F

D


INFOID:0000000002955215

INFOID:0000000002955216

M

K

Ν

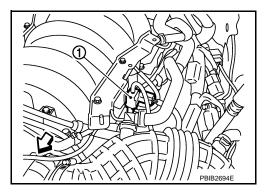
Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

DTC P1800 VIAS CONTROL SOLENOID VALVE

< SERVICE INFORMATION >

[VK45DE]

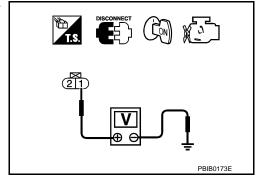

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Engine is running] • Selector lever: P or N	0 - 1.0V
29	V	VIAS control solenoid valve	[Engine is running]Selector lever: DEngine speed: Below 5,000 rpm	BATTERY VOLTAGE (11 - 14V)
			[Engine is running] • Engine speed: Above 5,000 rpm	0 - 1.0V
111	SB	ECM relay (Self shut-off)	[Engine is running][Ignition switch: OFF]For a few seconds after turning ignition switch OFF	0 - 1.5V
		(Sell Silut-Oil)	 [Ignition switch: OFF] More than a few seconds after turning ignition switch OFF 	BATTERY VOLTAGE (11 - 14V)
119 120	R R	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

Diagnosis Procedure

INFOID:0000000002955219

1. CHECK VIAS CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect VIAS control solenoid (1) valve harness connector.
- <□: Vehicle front
- 3. Turn ignition switch ON.



Check voltage between terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E12, F3
- Harness for open or short between VIAS control solenoid valve and IPDM E/R
 - >> Repair harness or connectors.

${f 3.}$ CHECK VIAS CONTROL SOLENOID VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Revision: 2009 February **EC-1161** 2008 M35/M45

С

Α

EC

Е

D

F

I

J

K

M

N

- Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 29 and VIAS control solenoid valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK VIAS CONTROL SOLENOID VALVE

Refer to EC-1162, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace VIAS control solenoid valve.

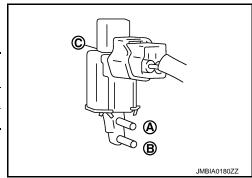
5. CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

>> INSPECTION END

Component Inspection

INFOID:0000000002955220


[VK45DE]

VIAS CONTROL SOLENOID VALVE

- (II) With CONSULT-III
- 1. Reconnect harness connectors disconnected.
- 2. Turn ignition switch ON.
- 3. Perform "VIAS S/V-1" in "ACTIVE TEST" mode.
- 4. Check air passage continuity and operation delay time under the following conditions.

Condition VIAS S/V-1	Air passage continuity between (A) and (B)	Air passage continuity between (A) and (C)
ON	Yes	No
OFF	No	Yes

Operation takes less than 1 second.

₩ Without CONSULT-III

Check air passage continuity and operation delay time under the following conditions.

Condition	Air passage continuity between (A) and (B)	Air passage continuity between (A) and (C)
12V direct current supply between terminals 1 and 2	Yes	No
No supply	No	Yes

Operation takes less than 1 second.

BATTERY SEF313Q

Removal and Installation

INFOID:0000000002955221

VIAS CONTROL SOLENOID VALVE

DTC P1800 VIAS CONTROL SOLENOID VALVE

< SERVICE INFORMATION >

[VK45DE]

Refer to EM-177.

EC

Α

С

D

Е

F

G

Н

J

Κ

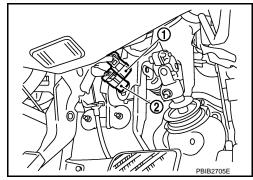
L

M

Ν

0

Ρ


INFOID:0000000002955222

DTC P1805 BRAKE SWITCH

Component Description

Brake switch signal is applied to the ECM through the stop lamp switch (1) when the brake pedal is depressed. This signal is used mainly to decrease the engine speed when the vehicle is driving.

- ICC brake switch (models with ICC) (2)
- ASCD brake switch (models with ASCD) (2)

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002955223

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
BRAKE SW	Ignition switch: ON	Brake pedal: Fully released	OFF
	ignition switch. On	Brake pedal: Slightly depressed	ON

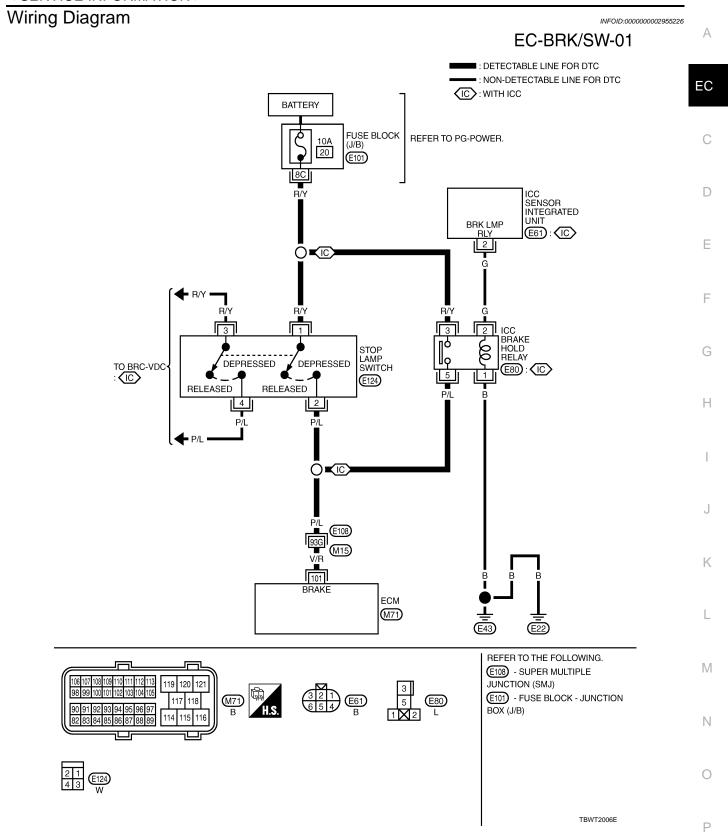
On Board Diagnosis Logic

INFOID:0000000002955224

The MIL will not light up for this diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1805 1805	Brake switch	A brake switch signal is not sent to ECM for extremely long time while the vehicle is driving.	Harness or connectors (Stop lamp switch circuit is open or shorted.) Stop lamp switch

FAIL-SAFE MODE


When the malfunction is detected, ECM enters fail-safe mode.

Engine operating condition in fail-safe mode				
ECM controls the electric throttle control actuator by regulating the throttle opening to a small range. Therefore, acceleration will be poor.				
Vehicle condition Driving condition				
When engine is idling	Normal			
When accelerating	Poor acceleration			

DTC Confirmation Procedure

INFOID:0000000002955225

- 1. Turn ignition switch ON.
- 2. Fully depress the brake pedal for at least 5 seconds.
- 3. Erase the DTC.
- 4. Check 1st trip DTC.
- If 1st trip DTC is detected, go to <u>EC-1166, "Diagnosis Procedure"</u>.

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

< SERVICE INFORMATION >

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
101 V/R	V/P	V/R Stop lamp switch	[Ignition switch: OFF] • Brake pedal: Fully released	Approximately 0V
	V/IX		[Ignition switch: OFF] • Brake pedal: Slightly depressed	BATTERY VOLTAGE (11 - 14V)

Diagnosis Procedure

INFOID:0000000002955227

ICC MODELS

1. CHECK DTC WITH ICC SENSOR INTEGRATED UNIT

Refer to ACS-40.

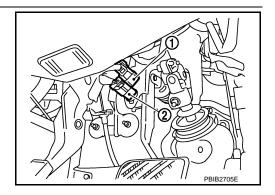
OK or NG

OK >> GO TO 2.

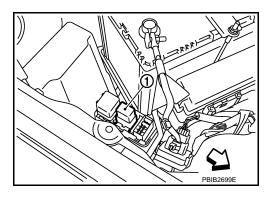
NG >> Repair or replace.

2.CHECK STOP LAMP SWITCH CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Check the stop lamp when depressing and releasing the brake pedal.


Brake pedal	Stop lamp
Fully released	Not illuminated
Slightly depressed	Illuminated

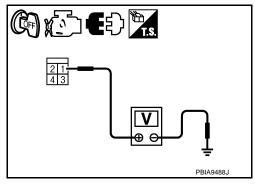
OK or NG


OK >> GO TO 5. NG >> GO TO 3.

3. CHECK STOP LAMP SWITCH POWER SUPPLY CIRCUIT

- 1. Disconnect stop lamp switch (1) harness connector.
- ICC brake switch (2)

- 2. Disconnect ICC brake hold relay (1) harness connector.

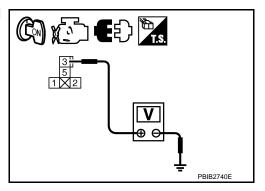


< SERVICE INFORMATION >

[VK45DE]

Check voltage between stop lamp switch terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage



4. Check voltage between ICC brake hold relay terminal 3 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E101
- 10A fuse
- Harness for open or short between battery and stop lamp switch
- Harness for open or short between battery and ICC brake hold relay

>> Repair open circuit or short to ground or short to power in harness or connectors.

${f 5.}$ CHECK STOP LAMP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between the following;

ECM terminal 101 and stop lamp switch terminal 2,

ECM terminal 101 and ICC brake hold relay terminal 5.

Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- Harness for open or short between ECM and stop lamp switch
- Harness for open or short between ECM and ICC brake hold relay

>> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK STOP LAMP SWITCH

Refer to EC-1169, "Component Inspection".

OK or NG

OK >> GO TO 8.

EC-1167 Revision: 2009 February 2008 M35/M45

D

Α

EC

Е

F

K

N

< SERVICE INFORMATION >

NG >> Replace stop lamp switch.

8. CHECK ICC BRAKE HOLD RELAY

Refer to EC-1169, "Component Inspection".

OK >> GO TO 9.

NG >> Replace ICC brake hold relay.

9. CHECK INTERMITTENT INCIDENT

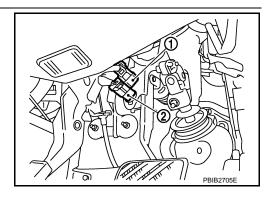
Refer to EC-763, "Diagnosis Procedure".

>> INSPECTION END

ASCD MODELS

1. CHECK STOP LAMP SWITCH CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Check the stop lamp when depressing and releasing the brake pedal.


Brake pedal	Stop lamp
Fully released	Not illuminated
Slightly depressed	Illuminated

OK or NG

OK >> GO TO 4. NG >> GO TO 2.

2.CHECK STOP LAMP SWITCH POWER SUPPLY CIRCUIT

- 1. Disconnect stop lamp switch (1) harness connector.
- ASCD brake switch (2)

2. Check voltage between stop lamp switch terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E101
- 10A fuse
- Harness for open or short between stop lamp switch and battery

DTC P1805 BRAKE SWITCH

< SERVICE INFORMATION > [VK45DE]

>> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK STOP LAMP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 101 and stop lamp switch terminal 2. Refer to Wiring Diagram.

EC

Α

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

D

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- Harness for open or short between ECM and stop lamp switch

F

Н

K

M

Ν

>> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK STOP LAMP SWITCH

Refer to EC-1169, "Component Inspection".

OK or NG

OK >> GO TO 7.

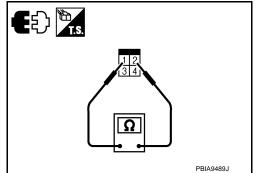
NG >> Replace stop lamp switch.

7. CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

>> INSPECTION END

Component Inspection


INFOID:0000000002955228

STOP LAMP SWITCH

- 1. Turn ignition switch OFF.
- 2. Disconnect stop lamp switch harness connector.
- 3. Check continuity between stop lamp switch terminals 1 and 2 under the following conditions.

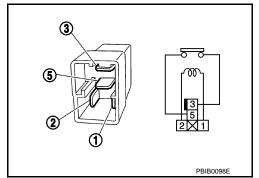
Condition	Continuity
Brake pedal: Fully released	Should not exist
Brake pedal: Slightly depressed	Should exist

4. If NG, adjust stop lamp switch installation, refer to <u>BR-6</u>, and perform step 3 again.

ICC BRAKE HOLD RELAY

Ρ

DTC P1805 BRAKE SWITCH


< SERVICE INFORMATION >

[VK45DE]

 Check continuity between ICC brake hold relay terminals 3 and 5 under the following conditions.

Condition	Continuity
12V direct current supply between terminals 1 and 2	Should not exist
No current supply	Should exist

DTC P2100, P2103 THROTTLE CONTROL MOTOR RELAY

< SERVICE INFORMATION >

[VK45DE]

INFOID:0000000002955229

DTC P2100, P2103 THROTTLE CONTROL MOTOR RELAY

Component Description

provided to the ECM.

Power supply for the throttle control motor is provided to the ECM via throttle control motor relay. The throttle control motor relay is ON/OFF controlled by the ECM. When the ignition switch is turned ON, the ECM sends an ON signal to throttle control motor relay and battery voltage is provided to the ECM. When the ignition switch is turned OFF, the ECM sends an OFF signal to throttle control motor relay and battery voltage is not

INFOID:0000000002955230

INFOID:0000000002955231

CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
THRTL RELAY	Ignition switch: ON	ON

On Board Diagnosis Logic

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P2100 2100	Throttle control motor relay circuit open	ECM detects a voltage of power source for throttle control motor is excessively low.	Harness or connectors (Throttle control motor relay circuit is open) Throttle control motor relay
P2103 2103	Throttle control motor relay circuit short	ECM detect the throttle control motor relay is stuck ON.	Harness or connectors (Throttle control motor relay circuit is shorted) Throttle control motor relay

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.

DTC Confirmation Procedure

INFOID:0000000002955232

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

PROCEDURE FOR DTC P2100

- 1. Turn ignition switch ON and wait at least 2 seconds.
- Start engine and let it idle for 5 seconds.
- Check DTC.
- If DTC is detected, go to <u>EC-1173</u>, "<u>Diagnosis Procedure</u>".

PROCEDURE FOR DTC P2103

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 8V.

- Turn ignition switch ON and wait at least 1 second.
- Check DTC.
- If DTC is detected, go to <u>EC-1173</u>, "<u>Diagnosis Procedure</u>".

EC

Α

D

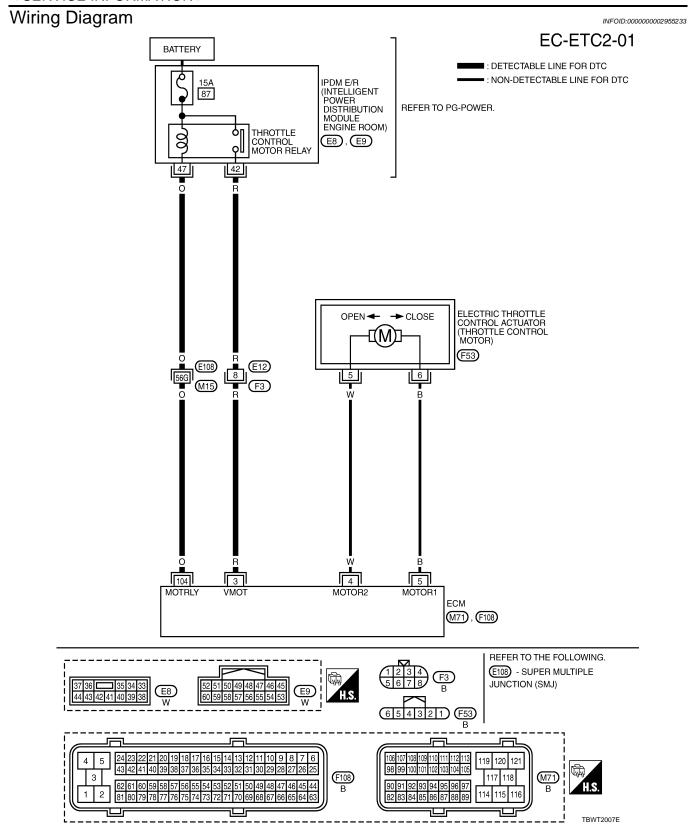
C

Е

_

G

Н


Κ

900232

Ν

Р

Revision: 2009 February **EC-1171** 2008 M35/M45

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

DTC P2100, P2103 THROTTLE CONTROL MOTOR RELAY

< SERVICE INFORMATION >

[VK45DE]

Α

EC

D

Е

F

Н

K

M

Ν

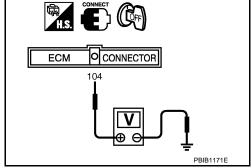
Р

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
3	R	Throttle control motor relay power supply	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)
4	w	Throttle control motor (Close)	[Ignition switch: ON] • Engine: Stopped • Selector lever: D • Accelerator pedal: Released	0 - 14V★ >> 5 V/Div 1 ms/Div T PBIB1104E
5	В	Throttle control motor (Open)	[Ignition switch: ON] • Engine: Stopped • Selector lever: D • Accelerator pedal: Fully depressed	0 - 14V★ >> 5 V/Div 1 ms/Div T PBIB1105E
104	0	Throttle control motor relay	[Ignition switch: OFF]	BATTERY VOLTAGE (11 - 14V)
			[Ignition switch: ON]	0 - 1.0V

★: Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnosis Procedure

INFOID:0000000002955234


1.CHECK THROTTLE CONTROL MOTOR RELAY POWER SUPPLY CIRCUIT-I

- 1. Turn ignition switch OFF.
- 2. Check voltage between ECM terminal 104 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 2.

2.CHECK THROTTLE CONTROL MOTOR RELAY POWER SUPPLY CIRCUIT-II

- Disconnect ECM harness connector.
- 2. Disconnect IPDM E/R harness connector E9.
- 3. Check continuity between ECM terminal 104 and IPDM E/R terminal 47. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3.DETECT MALFUNCTIONING PART

Revision: 2009 February

DTC P2100, P2103 THROTTLE CONTROL MOTOR RELAY

< SERVICE INFORMATION >

Check the following.

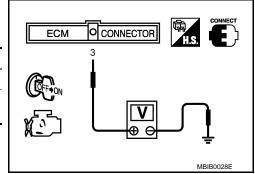
- Harness connectors E108, M15
- Harness for open or short between ECM and IPDM E/R

>> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK FUSE

- Disconnect 15A fuse.
- Check 15A fuse for blown.

OK or NG


OK >> GO TO 8.

NG >> Replace 15A fuse.

5.CHECK THROTTLE CONTROL MOTOR RELAY INPUT SIGNAL CIRCUIT-I

Check voltage between ECM terminal 3 and ground under the following conditions with CONSULT-III or tester.

Ignition switch	Voltage
OFF	Approximately 0V
ON	Battery voltage (11 - 14V)

IVK45DE1

OK or NG

OK >> GO TO 8.

NG >> GO TO 6.

6.CHECK THROTTLE CONTROL MOTOR RELAY INPUT SIGNAL CIRCUIT-II

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Disconnect IPDM E/R harness connector E8.
- 4. Check continuity between ECM terminal 3 and IPDM E/R terminal 42. Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8.

NG >> GO TO 7.

7.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E12, F3
- Harness for open or short between ECM and IPDM E/R

>> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

OK or NG

OK >> Replace IPDM E/R. Refer to PG-19.

>> Repair or replace harness or connectors. NG

< SERVICE INFORMATION >

[VK45DE]

Α

EC

C

 \Box

Е

F

Н

DTC P2101 ELECTRIC THROTTLE CONTROL FUNCTION

Description

NOTE:

If DTC P2101 is displayed with DTC P2100 or P2119, first perform the trouble diagnosis for DTC P2100 or P2119. Refer to EC-1171, "DTC Confirmation Procedure" or EC-1186, "DTC Confirmation Procedure".

Electric throttle control actuator consists of throttle control motor, throttle position sensor, etc.

The throttle control motor is operated by the ECM and it opens and closes the throttle valve.

The current opening angle of the throttle valve is detected by the throttle position sensor and it provides feedback to the ECM to control the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

On Board Diagnosis Logic

INFOID:0000000002955236

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P2101 2101	Electric throttle control performance	Electric throttle control function does not operate properly.	Harness or connectors (Throttle control motor circuit is open or shorted) Electric throttle control actuator

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.

DTC Confirmation Procedure

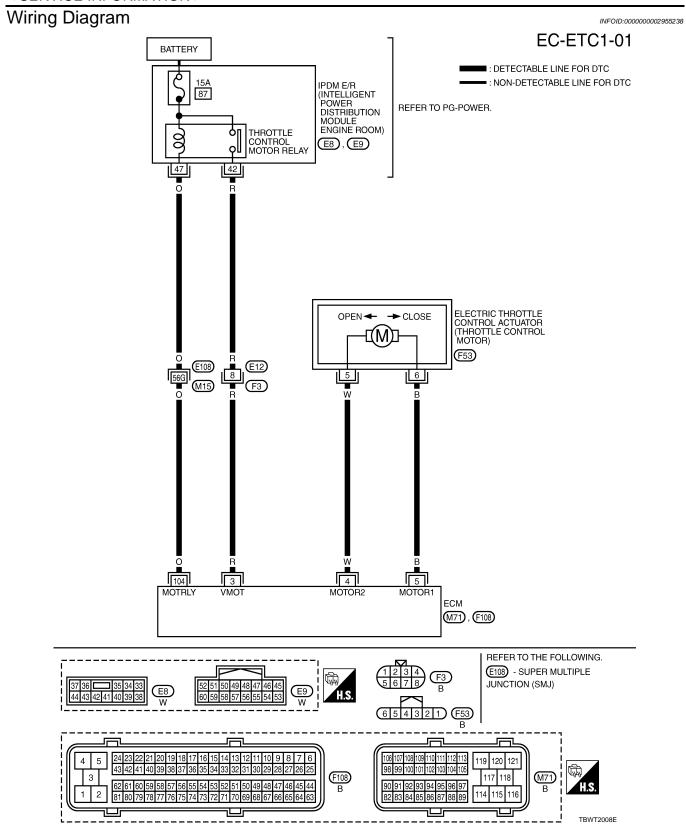
INFOID:0000000002955237

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V when engine is running.


- 1. Turn ignition switch ON and wait at least 2 seconds.
- Start engine and let it idle for 5 seconds.
- Check DTC.
- 4. If DTC is detected, go to EC-1177, "Diagnosis Procedure".

IV

K

L

N

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

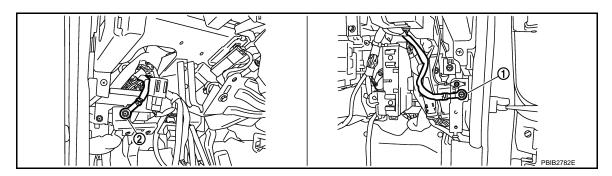
CAUTION:

< SERVICE INFORMATION >

[VK45DE]

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
3	R	Throttle control motor relay power supply	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)	С
4	w	Throttle control motor (Close)	[Ignition switch: ON] • Engine: Stopped • Selector lever: D • Accelerator pedal: Released	0 - 14V★	D E
5	В	Throttle control motor (Open)	[Ignition switch: ON] • Engine: Stopped • Selector lever: D • Accelerator pedal: Fully depressed	0 - 14V* S V/Div	F G
104	0	Throttle control motor relay	[Ignition switch: OFF]	BATTERY VOLTAGE (11 - 14V)	
			[Ignition switch: ON]	0 - 1.0V	


^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnosis Procedure

1. CHECK GROUND CONNECTIONS

Turn ignition switch OFF.

Loosen and retighten ground screws on the body. Refer to EC-769, "Ground Inspection".

1. Body ground M70

2. Body ground M16

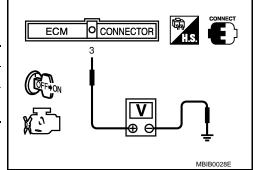
OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK THROTTLE CONTROL MOTOR RELAY INPUT SIGNAL CIRCUIT-I

INFOID:0000000002955239


Ν

< SERVICE INFORMATION >

[VK45DE]

Check voltage between ECM terminal 3 and ground under the following conditions with CONSULT-III or tester.

Ignition switch	Voltage
OFF	Approximately 0V
ON	Battery voltage (11 - 14V)

OK or NG

OK >> GO TO 10. NG >> GO TO 3.

3.CHECK THROTTLE CONTROL MOTOR RELAY INPUT SIGNAL CIRCUIT-II

- 1. Turn ignition switch OFF.
- Disconnect ECM harness connector.
- 3. Disconnect IPDM E/R harness connector E8.
- Check harness continuity between ECM terminal 3 and IPDM E/R terminal 42. Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

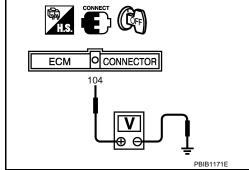
OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E12, F3
- Harness for open or short between ECM and IPDM E/R
 - >> Repair open circuit or short to ground or short to power in harness or connectors.


5. CHECK THROTTLE CONTROL MOTOR RELAY POWER SUPPLY CIRCUIT-I

- 1. Reconnect all harness connectors disconnected.
- 2. Turn ignition switch OFF.
- Check voltage between ECM terminal 104 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 9. NG >> GO TO 6.

6. CHECK THROTTLE CONTROL MOTOR RELAY POWER SUPPLY CIRCUIT-II

- 1. Disconnect ECM harness connector.
- 2. Disconnect IPDM E/R harness connector E9.
- Check harness continuity between ECM terminal 104 and IPDM E/R terminal 47. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8.

< SERVICE INFORMATION >

NG >> GO TO 7.

7.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- Harness for open or short between ECM and IPDM E/R

>> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK FUSE

- Disconnect 15A fuse.
- 2. Check 15A fuse for blown.

OK or NG

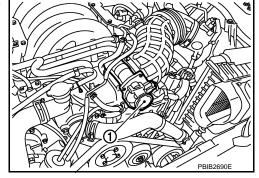
OK >> GO TO 9.

NG >> Replace 15A fuse.

9. CHECK INTERMITTENT INCIDENT

Refer to EC-763. "Diagnosis Procedure".

OK or NG


OK >> Replace IPDM E/R. Refer to PG-19.

NG >> Repair or replace harness or connectors.

10.check throttle control motor output signal circuit for open or short

- Turn ignition switch OFF.
- 2. Disconnect electric throttle control actuator (1) harness connec-
- Illustration shows the view with intake air duct removed.
- Disconnect ECM harness connector.
- 4. Check harness continuity between the following terminals. Refer to Wiring Diagram.

Electric throttle control actuator terminal	ECM terminal	Continuity
5	5	Should not exist.
3	4	Should exist.
6	5	Should exist.
	4	Should not exist.

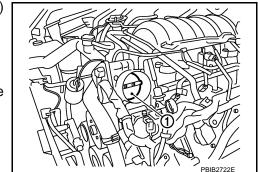
5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 11.

NG >> Repair or replace.

11. CHECK ELECTRIC THROTTLE CONTROL ACTUATOR VISUALLY


- Remove the intake air duct.
- 2. Check if foreign matter is caught between the throttle valve (1) and the housing.

This illustration shows the view with intake air removed.

OK or NG

OK >> GO TO 12.

NG >> Remove the foreign matter and clean the electric throttle control actuator inside.

12. CHECK THROTTLE CONTROL MOTOR

EC-1179 Revision: 2009 February 2008 M35/M45

EC

Α

[VK45DE]

D

Е

Н

Ν

< SERVICE INFORMATION >

[VK45DE]

Refer to EC-1180, "Component Inspection".

OK or NG

OK >> GO TO 13. >> GO TO 14. NG

13. CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

OK or NG

OK >> GO TO 14.

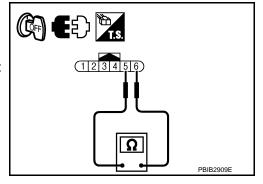
NG >> Repair or replace harness or connectors.

14. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- Replace the electric throttle control actuator.
- Perform <u>EC-706</u>, "Throttle Valve Closed Position Learning". Perform <u>EC-707</u>, "Idle Air Volume Learning".

>> INSPECTION END

Component Inspection


INFOID:0000000002955240

THROTTLE CONTROL MOTOR

- Disconnect electric throttle control actuator harness connector.
- Check resistance between terminals 5 and 6.

Resistance: Approximately 1 - 15 Ω [at 25 °C (77°F)]

- If NG, replace electric throttle control actuator and go to next
- 4. Perform EC-706, "Throttle Valve Closed Position Learning".
- Perform EC-707, "Idle Air Volume Learning".

Removal and Installation

INFOID:0000000002955241

ELECTRIC THROTTLE CONTROL ACTUATOR Refer to EM-177.

< SERVICE INFORMATION >

[VK45DE]

DTC P2118 THROTTLE CONTROL MOTOR

Component Description

INFOID:0000000002955242

Α

EC

D

Е

The throttle control motor is operated by the ECM and it opens and closes the throttle valve.

The current opening angle of the throttle valve is detected by the throttle position sensor and it provides feedback to the ECM to control the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

On Board Diagnosis Logic

INFOID:0000000002955243

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P2118 2118	Throttle control motor circuit short	ECM detects short in both circuits between ECM and throttle control motor.	Harness or connectors (Throttle control motor circuit is shorted.) Electric throttle control actuator (Throttle control motor)

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.

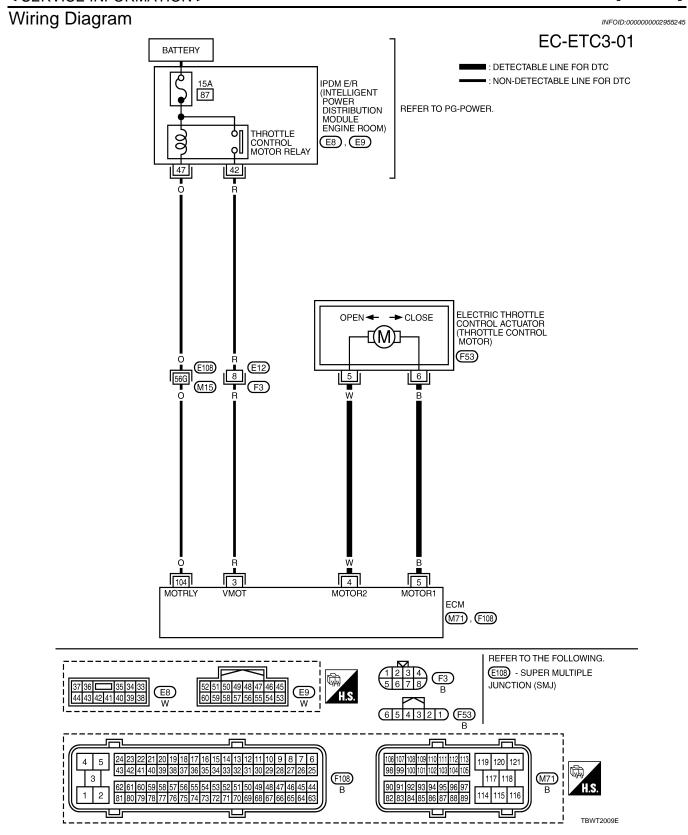
DTC Confirmation Procedure

INFOID:0000000002955244

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

- 1. Turn ignition switch ON and wait at least 2 seconds.
- 2. Start engine and let it idle for 5 seconds.
- 3. Check DTC.
- 4. If DTC is detected, go to EC-1183, "Diagnosis Procedure".


K

M

L

Ν

O

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

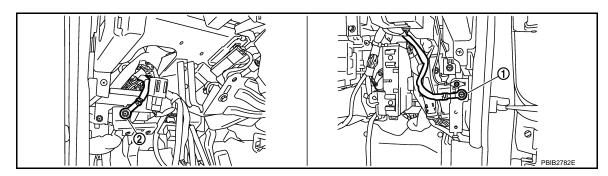
CAUTION:

< SERVICE INFORMATION >

[VK45DE]

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
3	R	Throttle control motor relay power supply	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)	С
4	w	Throttle control motor (Close)	[Ignition switch: ON] • Engine: Stopped • Selector lever: D • Accelerator pedal: Released	0 - 14V★ S V/Div 1 ms/Div T PBIB1104E	D E
5	В	Throttle control motor (Open)	[Ignition switch: ON] • Engine: Stopped • Selector lever: D • Accelerator pedal: Fully depressed	0 - 14V★ >> 5 V/Div 1 ms/Div T PBIB1105E	F G H
104	0	Throttle control motor relay	[Ignition switch: OFF]	BATTERY VOLTAGE (11 - 14V)	
			[Ignition switch: ON]	0 - 1.0V	


^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnosis Procedure

1. CHECK GROUND CONNECTIONS

1. Turn ignition switch OFF.

 Loosen and retighten ground screws on the body. Refer to <u>EC-769</u>, "Ground Inspection".

1. Body ground M70

2. Body ground M16

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

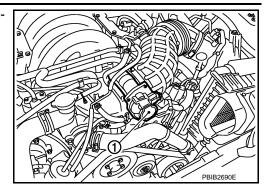
2.CHECK THROTTLE CONTROL MOTOR OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

INFOID:0000000002955246

L

M

Ν


0

< SERVICE INFORMATION >

[VK45DE]

- Disconnect electric throttle control actuator (1) harness connector
- Illustration shows the view with intake air duct removed.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between the following terminals. Refer to Wiring Diagram.

Electric throttle control actuator terminal	ECM terminal	Continuity
5	5	Should not exist.
J	4	Should exist.
6	5	Should exist.
O	4	Should not exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 3.

NG >> Repair or replace.

3. CHECK THROTTLE CONTROL MOTOR

Refer to EC-1184, "Component Inspection".

OK or NG

OK >> GO TO 4.

NG >> GO TO 5.

4. CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

OK or NG

OK >> GO TO 5.

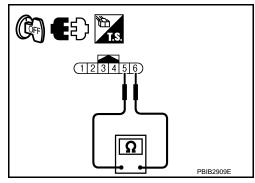
NG >> Repair or replace harness or connectors.

5. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-706, "Throttle Valve Closed Position Learning".
- 3. Perform EC-707, "Idle Air Volume Learning".

>> INSPECTION END

Component Inspection


INFOID:0000000002955247

THROTTLE CONTROL MOTOR

- 1. Disconnect electric throttle control actuator harness connector.
- 2. Check resistance between terminals 5 and 6.

Resistance: Approximately 1 - 15 Ω [at 25 °C (77°F)]

- 3. If NG, replace electric throttle control actuator and go to next step.
- 4. Perform <u>EC-706</u>, "Throttle Valve Closed Position Learning".
- Perform <u>EC-707</u>, "Idle Air Volume Learning".

Removal and Installation

ELECTRIC THROTTLE CONTROL ACTUATOR

< SERVICE INFORMATION >

Refer to EM-177.

[VK45DE]

EC

Α

С

D

Е

F

G

Н

1

J

Κ

L

M

Ν

0

Ρ

DTC P2119 ELECTRIC THROTTLE CONTROL ACTUATOR

< SERVICE INFORMATION >

[VK45DE]

DTC P2119 ELECTRIC THROTTLE CONTROL ACTUATOR

Component Description

INFOID:0000000002955249

Electric throttle control actuator consists of throttle control motor, throttle position sensor, etc.

The throttle control motor is operated by the ECM and it opens and closes the throttle valve.

The throttle position sensor detects the throttle valve position, and the opening and closing speed of the throttle valve and feeds the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

On Board Diagnosis Logic

INFOID:0000000002955250

This self-diagnosis has one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition		Possible cause
P2119 2119	Electric throttle control actuator	A)	Electric throttle control actuator does not function properly due to the return spring malfunction.	
		B)	Throttle valve opening angle in fail-safe mode is not in specified range.	Electric throttle control actuator
		C)	ECM detect the throttle valve is stuck open.	

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Detected items	Engine operating condition in fail-safe mode	
Malfunction A	The ECM controls the electric throttle actuator by regulating the throttle opening around the idle position. The engine speed will not rise more than 2,000 rpm.	
Malfunction B	ECM controls the electric throttle control actuator by regulating the throttle opening to 20 degrees or less.	
Malfunction C	While the vehicle is driving, it slows down gradually by fuel cut. After the vehicle stops, the engine stalls. The engine can restart in N or P position, and engine speed will not exceed 1,000 rpm or more.	

DTC Confirmation Procedure

INFOID:0000000002955251

NOTE:

- Perform PROCEDURE FOR MALFUNCTION A AND B first. If the DTC cannot be confirmed, perform PROCEDURE FOR MALFUNCTION C.
- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

PROCEDURE FOR MALFUNCTION A AND B

- 1. Turn ignition switch ON and wait at least 1 second.
- 2. Shift selector lever to D position and wait at least 3 seconds.
- 3. Shift selector lever to P position.
- 4. Turn ignition switch OFF and wait at least 10 seconds.
- 5. Turn ignition switch ON and wait at least 1 second.
- 6. Shift selector lever to D position and wait at least 3 seconds.
- 7. Shift selector lever to P position.
- 8. Turn ignition switch OFF, wait at least 10 seconds, and then turn ON.
- 9. Check DTC.
- 10. If DTC is detected, go to EC-1187, "Diagnosis Procedure".

PROCEDURE FOR MALFUNCTION C

- 1. Turn ignition switch ON and wait at least 1 second.
- Shift selector lever to D position and wait at least 3 seconds.
- 3. Shift selector lever to P position.

DTC P2119 ELECTRIC THROTTLE CONTROL ACTUATOR

< SERVICE INFORMATION >

- Start engine and let it idle for 3 seconds.
- 5. Check DTC.
- 6. If DTC is detected, go to EC-1187, "Diagnosis Procedure".

Diagnosis Procedure

INFOID:0000000002955252 EC

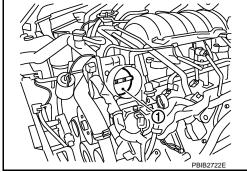
[VK45DE]

Α

D

Е

1. CHECK ELECTRIC THROTTLE CONTROL ACTUATOR VISUALLY


- Remove the intake air duct.
- 2. Check if foreign matter is caught between the throttle valve (1) and the housing.
- This illustration shows the view with intake air removed.

OK or NG

OK >> GO TO 2.

NG

>> Remove the foreign matter and clean the electric throttle control actuator inside.

2. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- Replace the electric throttle control actuator.
- Perform EC-706, "Throttle Valve Closed Position Learning". 2.
- Perform EC-707, "Idle Air Volume Learning".

>> INSPECTION END

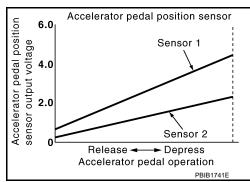
Н

K

M

L

Ν


INFOID:0000000002955253

DTC P2122, P2123 APP SENSOR

Component Description

The accelerator pedal position sensor is installed on the upper end of the accelerator pedal assembly. The sensor detects the accelerator position and sends a signal to the ECM.

Accelerator pedal position sensor has two sensors. These sensors are a kind of potentiometers which transform the accelerator pedal position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the accelerator pedal and feed the voltage signals to the ECM. The ECM judges the current opening angle of the accelerator pedal from these signals and controls the throttle control motor based on these signals.

Idle position of the accelerator pedal is determined by the ECM receiving the signal from the accelerator pedal position sensor. The ECM uses this signal for the engine operation such as fuel cut.

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002955254

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
ACCEL SEN 1	Ignition switch: ON	Accelerator pedal: Fully released	0.4 - 1.1V
ACCEL SEN 2*	(Engine stopped)	Accelerator pedal: Fully depressed	3.7 - 4.8V
CLSD THL POS	Ignition switch: ON	Accelerator pedal: Fully released	ON
CLSD THE POS	(Engine stopped)	Accelerator pedal: Slightly depressed	OFF

^{*:} Accelerator pedal position sensor 2 signal is converted by ECM internally. Thus, it differs from ECM terminal voltage.

On Board Diagnosis Logic

INFOID:0000000002955255

These self-diagnoses have the one trip detection logic.

If DTC P2122 or P2123 is displayed with DTC P0643, first perform the trouble diagnosis for DTC P0643. Refer to EC-1061, "DTC Confirmation Procedure".

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P2122 2122	Accelerator pedal position sensor 1 circuit low input	An excessively low voltage from the APP sensor 1 is sent to ECM.	Harness or connectors (APP sensor 1 circuit is open or shorted.)
P2123 2123	Accelerator pedal position sensor 1 circuit high input	An excessively high voltage from the APP sensor 1 is sent to ECM.	Accelerator pedal position sensor (APP sensor 1)

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

DTC Confirmation Procedure

INFOID:0000000002955256

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 8V at idle.

DTC P2122, P2123 APP SENSOR

< SERVICE INFORMATION >

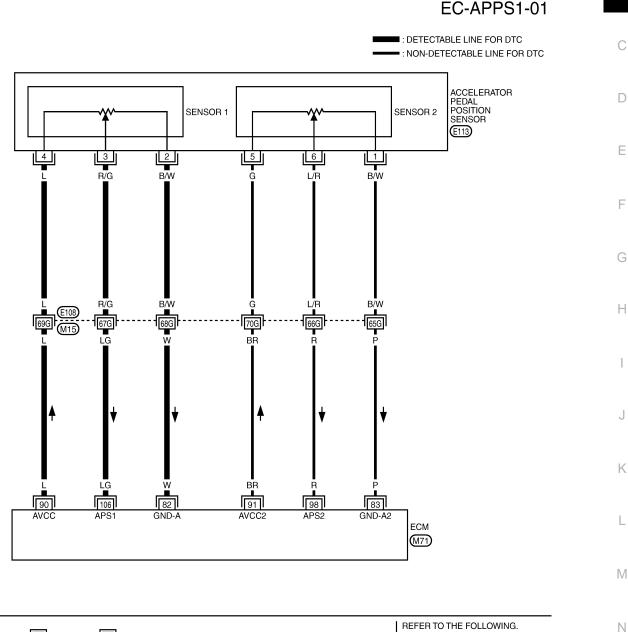
[VK45DE]

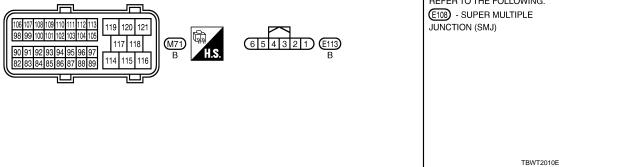
INFOID:0000000002955257

Α

EC

F


K


0

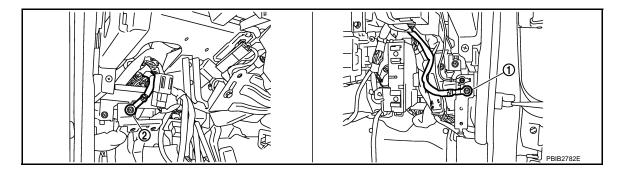
Р

- Start engine and let it idle for 1 second.
- 2. Check DTC.
- If DTC is detected, go to EC-1190, "Diagnosis Procedure".

Wiring Diagram

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
82	W	Sensor ground (APP sensor 1)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
83	Р	Sensor ground (APP sensor 2)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
90	L	Sensor power supply (APP sensor 1)	[Ignition switch: ON]	Approximately 5V
91	BR	Sensor power supply (APP sensor 2)	[Ignition switch: ON]	Approximately 5V
98	R	Accelerator pedal position	[Ignition switch: ON] • Engine: Stopped • Accelerator pedal: Fully released	0.20 - 0.55V
90	K	sensor 2	[Ignition switch: ON] • Engine: Stopped • Accelerator pedal: Fully depressed	1.85 - 2.40V
106	Accelerator pedal position • Accelerator pedal: Fully released	0.4 - 1.1V		
100	LG	sensor 1	[Ignition switch: ON] • Engine: Stopped • Accelerator pedal: Fully depressed	3.7 - 4.8V

Diagnosis Procedure

INFOID:0000000002955258

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten ground screws on the body. Refer to <u>EC-769</u>, "<u>Ground Inspection"</u>.

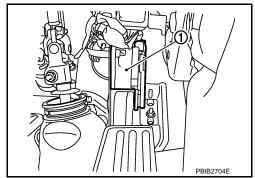
1. Body ground M70

2. Body ground M16

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

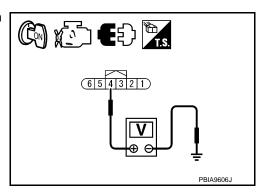

2. CHECK APP SENSOR 1 POWER SUPPLY CIRCUIT

DTC P2122, P2123 APP SENSOR

< SERVICE INFORMATION >

[VK45DE]

- Disconnect accelerator pedal position (APP) sensor (1) harness connector.
- 2. Turn ignition switch ON.



Check voltage between APP sensor terminal 4 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3.DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- Harness for open or short between ECM and accelerator pedal position sensor

>> Repair open circuit or short to ground or short to power in harness or connectors.

f 4.CHECK APP SENSOR 1 GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- Disconnect ECM harness connector. 2.
- Check harness continuity between APP sensor terminal 2 and ECM terminal 82. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

${f 5.}$ DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- Harness for open or short between ECM and accelerator pedal position sensor

>> Repair open circuit or short to ground or short to power in harness or connectors.

$oldsymbol{6}$.CHECK APP SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Check harness continuity between ECM terminal 106 and APP sensor terminal 3. Refer to Wiring Diagram.

Continuity should exist.

Also check harness for short to ground and short to power.

OK or NG

EC-1191 Revision: 2009 February 2008 M35/M45

EC

Α

D

Е

F

Р

OK >> GO TO 8. NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

Check the following.

• Harness connectors E108, M15

< SERVICE INFORMATION >

- Harness for open or short between ECM and accelerator pedal position sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

8.CHECK APP SENSOR

Refer to EC-1192, "Component Inspection".

OK or NG

OK >> GO TO 10. NG >> GO TO 9.

9. REPLACE ACCELERATOR PEDAL ASSEMBLY

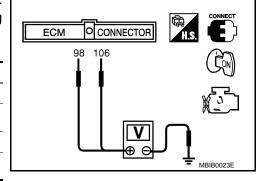
- Replace accelerator pedal assembly.
- Perform <u>EC-706</u>, "Accelerator <u>Pedal Released Position Learning</u>".
- 3. Perform EC-706, "Throttle Valve Closed Position Learning".
- 4. Perform EC-707, "Idle Air Volume Learning".

>> INSPECTION END

10. CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

>> INSPECTION END


Component Inspection

INFOID:0000000002955259

ACCELERATOR PEDAL POSITION SENSOR

- 1. Reconnect all harness connectors disconnected.
- 2. Turn ignition switch ON.
- Check voltage between ECM terminals 106 (APP sensor 1 signal), 98 (APP sensor 2 signal) and ground under the following conditions.

Terminal	Accelerator pedal	Voltage
	710001014101 pedal	voltage
106	Fully released	0.4 - 1.1V
(Accelerator pedal position sensor 1)	Fully depressed	3.7 - 4.8V
98	Fully released	0.20 - 0.55V
(Accelerator pedal position sensor 2)	Fully depressed	1.85 - 2.40V

- 4. If NG, replace accelerator pedal assembly and go to next step.
- 5. Perform EC-706, "Accelerator Pedal Released Position Learning".
- 6. Perform EC-706, "Throttle Valve Closed Position Learning".
- 7. Perform EC-707, "Idle Air Volume Learning".

Removal and Installation

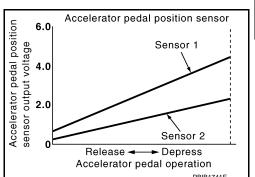
INFOID:0000000002955260

ACCELERATOR PEDAL

Refer to ACC-3.

INFOID:0000000002955261

INFOID:0000000002955262


DTC P2127, P2128 APP SENSOR

Component Description

The accelerator pedal position sensor is installed on the upper end of the accelerator pedal assembly. The sensor detects the accelerator position and sends a signal to the ECM.

Accelerator pedal position sensor has two sensors. These sensors are a kind of potentiometers which transform the accelerator pedal position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the accelerator pedal and feed the voltage signals to the ECM. The ECM judges the current opening angle of the accelerator pedal from these signals and controls the throttle control motor based on these signals.

Idle position of the accelerator pedal is determined by the ECM Leavest this signal for the engine operation such as fuel cut.

CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
ACCEL SEN 1 • Ignition switch: ON	Ignition switch: ON	Accelerator pedal: Fully released	0.4 - 1.1V
ACCEL SEN 2*	(Engine stopped)	Accelerator pedal: Fully depressed	3.7 - 4.8V
CLSD THL POS • Ignition switch: ON		Accelerator pedal: Fully released	ON
CLSD THE POS	(Engine stopped)	Accelerator pedal: Slightly depressed	OFF

^{*:} Accelerator pedal position sensor 2 signal is converted by ECM internally. Thus, it differs from ECM terminal voltage.

On Board Diagnosis Logic

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P2127 2127	Accelerator pedal position sensor 2 circuit low input	An excessively low voltage from the APP sensor 2 is sent to ECM.	Harness or connectors (APP sensor 2 circuit is open or shorted.)
P2128 2128	Accelerator pedal position sensor 2 circuit high input	An excessively high voltage from the APP sensor 2 is sent to ECM.	 (TP sensor circuit is shorted.) Accelerator pedal position sensor (APP sensor 2) Electric throttle control actuator (TP sensor 1 and 2)

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

DTC Confirmation Procedure

INFOID:0000000002955264

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 8V at idle.

Revision: 2009 February **EC-1193** 2008 M35/M45

EC

Α

D

Е

.

11

INFOID:00000000002955263

Κ

ı

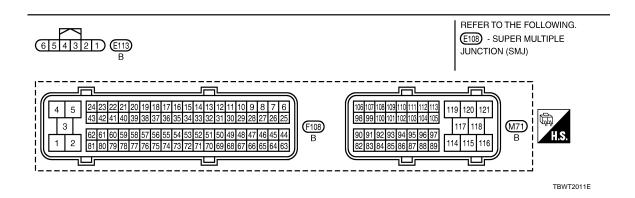
M

N

0

Р

- 1. Start engine and let it idle for 1 second.
- 2. Check DTC.
- 3. If DTC is detected, go to EC-1195, "Diagnosis Procedure".


Wiring Diagram

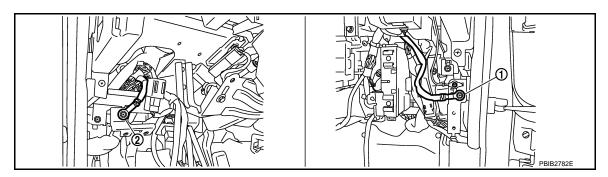
INFOID:0000000002955265

EC-APPS2-01

: DETECTABLE LINE FOR DTC
: NON-DETECTABLE LINE FOR DTC

Specification data are reference values and are measured between each terminal and ground. **CAUTION**:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
47	G	Sensor power supply (Throttle position sensor)	[Ignition switch: ON]	Approximately 5V	С
82	W	Sensor ground (APP sensor 1)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V	D
83	Р	Sensor ground (APP sensor 2)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V	E
90	L	Sensor power supply (APP sensor 1)	[Ignition switch: ON]	Approximately 5V	
91	BR	Sensor power supply (APP sensor 2)	[Ignition switch: ON]	Approximately 5V	F
98	R	Accelerator pedal position	[Ignition switch: ON] • Engine: Stopped • Accelerator pedal: Fully released	0.20 - 0.55V	G
98	K	sensor 2	[Ignition switch: ON] • Engine: Stopped • Accelerator pedal: Fully depressed	1.85 - 2.40V	Н
400	1.0	Accelerator pedal position	[Ignition switch: ON] • Engine: Stopped • Accelerator pedal: Fully released		-
106	LG	sensor 1	[Ignition switch: ON] • Engine: Stopped • Accelerator pedal: Fully depressed	3.7 - 4.8V	J

Diagnosis Procedure

1. CHECK GROUND CONNECTIONS

Turn ignition switch OFF.

Loosen and retighten ground screws on the body. Refer to EC-769, "Ground Inspection".

1. Body ground M70

2. Body ground M16

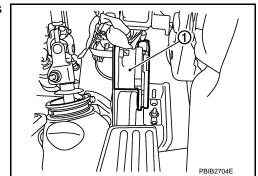
OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK APP SENSOR 2 POWER SUPPLY CIRCUIT-I

EC-1195

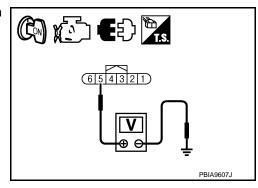

INFOID:0000000002955266

K

Ν

< SERVICE INFORMATION >

- Disconnect accelerator pedal position (APP) sensor (1) harness connector.
- 2. Turn ignition switch ON.



Check voltage between APP sensor terminal 5 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 8. NG >> GO TO 3.

3. CHECK APP SENSOR 2 POWER SUPPLY CIRCUIT-II

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between APP sensor terminal 5 and ECM terminal 91. Refer to Wiring Diagram.

Continuity should exist.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- Harness for open or short between ECM and accelerator pedal position sensor

>> Repair open circuit.

5. CHECK APP SENSOR 2 POWER SUPPLY CIRCUIT-III

Check harness for short to power and short to ground, between the following terminals.

ECM terminal	Sensor terminal	Reference Wiring Diagram	
91	APP sensor terminal 5	EC-1194	
47	Electric throttle control actuator terminal 1	EC-834	

OK or NG

OK >> GO TO 6.

NG >> Repair short to ground or short to power in harness or connectors.

6. CHECK THROTTLE POSITION SENSOR

Refer to EC-837, "Component Inspection".

OK or NG

OK >> GO TO 14.

Revision: 2009 February **EC-1196** 2008 M35/M45

DTC P2127, P2128 APP SENSOR

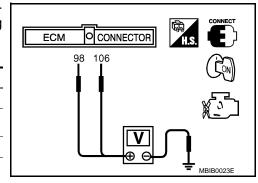
< SERVICE INFORMATION >	[VK45DE]
NG >> GO TO 7.	
7. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR	
 Replace the electric throttle control actuator. Perform <u>EC-706</u>, "<u>Throttle Valve Closed Position Learning</u>". Perform <u>EC-707</u>, "<u>Idle Air Volume Learning</u>". 	E
>> INSPECTION END 8.CHECK APP SENSOR 2 GROUND CIRCUIT FOR OPEN AND SHORT	
Turn ignition switch OFF.	
 Disconnect ECM harness connector. Check harness continuity between APP sensor terminal 1 and ECM terminal 83. Refer to Wiring Diagram. 	
Continuity should exist.	
Also check harness for short to ground and short to power.	
OK or NG	
OK >> GO TO 10. NG >> GO TO 9.	
9. DETECT MALFUNCTIONING PART	
Check the following.	
Harness connectors E108, M15 Harness for open or short between ECM and accelerator pedal position sensor	
Than see for open or enert section. 20th and according postal postal contest.	
>> Repair open circuit or short to ground or short to power in harness or connectors.	
10.CHECK APP SENSOR 2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT	
 Check harness continuity between ECM terminal 98 and APP sensor terminal 6. Refer to Wiring Diagram. 	
Continuity should exist.	
2. Also check harness for short to ground and short to power.	
<u>OK or NG</u> OK >> GO TO 12.	
NG >> GO TO 11.	
11.detect malfunctioning part	
Check the following.	
Harness connectors E108, M15 Harness for open or short between ECM and accelerator pedal position sensor	
>> Repair open circuit or short to ground or short to power in harness or connectors.	
2.CHECK APP SENSOR	
Refer to EC-1198, "Component Inspection".	
<u>DK or NG</u> OK >> GO TO 14.	
NG >> GO TO 13.	
13. REPLACE ACCELERATOR PEDAL ASSEMBLY	
Replace accelerator pedal assembly. Perform EC-706, "Accelerator Pedal Released Position Learning".	
3. Perform EC-706, "Throttle Valve Closed Position Learning".	
4. Perform EC-707, "Idle Air Volume Learning".	

>> INSPECTION END

14. CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

>> INSPECTION END


Component Inspection

INFOID:0000000002955267

ACCELERATOR PEDAL POSITION SENSOR

- Reconnect all harness connectors disconnected.
- 2. Turn ignition switch ON.
- Check voltage between ECM terminals 106 (APP sensor 1 signal), 98 (APP sensor 2 signal) and ground under the following conditions.

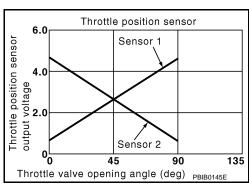
Terminal	Accelerator pedal	Voltage
106	Fully released	0.4 - 1.1V
(Accelerator pedal position sensor 1)	Fully depressed	3.7 - 4.8V
98	Fully released	0.20 - 0.55V
(Accelerator pedal position sensor 2)	Fully depressed	1.85 - 2.40V

- 4. If NG, replace accelerator pedal assembly and go to next step.
- 5. Perform EC-706, "Accelerator Pedal Released Position Learning".
- 6. Perform EC-706, "Throttle Valve Closed Position Learning".
- 7. Perform EC-707, "Idle Air Volume Learning".

Removal and Installation

INFOID:0000000002955268

ACCELERATOR PEDAL


Refer to ACC-3.

DTC P2135 TP SENSOR

Component Description

Electric throttle control actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
TP SEN 1-B1	Ignition switch: ON	Accelerator pedal: Fully released	More than 0.36V
TP SEN 2-B1*	(Engine stopped) • Selector lever: D	Accelerator pedal: Fully depressed	Less than 4.75V

^{*:} Throttle position sensor 2 signal is converted by ECM internally. Thus, it differs from ECM terminal voltage signal.

On Board Diagnosis Logic

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P2135 2135	Throttle position sensor circuit range/performance	Rationally incorrect voltage is sent to ECM compared with the signals from TP sensor 1 and TP sensor 2.	Harness or connector (TP sensor 1 and 2 circuit is open or shorted.) (APP sensor 2 circuit is shorted.) Electric throttle control actuator (TP sensor 1 and 2) Accelerator pedal position sensor (APP sensor 2)

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operation condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

DTC Confirmation Procedure

INFOID:0000000002955272

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

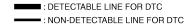
Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

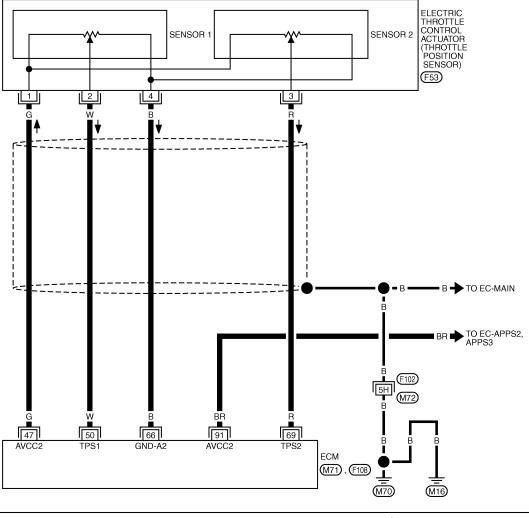
- Start engine and let it idle for 1 second.
- 2. Check DTC.
- If DTC is detected, go to EC-1201, "Diagnosis Procedure".

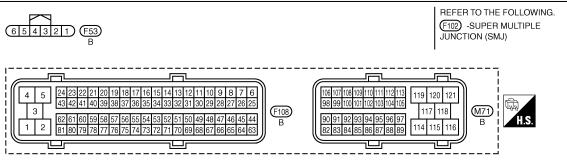
EC

INFOID:0000000002955269

INFOID:0000000002955270


INFOID:0000000002955271


Α


EC-1199 Revision: 2009 February 2008 M35/M45 Wiring Diagram

INFOID:0000000002955273

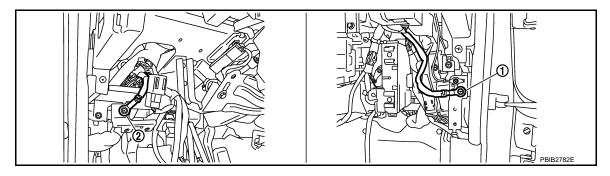
EC-TPS3-01

TBWT1503E

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
47	G	Sensor power supply (Throt- tle position sensor)	[Ignition switch: ON]	Approximately 5V
50	W	Throttle position concer 4	[Ignition switch: ON]Engine: StoppedSelector lever: DAccelerator pedal: Fully released	More than 0.36V
50	VV	Throttle position sensor 1	 [Ignition switch: ON] Engine: Stopped Selector lever: D Accelerator pedal: Fully depressed 	Less than 4.75V
66	В	Sensor ground (Throttle position sensor)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
69	R	Throttle position sensor 2	[Ignition switch: ON]Engine: StoppedSelector lever: DAccelerator pedal: Fully released	Less than 4.75V
09	IX	THOME POSIDON SENSON 2	 [Ignition switch: ON] Engine: Stopped Selector lever: D Accelerator pedal: Fully depressed 	More than 0.36V
91	BR	Sensor power supply (APP sensor 2)	[Ignition switch: ON]	Approximately 5V


Diagnosis Procedure

INFOID:0000000002955274

1. CHECK GROUND CONNECTIONS

1. Turn ignition switch OFF.

2. Loosen and retighten ground screws on the body. Refer to <u>EC-769</u>, "<u>Ground Inspection"</u>.

1. Body ground M70

2. Body ground M16

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.CHECK THROTTLE POSITION SENSOR POWER SUPPLY CIRCUIT-I

Revision: 2009 February **EC-1201** 2008 M35/M45

EC

Α

_ D

Е

F

G

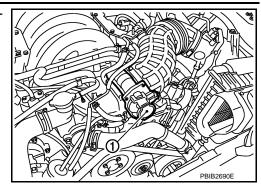
Н

L

K

M

Ν

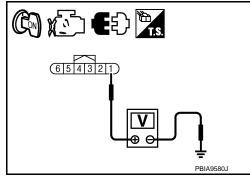

N

0

Р

< SERVICE INFORMATION >

- Disconnect electric throttle control actuator (1) harness connector.
- Illustration shows the view with intake air duct removed.
- 2. Turn ignition switch ON.



3. Check voltage between electric throttle control actuator terminal 1 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 7. NG >> GO TO 3.

$\overline{\mathbf{3}}$.check throttle position sensor power supply circuit-ii

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between electric throttle control actuator terminal 1 and ECM terminal 47. Refer to Wiring Diagram.

Continuity should exist.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit.

4. CHECK THROTTLE POSITION SENSOR POWER SUPPLY CIRCUIT-III

Check harness for short to power and short to ground, between the following terminals.

ECM terminal	Sensor terminal	Reference Wiring Diagram
47	Electric throttle control actuator terminal 1	EC-1200
91	APP sensor terminal 5	EC-1194

OK or NG

OK >> GO TO 5

NG >> Repair short to ground or short to power in harness or connectors.

5. CHECK APP SENSOR

Refer to EC-1198, "Component Inspection".

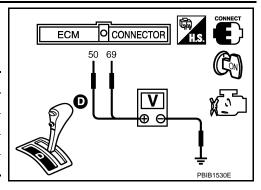
OK or NG

OK >> GO TO 11. NG >> GO TO 6.

6. REPLACE ACCELERATOR PEDAL ASSEMBLY

- 1. Replace accelerator pedal assembly.
- 2. Perform EC-706, "Accelerator Pedal Released Position Learning".
- 3. Perform EC-706, "Throttle Valve Closed Position Learning".
- 4. Perform EC-707, "Idle Air Volume Learning".

>> INSPECTION END $7. \text{CHECK THROTTLE POSITION SENSOR GROUND CIRCUIT FOR OPEN AND SHORT} \\$	А
 Turn ignition switch OFF. Disconnect ECM harness connector. Check harness continuity between electric throttle control actuator terminal 4 and ECM terminal 66. 	EC
Refer to Wiring Diagram. Continuity should exist.	С
Also check harness for short to ground and short to power. OK or NG	D
OK >> GO TO 8. NG >> Repair open circuit or short to ground or short to power in harness or connectors. 8.CHECK THROTTLE POSITION SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT	Е
Check harness continuity between ECM terminal 50 and electric throttle control actuator terminal 2, ECM terminal 69 and electric throttle control actuator terminal 3. Refer to Wiring Diagram.	F
Continuity should exist. 2. Also check harness for short to ground and short to power.	G
OK or NG OK >> GO TO 9. NG >> Repair open circuit or short to ground or short to power in harness or connectors. 9.CHECK THROTTLE POSITION SENSOR	Н .
Refer to EC-1203, "Component Inspection".	ı
OK or NG OK >> GO TO 11. NG >> GO TO 10.	J
10.REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR	K
 Replace the electric throttle control actuator. Perform <u>EC-706</u>, "<u>Throttle Valve Closed Position Learning</u>". Perform <u>EC-707</u>, "<u>Idle Air Volume Learning</u>". 	L
>> INSPECTION END	
11. CHECK INTERMITTENT INCIDENT	M
Refer to EC-763, "Diagnosis Procedure".	
>> INSPECTION END	Ν
Component Inspection	
THROTTLE POSITION SENSOR	0
 Reconnect all harness connectors disconnected. Perform <u>EC-706</u>, "<u>Throttle Valve Closed Position Learning</u>". 	Р
3. Turn ignition switch ON.4. Set selector lever to D position.	


DTC P2135 TP SENSOR

< SERVICE INFORMATION >

[VK45DE]

Check voltage between ECM terminals 50 (TP sensor 1 signal),
 69 (TP sensor 2 signal) and ground under the following conditions.

Terminal	Accelerator pedal	Voltage
50	Fully released	More than 0.36V
(Throttle position sensor 1)	Fully depressed	Less than 4.75V
69	Fully released	Less than 4.75V
(Throttle position sensor 2)	Fully depressed	More than 0.36V

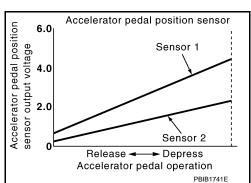
- If NG, replace electric throttle control actuator and go to the next step.
- 7. Perform EC-706, "Throttle Valve Closed Position Learning".
- 8. Perform EC-707, "Idle Air Volume Learning".

Removal and Installation

INFOID:0000000002955276

ELECTRIC THROTTLE CONTROL ACTUATOR Refer to EM-177.

INFOID:0000000002955277


DTC P2138 APP SENSOR

Component Description

The accelerator pedal position sensor is installed on the upper end of the accelerator pedal assembly. The sensor detects the accelerator position and sends a signal to the ECM.

Accelerator pedal position sensor has two sensors. These sensors are a kind of potentiometers which transform the accelerator pedal position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the accelerator pedal and feed the voltage signals to the ECM. The ECM judges the current opening angle of the accelerator pedal from these signals and controls the throttle control motor based on these

Idle position of the accelerator pedal is determined by the ECM receiving the signal from the accelerator pedal position sensor. The ECM uses this signal for the engine operation such as fuel cut.

CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
ACCEL SEN 1	Ignition switch: ON	Accelerator pedal: Fully released	0.4 - 1.1V
ACCEL SEN 2*	(Engine stopped)	pped) Accelerator pedal: Fully depressed	
CLSD THL POS	Ignition switch: ON	Accelerator pedal: Fully released	ON
CL3D THE PO3	(Engine stopped)	Accelerator pedal: Slightly depressed	OFF

^{*:} Accelerator pedal position sensor 2 signal is converted by ECM internally. Thus, it differs from ECM terminal voltage.

On Board Diagnosis Logic

This self-diagnosis has the one trip detection logic.

If DTC P2138 is displayed with DTC P0643, first perform the trouble diagnosis for DTC P0643. Refer to EC-1061, "DTC Confirmation Procedure".

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P2138 2138	Accelerator pedal position sensor circuit range/performance	Rationally incorrect voltage is sent to ECM compared with the signals from APP sensor 1 and APP sensor 2.	Harness or connector (APP sensor 1 and 2 circuit is open or shorted.) (TP sensor circuit is shorted.) Accelerator pedal position sensor (APP sensor 1 and 2) Electric throttle control actuator (TP sensor 1 and 2)

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10

The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

DTC Confirmation Procedure

INFOID:0000000002955280

NOTE:

EC-1205 Revision: 2009 February 2008 M35/M45

EC

Α

INFOID:0000000002955278

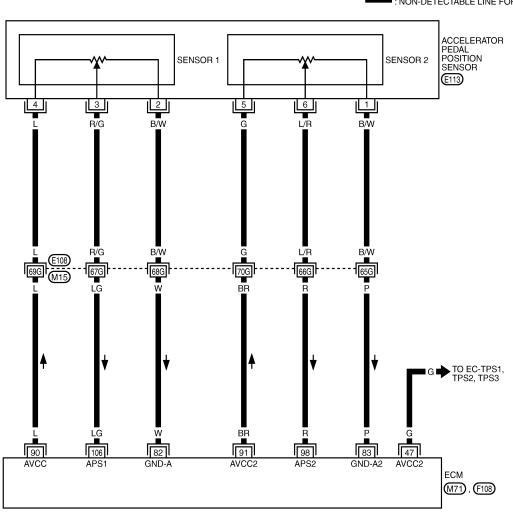
INFOID:0000000002955279

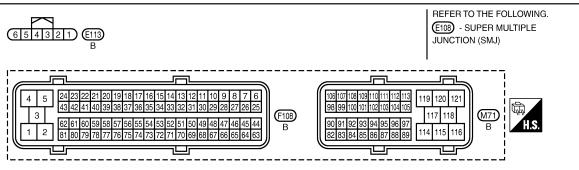
N

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 8V at idle.


- Start engine and let it idle for 1 second.
- 2. Check DTC.
- 3. If DTC is detected, go to EC-1207, "Diagnosis Procedure".


Wiring Diagram

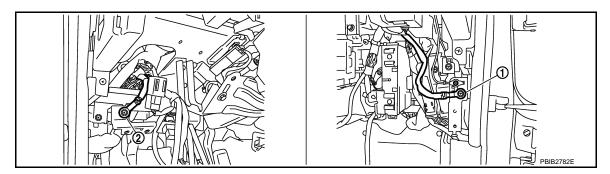
INFOID:0000000002955281

EC-APPS3-01

: DETECTABLE LINE FOR DTC
: NON-DETECTABLE LINE FOR DTC

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
47	G	Sensor power supply (Throttle position sensor)	[Ignition switch: ON]	Approximately 5V
82	W	Sensor ground (APP sensor 1)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
83	Р	Sensor ground (APP sensor 2)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
90	L	Sensor power supply (APP sensor 1)	[Ignition switch: ON]	Approximately 5V
91	BR	Sensor power supply (APP sensor 2)	[Ignition switch: ON]	Approximately 5V
00	98 R Accelerator pedal position sensor 2		[Ignition switch: ON] • Engine: Stopped • Accelerator pedal position Results of the control of	0.20 - 0.55V
90		[Ignition switch: ON] • Engine: Stopped		1.85 - 2.40V
106 16	1.0	Accelerator pedal position	[Ignition switch: ON] • Engine: Stopped • Accelerator pedal: Fully released	0.4 - 1.1V
	sensor 1	[Ignition switch: ON] • Engine: Stopped • Accelerator pedal: Fully depressed	3.7 - 4.8V	

Diagnosis Procedure

1. CHECK GROUND CONNECTIONS

1. Turn ignition switch OFF.

2. Loosen and retighten ground screws on the body. Refer to <u>EC-769</u>, "<u>Ground Inspection</u>".

1. Body ground M70

2. Body ground M16

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

Revision: 2009 February EC-1207

EC

Α

D

Е

F

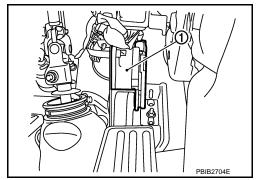
Н

.

INFOID:0000000002955282

M

Ν


0

Р

2008 M35/M45

2.CHECK APP SENSOR 1 POWER SUPPLY CIRCUIT

- 1. Disconnect accelerator pedal position (APP) sensor (1) harness connector.
- 2. Turn ignition switch ON.

3. Check voltage between APP sensor terminal 4 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

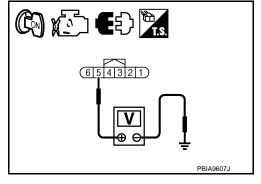
OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- Harness for open or short between ECM and accelerator pedal position sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.


4. CHECK APP SENSOR 2 POWER SUPPLY CIRCUIT-I

- 1. Turn ignition switch ON.
- Check voltage between APP sensor terminal 5 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 10. NG >> GO TO 5.

5. CHECK APP SENSOR 2 POWER SUPPLY CIRCUIT-II

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between APP sensor terminal 5 and ECM terminal 91. Refer to Wiring Diagram.

Continuity should exist.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

DTC P2138 APP SENSOR [VK45DE] < SERVICE INFORMATION > 6. DETECT MALFUNCTIONING PART Check the following. Harness connectors E108, M15 Harness for open or short between ECM and accelerator pedal position sensor EC >> Repair open circuit. 7 .CHECK APP SENSOR 2 POWER SUPPLY CIRCUIT-III Check harness for short to power and short to ground, between the following terminals. D ECM terminal Sensor terminal Reference Wiring Diagram 91 APP sensor terminal 4 EC-1206 47 Electric throttle control actuator terminal 1 EC-1200 Е OK or NG OK >> GO TO 8. NG >> Repair short to ground or short to power in harness or connectors. 8.CHECK THROTTLE POSITION SENSOR Refer to EC-1203, "Component Inspection". OK or NG OK >> GO TO 16. NG >> GO TO 9. 9.replace electric throttle control actuator Replace the electric throttle control actuator. Perform EC-706, "Throttle Valve Closed Position Learning". 2. Perform EC-707, "Idle Air Volume Learning". >> INSPECTION END 10.check app sensor ground circuit for open and short Turn ignition switch OFF. K Disconnect ECM harness connector. 3. Check harness continuity between APP sensor terminal 2 and ECM terminal 82, APP sensor terminal 1 and ECM terminal 83. Refer to Wiring Diagram. Continuity should exist. 4. Also check harness for short to ground and short to power. OK or NG OK >> GO TO 12. N NG >> GO TO 11. 11. DETECT MALFUNCTIONING PART Check the following. Harness connectors E108, M15 Harness for open or short between ECM and accelerator pedal position sensor Р >> Repair open circuit or short to ground or short to power in harness or connectors.

APP sensor terminal 6.

Refer to Wiring Diagram.

Check harness continuity between ECM terminal 106 and APP sensor terminal 3, ECM terminal 98 and

12.check app sensor input signal circuit for open and short

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 14. NG >> GO TO 13.

13. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- Harness for open or short between ECM and accelerator pedal position sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

14. CHECK APP SENSOR

Refer to EC-1210, "Component Inspection".

OK or NG

OK >> GO TO 16. NG >> GO TO 15.

15. REPLACE ACCELERATOR PEDAL ASSEMBLY

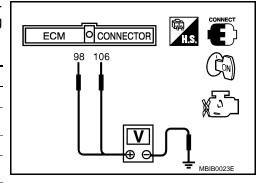
- Replace accelerator pedal assembly.
- Perform EC-706. "Accelerator Pedal Released Position Learning".
- Perform <u>EC-706</u>, "<u>Throttle Valve Closed Position Learning</u>".
 Perform <u>EC-707</u>, "<u>Idle Air Volume Learning</u>".

>> INSPECTION END

16. CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

>> INSPECTION END


Component Inspection

INFOID:0000000002955283

ACCELERATOR PEDAL POSITION SENSOR

- 1. Reconnect all harness connectors disconnected.
- Turn ignition switch ON.
- 3. Check voltage between ECM terminals 106 (APP sensor 1 signal), 98 (APP sensor 2 signal) and ground under the following conditions.

Terminal	Accelerator pedal	Voltage
106	Fully released	0.4 - 1.1V
(Accelerator pedal position sensor 1)	Fully depressed	3.7 - 4.8V
98 (Accelerator pedal position sensor 2)	Fully released	0.20 - 0.55V
	Fully depressed	1.85 - 2.40V

- 4. If NG, replace accelerator pedal assembly and go to next step.
- 5. Perform EC-706, "Accelerator Pedal Released Position Learning".
- 6. Perform EC-706, "Throttle Valve Closed Position Learning".
- 7. Perform EC-707, "Idle Air Volume Learning".

DTC P2138 APP SENSOR

< SERVICE INFORMATION >

Removal and Installation

[VK45DE]

ACCELERATOR PEDAL Refer to <u>ACC-3</u>.

EC

Α

С

D

Е

F

G

Н

1

J

K

L

M

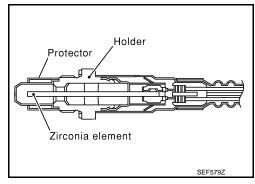
Ν

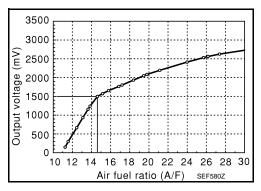
0

Ρ

DTC P2A00, P2A03 A/F SENSOR 1

Component Description


INFOID:0000000002955285


The air fuel ratio (A/F) sensor 1 is a planar dual-cell limit current sensor. The sensor element of the A/F sensor 1 is the combination of a Nernst concentration cell (sensor cell) with an oxygen-pump cell, which transports ions. It has a heater in the element.

The sensor is capable of precise measurement λ = 1, but also in the lean and rich range. Together with its control electronics, the sensor outputs a clear, continuous signal throughout a wide λ range (0.7 < λ < air).

The exhaust gas components diffuse through the diffusion gap at the electrode of the oxygen pump and Nernst concentration cell, where they are brought to thermodynamic balance.

An electronic circuit controls the pump current through the oxygen-pump cell so that the composition of the exhaust gas in the diffusion gap remains constant at λ = 1. Therefore, the A/F sensor 1 is able to indicate air/fuel ratio by this pumping of current. In addition, a heater is integrated in the sensor to ensure the required operating temperature of 700 - 800°C (1,292 - 1,472°F).

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002955286

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
A/F SEN1 (B1) A/F SEN1 (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	Fluctuates around 1.5 V

On Board Diagnosis Logic

INFOID:0000000002955287

To judge the malfunction, the A/F signal computed by ECM from the A/F sensor 1 signal is monitored not to be shifted to LEAN side or RICH side.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible Cause
P2A00 2A00 (Bank 1) P2A03 2A03 (Bank 2)	Air fuel ratio (A/F) sensor 1 circuit range/performance	 The output voltage computed by ECM from the A/F sensor 1 signal is shifted to the lean side for a specified period. The A/F signal computed by ECM from the A/F sensor 1 signal is shifted to the rich side for a specified period. 	A/F sensor 1 A/F sensor 1 heater Fuel pressure Fuel injector Intake air leaks

DTC Confirmation Procedure

INFOID:0000000002955288

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

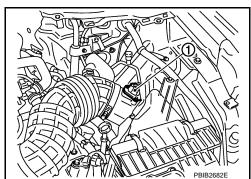
TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(II) WITH CONSULT-III

1. Start engine and warm it up to normal operating temperature.

DTC P2A00, P2A03 A/F SENSOR 1


< SERVICE INFORMATION >

[VK45DE]

- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON and select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CON-SULT-III.
- 4. Clear the self-learning coefficient by touching "CLEAR".
- 5. Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and keep the engine speed between 3,500 and 4,000 rpm for 1 minute under no load.
- 7. Let engine idle for 1 minute.
- 8. Keep engine speed between 2,500 and 3,000 rpm for 20 minutes.
- 9. Check 1st trip DTC.
- 10. If 1st trip DTC is detected, go to EC-1217, "Diagnosis Procedure".

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Disconnect mass air flow sensor (1) harness connector.
- Start engine and let it idle for at least 5 seconds.
- Stop engine and reconnect mass air flow sensor harness connector.
- Select Service \$03 with GST and make sure that DTC P0102 is detected.
- 7. Select Service \$04 with GST and erase the DTC P0102.
- 8. Start engine and keep the engine speed between 3,500 and 4,000 rpm for 1 minute under no load.
- 9. Let engine idle for 1 minute.
- 10. Keep engine speed between 2,500 and 3,000 rpm for 20 minutes.
- 11. Check 1st trip DTC.
- 12. If 1st trip DTC is detected, go to <u>EC-1217. "Diagnosis Procedure".</u>

EC

D

Е

_

G

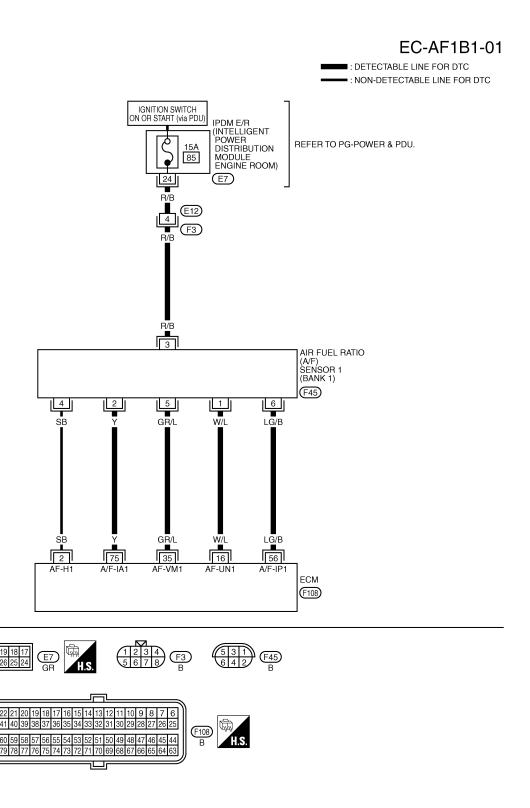
Н

L

K

M

Ν


0

Р

Wiring Diagram

INFOID:0000000002955289

BANK 1

TBWT1046E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III. CAUTION:

3

DTC P2A00, P2A03 A/F SENSOR 1

< SERVICE INFORMATION >

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
2	SB	A/F sensor 1 heater (bank 1)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V★ → 10.0V/Div 10 ms/Div T PBIB1584E
16	W/L			Approximately 3.1V
35	GR/L	A/F sensor 1 (bank 1)	[Engine is running] • Warm-up condition	Approximately 2.6V
56	LG/B	Al Selisol I (Dalik I)	Idle speed	Approximately 2.3V
75	Υ			Approximately 2.3V

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

[VK45DE]

Α

D

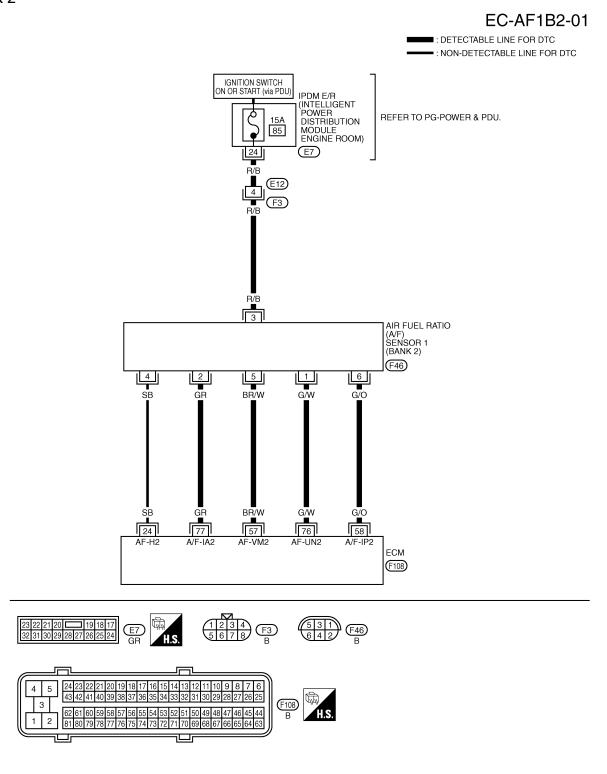
Е

F

G

Н

Р


2008 M35/M45

Ν

0

EC-1215

BANK 2

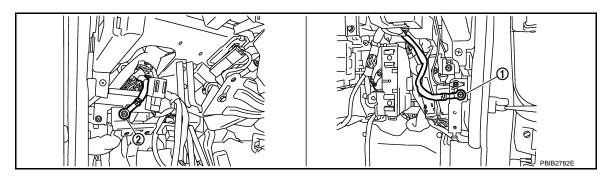
TBWT1047E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI-	WIRE	ITEM	CONDITION	DATA (DC Voltage)
NAL NO.	COLOR		SONDINGN	Divivi (DO Vollago)
24	SB	A/F sensor 1 heater (bank 2)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V★ → 10.0V/Div 10 ms/Div T PBIB1584E
57	BR/W	R/W		Approximately 2.6V
58	G/O	A/E consor 1 (bank 2)	[Engine is running] • Warm-up condition	Approximately 2.3V
76	G/W	A/F sensor 1 (bank 2)	Idle speed	Approximately 3.1V
77	GR			Approximately 2.3V


^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnosis Procedure

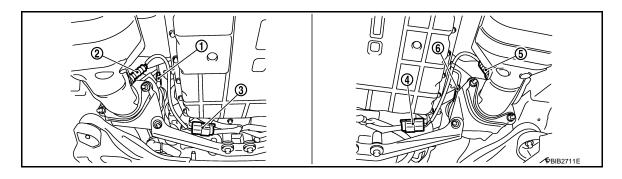
1. CHECK GROUND CONNECTIONS

1. Turn ignition switch OFF.

2. Loosen and retighten ground screws on the body. Refer to <u>EC-769</u>, "Ground Inspection".

1. Body ground M70

2. Body ground M16


OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2.RETIGHTEN AIR FUEL RATIO (A/F) SENSOR 1

1. Loosen and retighten the air fuel ratio (A/F) sensor 1.

EC

Α

D

Е

INFOID:0000000002955290

G

Н

Κ

-

M

N

С

F

- 1. A/F sensor 1 (bank 1)
- 2. Heated oxygen sensor 2 (bank 1)
- Heated oxygen sensor 2 (bank 1) harness connector

- 4. Heated oxygen sensor 2 (bank 2) harness connector
- 5. Heated oxygen sensor 2 (bank 2)
- 6. A/F sensor 1 (bank 2)

Tightening torque: 50 N-m (5.1 kg-m, 37 ft-lb)

>> GO TO 3.

3. CHECK FOR INTAKE AIR LEAK

- 1. Start engine and run it at idle.
- Listen for an intake air leak after the mass air flow sensor.

OK or NG

OK >> GO TO 4.

NG >> Repair or replace.

4.CLEAR THE SELF-LEARNING DATA

(II) With CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-III.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed.

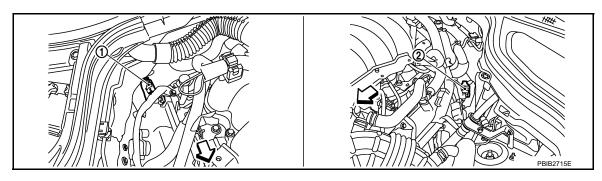
Is the 1st trip DTC P0171, P0172, P0174 or P0175 detected? Is it difficult to start engine?

Without CONSULT-III

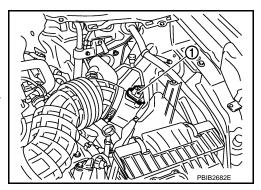
- 1. Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor (1) harness connector.
- 4. Restart engine and let it idle for at least 5 seconds.
- Stop engine and reconnect mass air flow sensor harness connector.
- 6. Make sure DTC P0102 is displayed.
- 7. Erase the DTC memory. Refer to "How to Erase DTC" in <u>EC-677</u>, "Emission-Related Diagnostic Information".
- 8. Make sure DTC P0000 is displayed.
- 9. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0171, P0172, P0174 or P0175 detected? Is it difficult to start engine?

Yes or No


Yes

>> Perform trouble diagnosis for DTC P0171, P0174 or P0172, P0175. Refer to <u>EC-911, "DTC Confirmation Procedure"</u> or <u>EC-922, "DTC Confirmation Procedure"</u>.


No >> GO TO 5.

5. CHECK HARNESS CONNECTOR

- Turn ignition switch OFF.
- 2. Disconnect A/F sensor 1 harness connector.

EC-1218

DTC P2A00, P2A03 A/F SENSOR 1

< SERVICE INFORMATION >

[VK45DE]

⟨□ : Vehicle front

- 1. A/F sensor 1 (bank 2) harness connector
- 2. A/F sensor 1 (bank 1) harness connector

Α

EC

D

Е

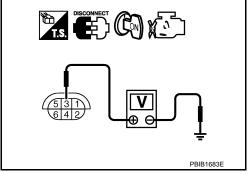
Check harness connector for water.

Water should not exit.

OK or NG

OK >> GO TO 6.

NG >> Repair or replace harness connector.


6.CHECK A/F SENSOR 1 POWER SUPPLY CIRCUIT

- Turn ignition switch ON.
- Check voltage between A/F sensor 1 terminal 3 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E12, F3
- IPDM E/R harness connector E7
- 15A fuse
- · Harness for open or short between A/F sensor 1 and fuse

>> Repair or replace harness or connectors.

$8.\mathsf{CHECK}$ A/F SENSOR 1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check harness continuity between A/F sensor 1 terminal and ECM terminal as follows. Refer to Wiring Diagram.

	A/F sensor 1 terminal	ECM terminal
	1	16
Bank1	2	75
Danki	5	35
	6	56
	1	76
Bank 2	2	77
Dalik 2	5	57
	6	58

Continuity should exist.

Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

Н

M

Ν

Р

Bai	nk 1	Ba	nk 2
A/F sensor 1 terminal	ECM terminal	A/F sensor 1 terminal	ECM terminal
1	16	1	76
2	75	2	77
5	35	5	57
6	56	6	58

Continuity should not exist.

5. Also check harness for short to power.

OK or NG

OK >> GO TO 9.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK A/F SENSOR 1 HEATER

Refer to EC-791, "Component Inspection".

OK or NG

OK >> GO TO 10.

NG >> GO TO 11.

10. CHECK INTERMITTENT INCIDENT

Perform EC-763, "Diagnosis Procedure".

OK or NG

OK >> GO TO 11.

NG >> Repair or replace.

11. REPLACE AIR FUEL RATIO (A/F) SENSOR 1

Replace malfunctioning air fuel ratio (A/F) sensor 1.

CAUTION:

- Discard any A/F sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new A/F sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

>> GO TO 12.

12.CONFIRM A/F ADJUSTMENT DATA

- Turn ignition switch ON.
- 2. Select "A/F ADJ-B1" and "A/F ADJ-B2" in "DATA MONITOR" mode with CONSULT-III.
- Make sure that "0.000" is displayed on CONSULT-III screen.

OK or NG

OK >> INSPECTION END

NG >> GO TO 13.

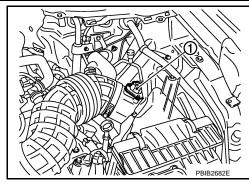
13.clear a/f adjustment data

(II) With CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-III.
- Clear the self-learning control coefficient by touching "CLEAR".

₩ Without CONSULT-III

- Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF.


DTC P2A00, P2A03 A/F SENSOR 1

< SERVICE INFORMATION >

[VK45DE]

- 3. Disconnect mass air flow sensor (1) harness connector.
- 4. Restart engine and let it idle for at least 5 seconds.
- 5. Stop engine and reconnect mass air flow sensor harness connector.
- 6. Make sure DTC P0102 is displayed.
- 7. Erase the DTC memory. Refer to "How to Erase DTC" in <u>EC-677</u>, "Emission-Related Diagnostic Information".
- 8. Make sure DTC P0000 is displayed.

>> GO TO 14.

14. CONFIRM A/F ADJUSTMENT DATA

- 1. Turn ignition switch OFF and then ON.
- 2. Select "A/F ADJ-B1" and "A/F ADJ-B2" in "DATA MONITOR" mode with CONSULT-III.
- 3. Make sure that "0.000" is displayed on CONSULT-III screen.

>> INSPECTION END

Removal and Installation

AIR FUEL RATIO (A/F) SENSOR 1 Refer to EM-181.

F INFOID:0000000002955291

G

Α

EC

C

D

Е

|

Н

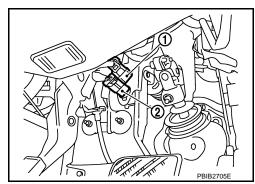
K

L

M

Ν

0

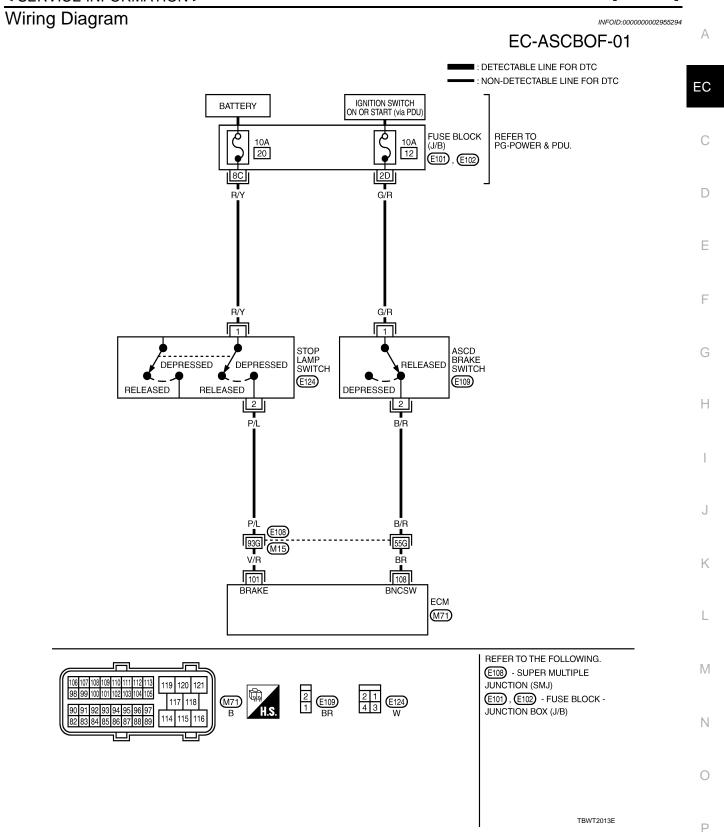

Р

INFOID:0000000002955292

ASCD BRAKE SWITCH

Component Description

When the brake pedal is depressed, ASCD brake switch (2) is turned OFF and stop lamp switch (1) is turned ON. ECM detects the state of the brake pedal by this input of two kinds (ON/OFF signal). Refer to EC-659, "System Description" for the ASCD function.



CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002955293

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
BRAKE SW1 (ASCD brake switch)	Ignition switch: ON	Brake pedal: Fully released	ON
		Brake pedal: Slightly depressed	OFF
BRAKE SW2 (Stop lamp switch)	Ignition switch: ON	Brake pedal: Fully released	OFF
		Brake pedal: Slightly depressed	ON

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

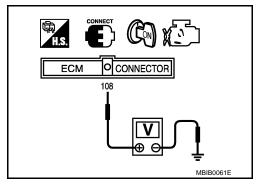
TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
101 V/R	\//P	Stop lamp switch	[Ignition switch: OFF] • Brake pedal: Fully released	Approximately 0V
	V/K		[Ignition switch: OFF] • Brake pedal: Slightly depressed	BATTERY VOLTAGE (11 - 14V)
108 BR	DD	ASCD brake switch	[Ignition switch: ON] • Brake pedal: Slightly depressed	Approximately 0V
	BK	ASOD DIAKE SWILCH	[Ignition switch: ON] • Brake pedal: Fully released	BATTERY VOLTAGE (11 - 14V)

Diagnosis Procedure

INFOID:0000000002955295

1. CHECK OVERALL FUNCTION-I

(I) With CONSULT-III


- 1. Turn ignition switch ON.
- 2. Select "BRAKE SW1" in "DATA MONITOR" mode with CONSULT-III.
- 3. Check "BRAKE SW1" indication under the following conditions.

CONDITION	INDICATION
Brake pedal: Slightly depressed	OFF
Brake pedal: Fully released	ON

⊗ Without CONSULT-III

- 1. Turn ignition switch ON.
- 2. Check voltage between ECM terminal 108 and ground under the following conditions.

CONDITION	VOLTAGE
Brake pedal: Slightly depressed	Approximately 0V
Brake pedal: Fully released	Battery voltage

OK or NG

OK >> INSPECTION END

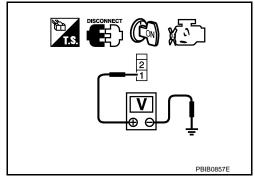
NG >> GO TO 2.

2.CHECK ASCD BRAKE SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect ASCD brake switch (2) harness connector.
- Stop lamp switch (1)
- 3. Turn ignition switch ON.

ASCD BRAKE SWITCH

< SERVICE INFORMATION >


[VK45DE]

 Check voltage between ASCD brake switch terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E102
- 10A fuse
- · Harness for open or short between ASCD brake switch and fuse

>> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK ASCD BRAKE SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 108 and ASCD brake switch terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- Harness for open or short between ECM and ASCD brake switch

>> Repair open circuit or short to ground or short to power in harness or connectors.

6.CHECK ASCD BRAKE SWITCH

Refer to EC-1153, "Component Inspection"

OK or NG

OK >> GO TO 7.

NG >> Replace ASCD brake switch.

7.CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

>> INSPECTION END

Component Inspection

ASCD BRAKE SWITCH

- Turn ignition switch OFF.
- 2. Disconnect ASCD brake switch harness connector.

Α

EC

_

D

Е

F

0

G

Н

K

_

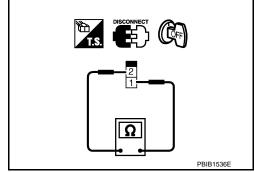
D //

Ν

0

INFOID:00000000002955296

ASCD BRAKE SWITCH


< SERVICE INFORMATION >

[VK45DE]

3. Check continuity between ASCD brake switch terminals 1 and 2 under the following conditions.

Condition	Continuity
Brake pedal: Fully released	Should exist
Brake pedal: Slightly depressed	Should not exist

4. If NG, adjust ASCD brake switch installation, refer to <u>BR-6</u>, and perform step 3 again.

ASCD INDICATOR

Component Description

ASCD indicator lamp illuminates to indicate ASCD operation status. Lamp has two indicators, CRUISE and SET, and is integrated in combination meter.

CRUISE lamp illuminates when MAIN switch on ASCD steering switch is turned ON to indicated that ASCD system is ready for operation.

SET lamp illuminates when following conditions are met.

- CRUISE lamp is illuminated.
- SET/COAST switch on ASCD steering switch is turned ON while vehicle speed is within the range of ASCD setting.

SET lamp remains lit during ASCD control.

Refer to EC-659, "System Description" for the ASCD function.

CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
CRUISE LAMP	Ignition switch: ON	MAIN switch: Pressed at the 1st time \rightarrow at the 2nd time	$ON \to OFF$
	MAIN switch: ON	ASCD: Operating	ON
SET LAMP	Vehicle speed: Between 40 km/h (25 MPH) and 144 km/h (89 MPH)	ASCD: Not operating	OFF

EC

Α

INFOID:0000000002955297

INFOID:0000000002955298

C

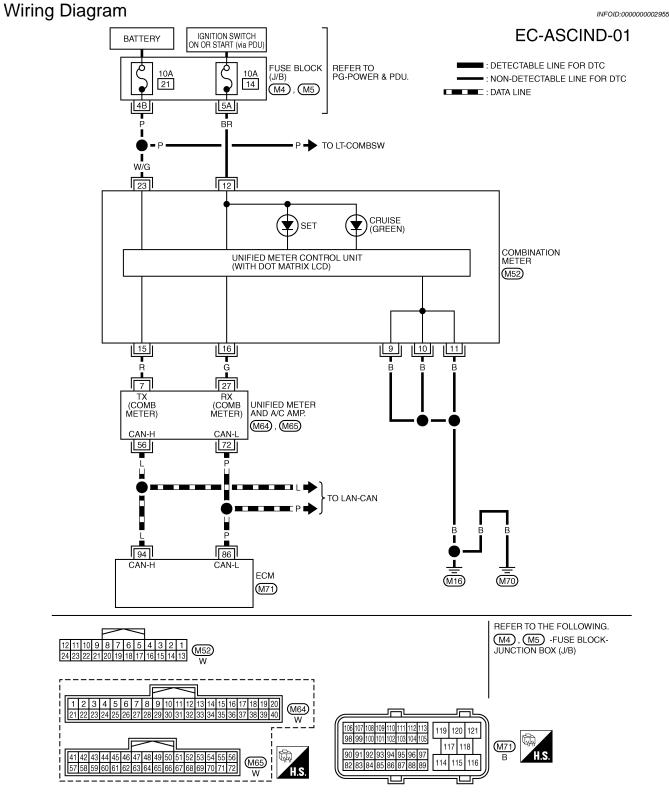
D

Е

F

Н

K


L

M

Ν

Р

Revision: 2009 February

TBWT1507E

Diagnosis Procedure

INFOID:0000000002955300

1. CHECK OVERALL FUNCTION

Check ASCD indicator under the following conditions.

ASCD INDICATOR

< SERVICE INFORMATION >

[VK45DE]

ASCD INDICATOR	CONDITION		SPECIFICATION	
CRUISE LAMP	Ignition switch: ON	MAIN switch: Pressed at the 1st time → at the 2nd time	$ON \to OFF$	_
	MAIN switch: ON	ASCD: Operating	ON	
SET LAMP	 Vehicle speed: Between 40 km/h (25 MPH) and 144 km/h (89 MPH) 	ASCD: Not operating	OFF	
K or NG				_
OK >> INSPECTIO NG >> GO TO 2.	N END			
CHECK DTC				
	or U1001 is not displayed.			_
K or NG	or or to riot display sui			
OK >> GO TO 3.		114004 B (, E0 774 IIB)		
	IDIE diagnosis for DTC U1000, JNIFIED METER AND A/C AN	U1001. Refer to <u>EC-771, "Dia</u>	gnosis Procedure".	
				_
erer to <u>DI-27, CONSU</u> K or NG	LT-III Function (METER/M&A)	<u>-</u> •		
OK >> GO TO 4.				
	"DTC [B2202] Meter Commu	nication Circuit".		
CHECK INTERMITTE				_
efer to EC-763, "Diagno	osis Procedure".			
>> INSPECTIO	N END			

ELECTRICAL LOAD SIGNAL

Description INFOID:0000000002955301

The electrical load signal (Headlamp switch signal, rear window defogger switch signal, heater fan switch signal, etc.) is transferred through the CAN communication line from BCM to ECM via IPDM E/R.

CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002955302

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
		Rear window defogger switch: ON and/or Lighting switch: 2ND position	ON
		Rear window defogger switch and lighting switch: OFF	OFF
HEATER FAN SW	Engine: After warming up, idle the	Heater fan switch: ON	ON
engine		Heater fan switch: OFF	OFF

Diagnosis Procedure

INFOID:0000000002955303

1. CHECK LOAD SIGNAL CIRCUIT OVERALL FUNCTION-I

- Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-III.
- Select "LOAD SIGNAL" and check indication under the following conditions.

Condition	Indication
Rear window defogger switch: ON	ON
Rear window defogger switch: OFF	OFF

OK or NG

OK >> GO TO 2. NG >> GO TO 4.

2.CHECK LOAD SIGNAL CIRCUIT OVERALL FUNCTION-II

Check "LOAD SIGNAL" indication under the following conditions.

Condition	Indication
Lighting switch: ON at 2nd position	ON
Lighting switch: OFF	OFF

OK or NG

OK >> GO TO 3.

NG >> GO TO 5.

3.CHECK HEATER FAN SIGNAL CIRCUIT OVERALL FUNCTION

Select "HEATER FAN SW" and check indication under the following conditions.

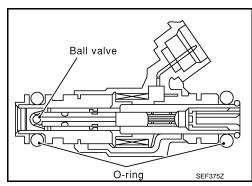
Condition	Indication
Heater fan control switch: ON	ON
Heater fan control switch: OFF	OFF

OK or NG

OK >> INSPECTION END

NG >> GO TO 6.

ELECTRICAL LOAD SIGNAL	
	K45DE]
4.CHECK REAR WINDOW DEFOGGER SYSTEM	A
Refer to <u>GW-64</u> .	
>> INSPECTION END	EC
5.CHECK HEADLAMP SYSTEM	
Refer to LT-34, LT-6 or LT-63.	С
>> INSPECTION END	
6.CHECK HEATER FAN CONTROL SYSTEM	D
Refer to ATC-36.	
>> INSPECTION END	Е
>> INSPECTION END	
	F
	G
	Н
	J
	K
	L
	M
	N.I.
	N
	0
	D
	Р

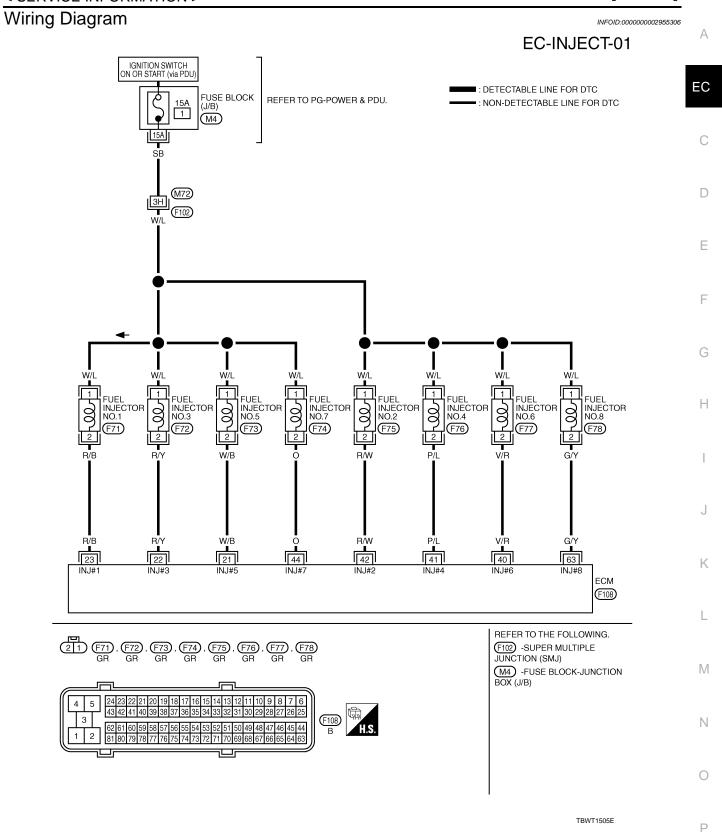

Revision: 2009 February **EC-1231** 2008 M35/M45

INFOID:0000000002955304

FUEL INJECTOR

Component Description

The fuel injector is a small, precise solenoid valve. When the ECM supplies a ground to the fuel injector circuit, the coil in the fuel injector is energized. The energized coil pulls the ball valve back and allows fuel to flow through the fuel injector into the intake manifold. The amount of fuel injected depends upon the injection pulse duration. Pulse duration is the length of time the fuel injector remains open. The ECM controls the injection pulse duration based on engine fuel needs.



CONSULT-III Reference Value in Data Monitor Mode

INFOID:0000000002955305

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
B/FUEL SCHDL	See EC-755, "Inspection Procedure".		
	Engine: After warming up	Idle	2.0 - 3.0 msec
INJ PULSE-B1 INJ PULSE-B2	Selector lever: P or NAir conditioner switch: OFFNo load	2,000 rpm	1.9 - 2.9 msec

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
21 22 23 40	W/B R/Y R/B V/R	Fuel injector No. 5 Fuel injector No. 3 Fuel injector No. 1 Fuel injector No. 6	[Engine is running] • Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle	BATTERY VOLTAGE (11 - 14V)* >> 10.0V/Div 50 ms/Div PBIB0042E
41 42 44 63	P/L R/W O G/Y	Fuel injector No. 4 Fuel injector No. 2 Fuel injector No. 7 Fuel injector No. 8	[Engine is running]Warm-up conditionEngine speed: 2,000 rpm	BATTERY VOLTAGE (11 - 14V)* >>> 10.0V/Div 50 ms/Div PBIB0043E

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnosis Procedure

INFOID:0000000002955307

1. INSPECTION START

Turn ignition switch to START.

Is any cylinder ignited?

Yes or No

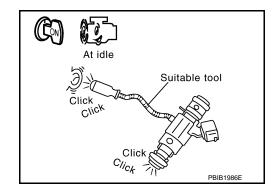
Yes >> GO TO 2. No >> GO TO 3.

2.check overall function

(II) With CONSULT-III

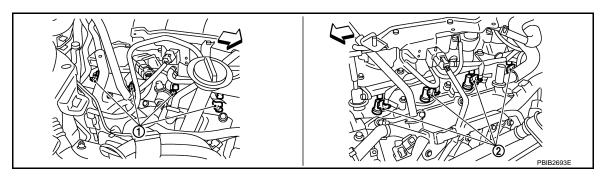
- Start engine.
- Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-III.
- 3. Make sure that each circuit produces a momentary engine speed drop.

⋈ Without CONSULT-III


- 1. Start engine.
- Listen to each fuel injector operating sound.

Operating sound should exist.

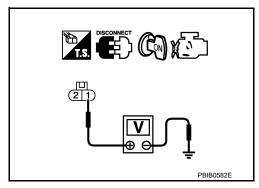
OK or NG


OK >> INSPECTION END

NG >> GO TO 3.

3.CHECK FUEL INJECTOR POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- Disconnect fuel injector harness connectors.


- 1. Fuel injector (bank 2)
- 2. Fuel injector (bank 1)

- 3. Turn ignition switch ON.
- Check voltage between fuel injector terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M72, F102
- Fuse block (J/B) connector M4
- 15A fuse
- · Harness for open or short between fuel injector and fuse

>> Repair open circuit or short to ground or short to power in harness or connectors.

${f 5.}$ CHECK FUEL INJECTOR OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminals 21, 22, 23, 40, 41, 42, 44, 63 and fuel injector terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

6.CHECK FUEL INJECTOR

Refer to EC-1236, "Component Inspection".

OK or NG

OK >> GO TO 7.

NG >> Replace fuel injector.

.CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

>> INSPECTION END

Revision: 2009 February **EC-1235** 2008 M35/M45

EC

Α

C

D

Е

F

G

Н

J

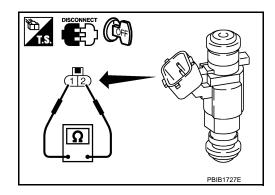
K

ı

M

Ν

Ρ


Component Inspection

INFOID:0000000002955308

FUEL INJECTOR

- 1. Disconnect fuel injector harness connector.
- 2. Check resistance between terminals as shown in the figure.

Resistance: 13.5 - 17.5 Ω [at 10 - 60°C (50 - 140°F)]

Removal and Installation

INFOID:0000000002955309

FUEL INJECTOR Refer to EM-192.

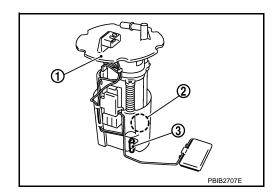
FUEL PUMP

Description

SYSTEM DESCRIPTION

Sensor Input signal to ECM		ECM Function	Actuator
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed*	Fuel pump control	Fuel pump relay
Battery voltage*			

^{*:} ECM determines the start signal status by the signals of engine speed and battery voltage.


The ECM activates the fuel pump for several seconds after the ignition switch is turned ON to improve engine startability. If the ECM receives a engine speed signal from the camshaft position sensor (PHASE), it knows that the engine is rotating, and causes the pump to operate. If the engine speed signal is not received when the ignition switch is ON, the engine stalls. The ECM stops pump operation and prevents battery discharging, thereby improving safety. The ECM does not directly drive the fuel pump. It controls the ON/OFF fuel pump relay, which in turn controls the fuel pump.

Condition	Fuel pump operation
Ignition switch is turned to ON.	Operates for 1 second.
Engine running and cranking	Operates.
When engine is stopped	Stops in 1.5 seconds.
Except as shown above	Stops.

COMPONENT DESCRIPTION

A turbine type design fuel pump is used in the fuel tank.

- Fuel level sensor unit and fuel pump (1)
- Fuel pressure regulator (2)
- Fuel tank temperature sensor (3)

CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
FUEL PUMP RLY	For 1 seconds after turning ignition switch: ONEngine running or cranking	ON
	Except above	OFF

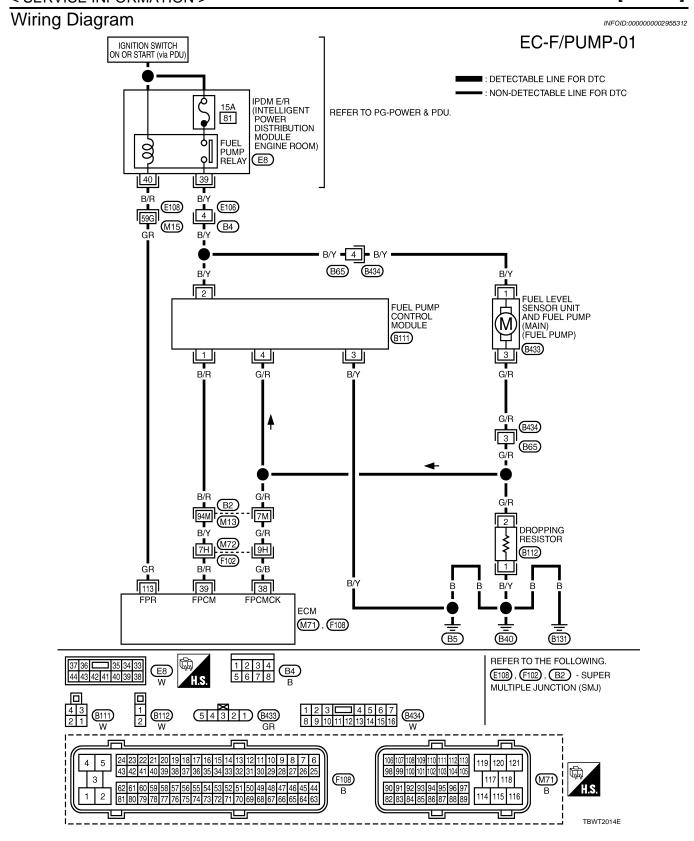
EC

Α

D

Е

F


Н

J

INFOID:0000000002955311

Ν

Р

Specification data are reference values and are measured between each terminal and ground. **CAUTION**:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
38	G/B	Fuel pump control module (FPCM) check	[When cranking engine] [Engine is running] • Warm-up condition • Idle speed	Approximately 0V 4 - 6V
39	B/R	Fuel pump control module (FPCM)	[When cranking engine] [Engine is running] • Warm-up condition • Idle speed	0 - 0.5V 8 - 12V
113 GR	GP	GR Fuel pump relay	[Ignition switch: ON] • For 1 second after turning ignition switch ON [Engine is running]	0 - 1.5V
	GIX		[Ignition switch: ON] • More than 1 second after turning ignition switch ON	BATTERY VOLTAGE (11 - 14V)

Diagnosis Procedure

1. CHECK OVERALL FUNCTION

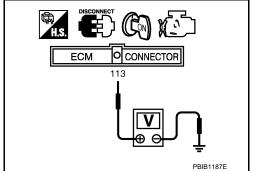
- Turn ignition switch ON.
- Pinch fuel feed hose (1) with two fingers.

Fuel pressure pulsation should be felt on the fuel feed hose for 1 second after ignition switch is turned ON.

OK or NG

OK >> INSPECTION END

NG >> GO TO 2.


2.CHECK FUEL PUMP POWER SUPPLY CIRCUIT-I

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Turn ignition switch ON.
- Check voltage between ECM terminal 113 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 3.

3.CHECK FUEL PUMP POWER SUPPLY CIRCUIT-II

EC-1239 Revision: 2009 February 2008 M35/M45

EC

Α

D

Е

F

Н

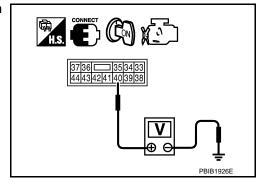
INFOID:0000000002955313

K

M

Ν

0


< SERVICE INFORMATION >

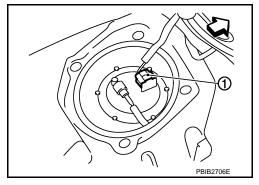
Check voltage between IPDM E/R terminal 40 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 11.

4. DETECT MALFUNCTIONING PART


Check the following.

- Harness connectors E108, M15
- Harness for open or short between IPDM E/R and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

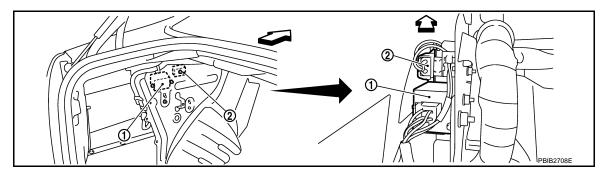
${f 5}$.CHECK FUEL PUMP POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- Reconnect all harness connectors disconnected.
- Disconnect "fuel level sensor unit and fuel pump" harness connector (1).
- Illustration shows the view with rear seat cushion and inspection hole cover (RH) removed.
- <=: Vehicle front
- 4. Turn ignition switch ON.
- 5. Check voltage between "fuel level sensor unit and fuel pump" terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage should exist for 1 second after ignition switch is turned ON.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.


6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E106, B4
- Harness connectors B65, B434
- IPDM E/R connector E8
- 15A fuse
- · Harness for open or short between IPDM E/R and condenser
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK FUEL PUMP GROUND CIRCUIT

- Turn ignition switch OFF.
- 2. Disconnect dropping resistor harness connector.

EC

Α

D

Е

F

K

Ν

: Vehicle front

1. FPCM

2. Dropping resistor

 Check harness continuity between "fuel level sensor unit and fuel pump" terminal 3 and dropping resistor terminal 2, dropping resistor terminal 1 and ground.
 Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9. NG >> GO TO 8.

8. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B65, B434
- Harness for open or short between "fuel level sensor unit and fuel pump" and dropping resistor
- Harness for open or short between dropping resistor and ground

>> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK DROPPING RESISTOR

Refer to EC-1241, "Component Inspection".

OK or NG

OK >> GO TO 10.

NG >> Replace dropping resistor.

10. CHECK FUEL PUMP

Refer to EC-1241, "Component Inspection".

OK or NG

OK >> GO TO 11.

NG >> Replace fuel pump.

11. CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

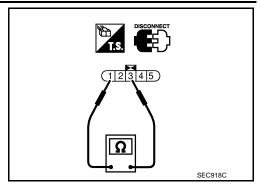
OK or NG

OK >> Replace IPDM E/R.

NG >> Repair or replace harness or connectors.

Component Inspection

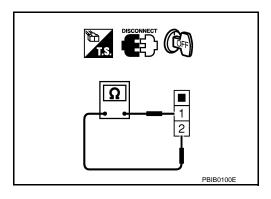
FUEL PUMP


- Turn ignition switch OFF.
- Disconnect "fuel level sensor unit and fuel pump" harness connector.

Revision: 2009 February

INFOID:0000000002955314

3. Check resistance between "fuel level sensor unit and fuel pump" terminals 1 and 3.


Resistance: 0.2 - 5.0 Ω [at 25°C (77°F)]

DROPPING RESISTOR

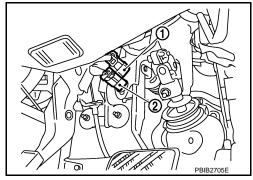
- 1. Turn ignition switch OFF.
- 2. Disconnect dropping resistor harness connector.
- 3. Check resistance between dropping resistor terminals 1 and 2.

Resistance: Approximately 0.9Ω [at 20° C (68°F)]

Removal and Installation

INFOID:0000000002955315

FUEL PUMP Refer to FL-4.


INFOID:0000000002955316

INFOID:0000000002955317

ICC BRAKE SWITCH

Component Description

When the brake pedal is depressed, ICC brake switch (2) is turned OFF and stop lamp switch (1) is turned ON. ECM detects the state of the brake pedal by this input of two kinds (ON/OFF signal). Refer to ACS-9 for the ICC function.

CONSULT-III Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
BRAKE SW1	Ignition switch: ON	Brake pedal: Fully released	ON
(ICC brake switch)	19 Igrillion Switch. ON	Brake pedal: Slightly depressed	OFF
BRAKE SW2	Ignition switch: ON	Brake pedal: Fully released	OFF
(Stop lamp switch)	Igrillion switch. ON	Brake pedal: Slightly depressed	ON

EC

Α

С

D

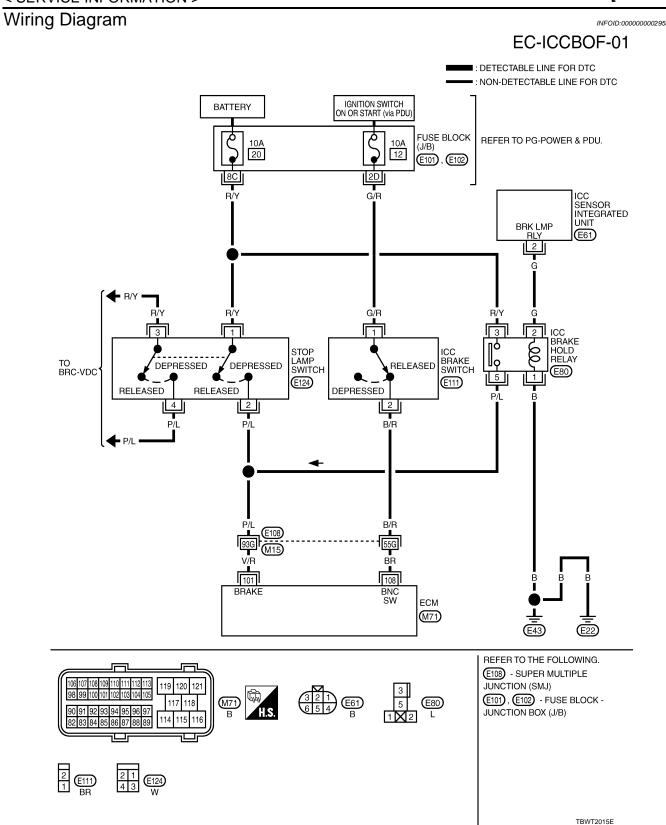
Е

G

F

Н

Κ


L

M

Ν

0

Р

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

< SERVICE INFORMATION >

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
101 V/R	Stop lamp switch	[Ignition switch: OFF] • Brake pedal: Fully released	Approximately 0V	
		[Ignition switch: OFF] • Brake pedal: Slightly depressed	BATTERY VOLTAGE (11 - 14V)	
108 BR	1001 1 1	[Ignition switch: ON] • Brake pedal: Slightly depressed	Approximately 0V	
	DK	BR ICC brake switch	[Ignition switch: ON] • Brake pedal: Fully released	BATTERY VOLTAGE (11 - 14V)

Diagnosis Procedure

1. CHECK OVERALL FUNCTION-I

(II) With CONSULT-III

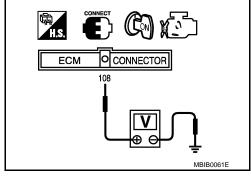
- Turn ignition switch ON.
- 2. Select "BRAKE SW1" in "DATA MONITOR" mode with CONSULT-III.
- Check "BRAKE SW1" indication under the following conditions.

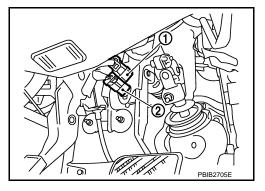
CONDITION	INDICATION
Brake pedal: Slightly depressed	OFF
Brake pedal: Fully released	ON

Without CONSULT-III

- Turn ignition switch ON.
- Check voltage between ECM terminal 108 and ground under the following conditions.

CONDITION	VOLTAGE
Brake pedal: Slightly depressed	Approximately 0V
Brake pedal: Fully released	Battery voltage


OK or NG


OK >> INSPECTION END

NG >> GO TO 2.

2.CHECK ICC BRAKE SWITCH POWER SUPPLY CIRCUIT

- Turn ignition switch OFF.
- 2. Disconnect ICC brake switch (2) harness connector.
- Stop lamp switch (1)
- Turn ignition switch ON.

EC

Α

INFOID:0000000002955319

D

Е

F

Н

K

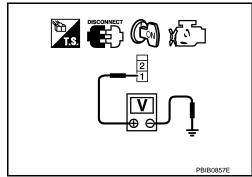
Ν 0

Р

M

EC-1245 Revision: 2009 February 2008 M35/M45

INFOID:0000000002955320


< SERVICE INFORMATION >

 Check voltage between ICC brake switch terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E102
- 10A fuse
- · Harness for open or short between ICC brake switch and fuse

>> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK ICC BRAKE SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ICC brake switch terminal 2 and ECM terminal 108. Refer Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- · Harness for open or short between ICC brake switch and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK ICC BRAKE SWITCH

Refer to EC-1246, "Component Inspection".

OK or NG

OK >> GO TO 7.

NG >> Replace ICC brake switch.

7. CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

>> INSPECTION END

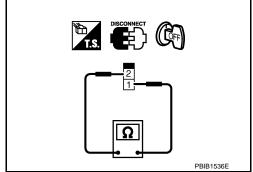
Component Inspection

ICC BRAKE SWITCH

- Turn ignition switch OFF.
- Disconnect ICC brake switch harness connector.

Revision: 2009 February **EC-1246** 2008 M35/M45

ICC BRAKE SWITCH


< SERVICE INFORMATION >

[VK45DE]

3. Check continuity between ICC brake switch terminals 1 and 2 under the following conditions.

Condition	Continuity
Brake pedal: Fully released	Should exist
Brake pedal: Slightly depressed	Should not exist

4. If NG, adjust ICC brake switch installation, refer to <u>BR-6</u>, and perform step 3 again.

Α

EC

С

D

F

Е

G

Н

J

Κ

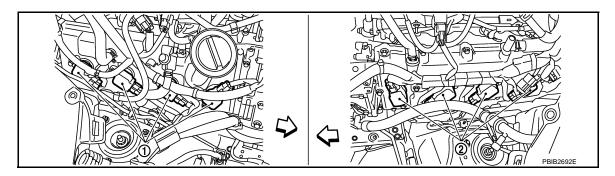
L

M

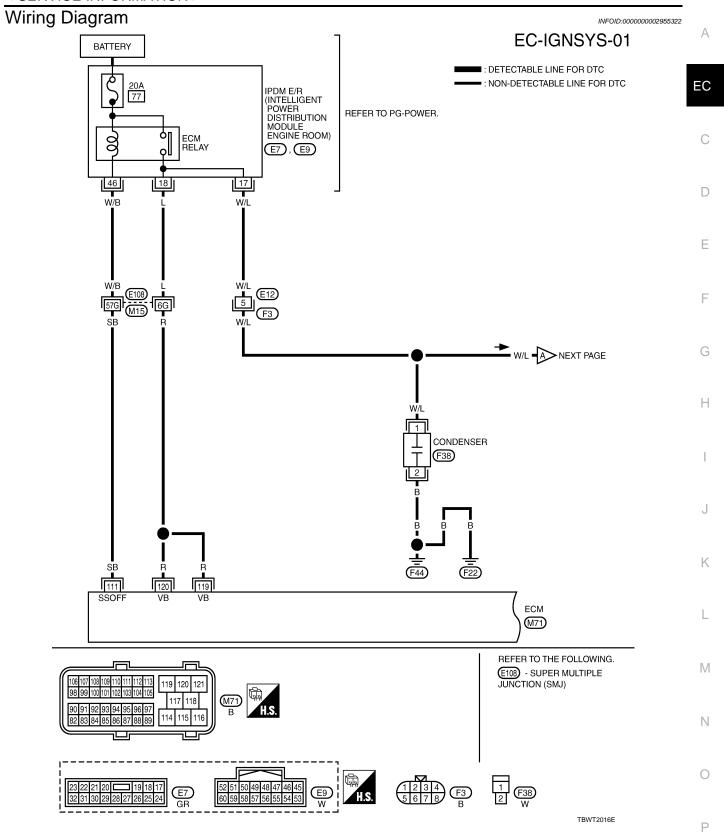
Ν

0

Р


IGNITION SIGNAL

Component Description


INFOID:0000000002955321

IGNITION COIL & POWER TRANSISTOR

The ignition signal from the ECM is sent to and amplified by the power transistor. The power transistor turns ON and OFF the ignition coil primary circuit. This ON/OFF operation induces the proper high voltage in the coil secondary circuit.

- Ignition coil (with power transistor) (bank 2)
- 2. Ignition coil (with power transistor) (bank 1)

Specification data are reference values and are measured between each terminal and ground. **CAUTION**:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

IGNITION SIGNAL

< SERVICE INFORMATION >

[VK45DE]

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
111	111 SB	ECM relay	[Engine is running] [Ignition switch: OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V
		(Self shut-off)	[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
119 120	R R	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

Α

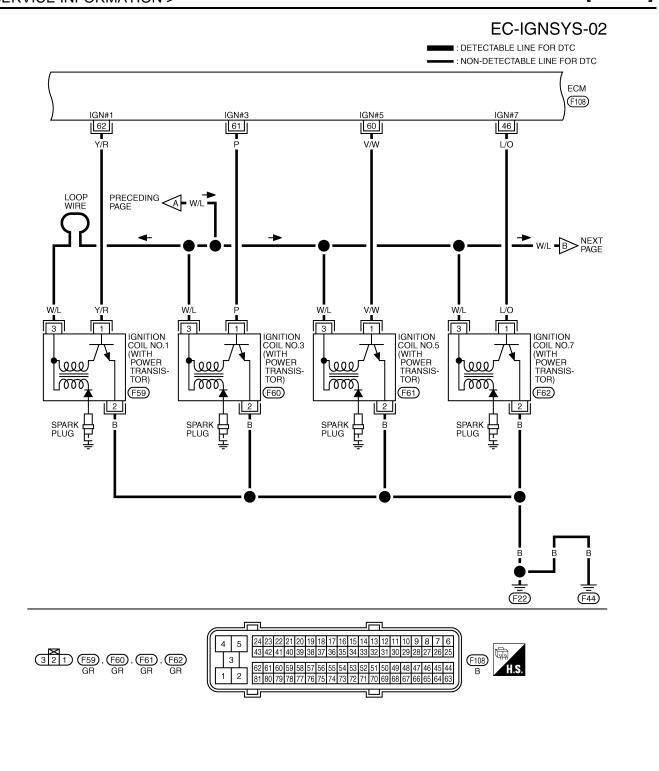
EC

C

D

Е

F


Н

K

M

Ν

Р

TBWT1062E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
46 60	L/O V/W	Ignition signal No. 7 Ignition signal No. 5	 [Engine is running] Warm-up condition Idle speed NOTE: The pulse cycle changes depending on rpm at idle 	0 - 0.2V* 2.0V/Div 50 ms/Div PBIB0044E
61 62	P Y/R	Ignition signal No. 3 Ignition signal No. 1	[Engine is running] • Warm-up condition • Engine speed: 2,000 rpm	0.1 - 0.4V★

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Α

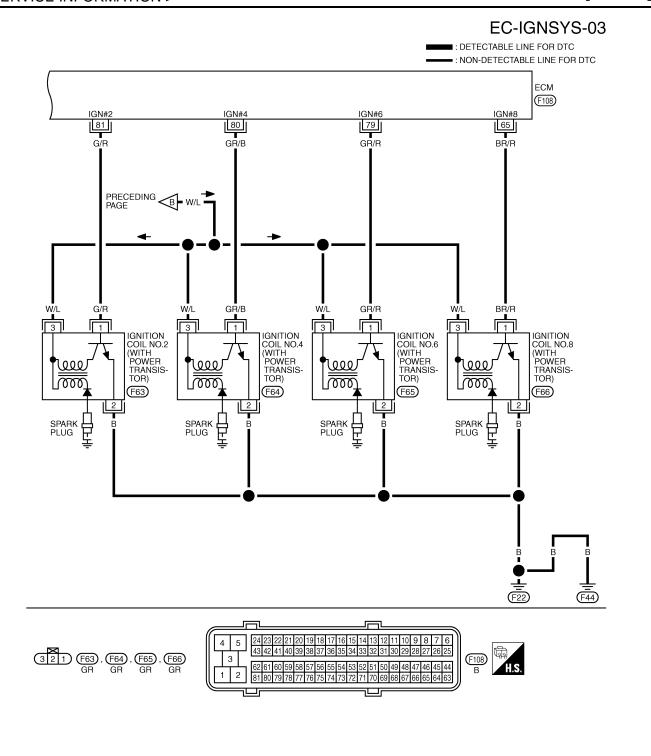
EC

C

D

Е

F


Н

K

M

Ν

Р

TBWT1063E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-III.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
65 79	BR/R GR/R	Ignition signal No. 8 Ignition signal No. 6	[Engine is running] • Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle	0 - 0.2V★
80 81	GR/B G/R	Ignition signal No. 4 Ignition signal No. 2	[Engine is running] • Warm-up condition • Engine speed: 2,000 rpm	0.1 - 0.4√★

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnosis Procedure

INFOID:0000000002955323

1. CHECK ENGINE START

Turn ignition switch OFF, and restart engine.

Is engine running?

Yes or No

Yes (With CONSULT-III)>>GO TO 2.

Yes (Without CONSULT-III)>>GO TO 3.

No >> GO TO 4.

2.check overall function

(P) With CONSULT-III

- 1. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-III.
- 2. Make sure that each circuit produces a momentary engine speed drop.

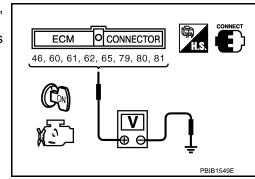
OK or NG

OK >> INSPECTION END

NG >> GO TO 10.

3. CHECK OVERALL FUNCTION

⊗ Without CONSULT-III


- Let engine idle.
- 2. Read the voltage signal between ECM terminals 46, 60, 61, 62, 65, 79, 80, 81 and ground with an oscilloscope.
- 3. Verify that the oscilloscope screen shows the signal wave as shown below.

NOTE:

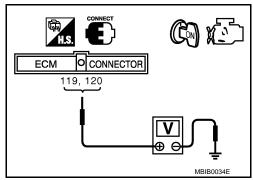
The pulse cycle changes depending on rpm at idle.

OK or NG

OK >> INSPECTION END

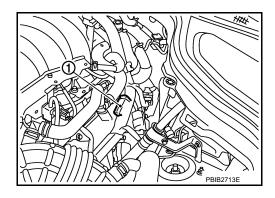
NG >> GO TO 10.

4. CHECK IGNITION COIL POWER SUPPLY CIRCUIT-I


- Turn ignition switch OFF, wait at least 10 seconds and then turn ON.
- Check voltage between ECM terminals 119, 120 and ground with CONSULT-III or tester.

Voltage: Battery voltage

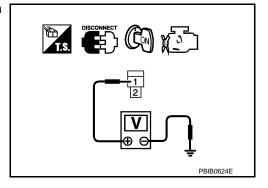
OK or NG


OK >> GO TO 5.

NG >> Go to EC-765, "Diagnosis Procedure".

5. CHECK IGNITION COIL POWER SUPPLY CIRCUIT-II

- Turn ignition switch OFF.
- Disconnect condenser (1) harness connector. 2.
- Turn ignition switch ON.



Check voltage between condenser terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 8. NG >> GO TO 6.

6. CHECK IGNITION COIL POWER SUPPLY CIRCUIT-III

- Turn ignition switch OFF.
- 2. Disconnect IPDM E/R harness connector E7.
- Check harness continuity between IPDM E/R terminal 17 and condenser terminal 1. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> Go to EC-765, "Diagnosis Procedure".

NG >> GO TO 7.

.DETECT MALFUNCTIONING PART

Check the following.

Harness connectors E12, F3

EC-1255 Revision: 2009 February 2008 M35/M45

EC

Α

D

Е

F

Н

K

M

Ν

Р

- · Harness for open or short between IPDM E/R and condenser
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK CONDENSER GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- Check harness continuity between condenser terminal 2 and ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

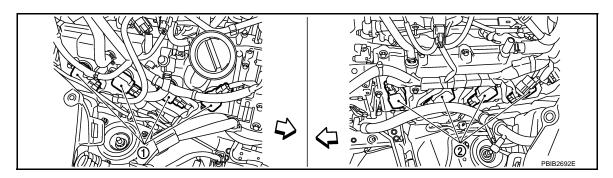
OK or NG

OK >> GO TO 9.

NG >> Repair open circuit or short to power in harness or connectors.

9. CHECK CONDENSER

Refer to EC-1257, "Component Inspection"


OK or NG

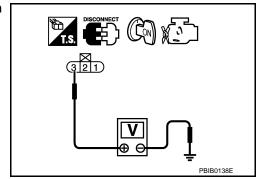
OK >> GO TO 10.

NG >> Replace condenser.

10.check ignition coil power supply circuit-iv

- 1. Turn ignition switch OFF.
- 2. Reconnect all harness connectors disconnected.
- 3. Disconnect ignition coil harness connector.

<br


- Ignition coil (with power transistor) (bank 2)
- 2. Ignition coil (with power transistor) (bank 1)

- 4. Turn ignition switch ON.
- Check voltage between ignition coil terminal 3 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 12. NG >> GO TO 11.

11. DETECT MALFUNCTIONING PART

Check the following.

- Harness connector F3
- Harness for open or short between ignition coil and harness connector F3

IGNITION SIGNAL

< SERVICE INFORMATION >

>> Repair or replace harness or connectors.

12.check ignition coil ground circuit for open and short

- Turn ignition switch OFF.
- 2. Check harness continuity between ignition coil terminal 2 and ground. Refer to Wiring Diagram.

EC

[VK45DE]

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 13.

NG >> Repair open circuit or short to power in harness or connectors.

13.check ignition coil output signal circuit for open and short

- Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminals 46, 60, 61, 62, 65, 79, 80, 81 and ignition coil terminal 1. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 14.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

14. CHECK IGNITION COIL WITH POWER TRANSISTOR

Refer to EC-1257, "Component Inspection".

OK or NG

OK >> GO TO 15.

NG >> Replace ignition coil with power transistor.

15. CHECK INTERMITTENT INCIDENT

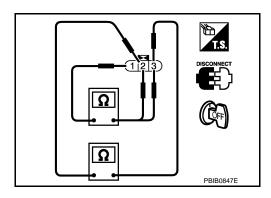
Refer to EC-763, "Diagnosis Procedure".

>> INSPECTION END

Component Inspection

INFOID:0000000002955324

IGNITION COIL WITH POWER TRANSISTOR


CAUTION:

Do the following procedure in the place where ventilation is good without the combustible.

- 1. Turn ignition switch OFF.
- Disconnect ignition coil harness connector.
- Check resistance between ignition coil terminals as follows.

Terminal No. (Polarity)	Resistance Ω [at 25°C (77°F)]
1 and 2	Except 0 or ∞
1 and 3	Except 0
2 and 3	Ελυθρί Ο

- If NG, replace ignition coil with power transistor. If OK, go to next step.
- Turn ignition switch OFF.
- Reconnect all harness connectors disconnected.

Α

D

Е

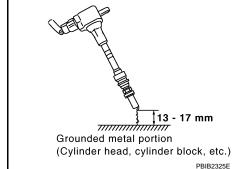
F

Н

K

Ν

Р


< SERVICE INFORMATION >

Remove fuel pump fuse (1) in IPDM E/R (2) to release fuel pressure.

NOTE:

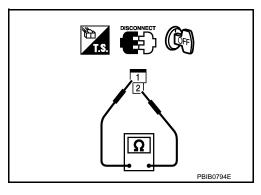
Do not use CONSULT-III to release fuel pressure, or fuel pressure applies again during the following procedure.

- 8. Start engine.
- 9. After engine stalls, crank it two or three times to release all fuel pressure.
- 10. Turn ignition switch OFF.
- 11. Remove all ignition coil harness connectors to avoid the electrical discharge from the ignition coils.
- 12. Remove ignition coil and spark plug of the cylinder to be checked.
- 13. Crank engine for 5 seconds or more to remove combustion gas in the cylinder.
- 14. Connect spark plug and harness connector to ignition coil.
- 15. Fix ignition coil using a rope etc. with gap of 13 17 mm between the edge of the spark plug and grounded metal portion as shown in the figure.
- 16. Crank engine for about 3 seconds, and check whether spark is generated between the spark plug and the grounded metal portion.

Spark should be generated.

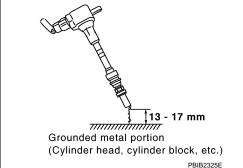
CAUTION:

- Do not approach to the spark plug and the ignition coil within 50cm. Be careful not to get an electrical shock while checking, because the electrical discharge voltage becomes 20kV or more.
- It might cause to damage the ignition coil if the gap of more than 17 mm is taken. NOTE:


When the gap is less than 13 mm, the spark might be generated even if the coil is malfunctioning.

17. If NG, replace ignition coil with power transistor.

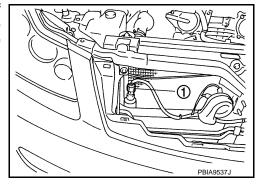
CONDENSER

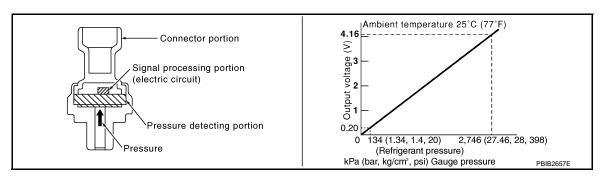

- 1. Turn ignition switch OFF.
- Disconnect condenser harness connector.
- Check resistance between condenser terminals 1 and 2.

Resistance: Above 1 M Ω [at 25°C (77°F)]

Removal and Installation

IGNITION COIL WITH POWER TRANSISTOR Refer to EM-189.


INFOID:0000000002955325


INFOID:0000000002955326

REFRIGERANT PRESSURE SENSOR

Component Description

The refrigerant pressure sensor (1) is installed at the condenser of the air conditioner system. The sensor uses an electrostatic volume pressure transducer to convert refrigerant pressure to voltage. The voltage signal is sent to ECM, and ECM controls cooling fan system.

EC

Α

С

D

Е

F

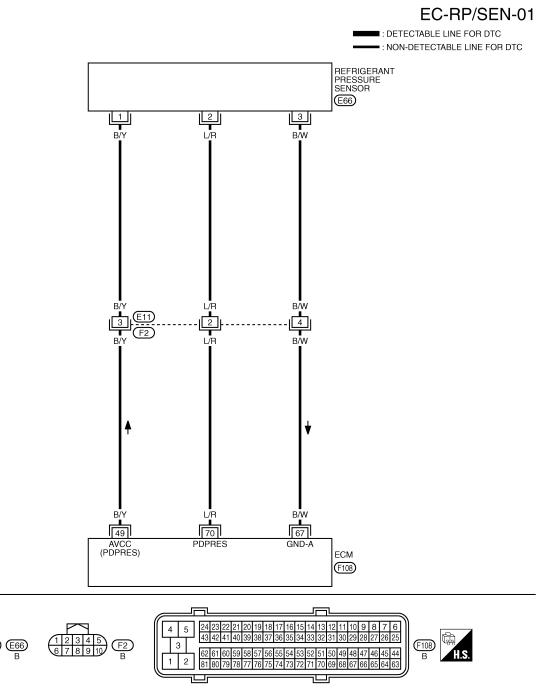
G

Н

-

K

L


M

Ν

0

Р

Wiring Diagram

TBWT1067E

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

REFRIGERANT PRESSURE SENSOR

< SERVICE INFORMATION >

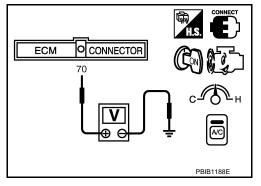
۲	/	k	(4	4	5	D	Ε	1

TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
49	B/Y	Sensor power supply (Refrigerant pressure sensor)	[Ignition switch: ON]	Approximately 5V
67	B/W	Sensor ground (Refrigerant pressure sensor)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
70	L/R	Refrigerant pressure sensor	 [Engine is running] Warm-up condition Both A/C switch and blower fan motor switch: ON (Compressor operates) 	1.0 - 4.0V

Diagnosis Procedure

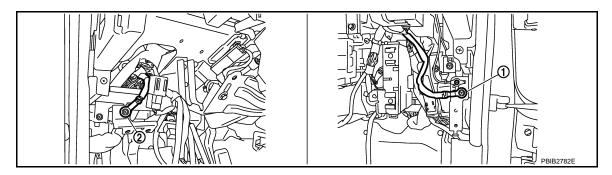
INFOID:0000000002955328

1. CHECK REFRIGERANT PRESSURE SENSOR OVERALL FUNCTION


- Start engine and warm it up to normal operating temperature.
- Turn A/C switch and blower fan switch ON. 2.
- Check voltage between ECM terminal 70 and ground with CON-SULT-III or tester.

Voltage: 1.0 - 4.0V

OK or NG


OK >> INSPECTION END

NG >> GO TO 2.

2. CHECK GROUND CONNECTIONS

- Turn A/C switch and blower fan switch OFF.
- 2. Turn ignition switch OFF.
- Loosen and retighten ground screws on the body. Refer to EC-769, "Ground Inspection".

1. Body ground M70

2. Body ground M16

OK or NG

OK >> GO TO 3.

NG >> Repair or replace ground connections.

3.CHECK REFRIGERANT PRESSURE SENSOR POWER SUPPLY CIRCUIT

EC

Α

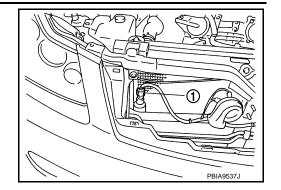
D

Е

F

Н

K

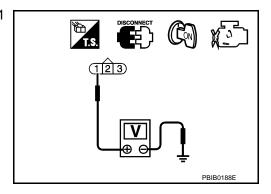

M

Ν

< SERVICE INFORMATION >

[VK45DE]

- Disconnect refrigerant pressure sensor (1) harness connector.
- 2. Turn ignition switch ON.



Check voltage between refrigerant pressure sensor terminal 1 and ground with CONSULT-III or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E11, F2
- Harness for open or short between ECM and refrigerant pressure sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK REFRIGERANT PRESSURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between refrigerant pressure sensor terminal 3 and ECM terminal 67. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E11, F2
- · Harness for open or short between ECM and refrigerant pressure sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

7.CHECK REFRIGERANT PRESSURE SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal 70 and refrigerant pressure sensor terminal 2. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

REFRIGERANT PRESSURE SENSOR

REFRIGERANT PRESSURE SENSOR		
< SERVICE INFORMATION >	[VK45DE]	
OK >> GO TO 9. NG >> GO TO 8.		А
8. DETECT MALFUNCTIONING PART		
Check the following. • Harness connectors E11, F2		EC
Harness for open or short between ECM and refrigerant pressure sensor		
>> Repair open circuit or short to ground or short to power in harness or connectors.		С
9. CHECK INTERMITTENT INCIDENT		
Refer to EC-763, "Diagnosis Procedure".		D
OK or NG		
OK >> Replace refrigerant pressure sensor. NG >> Repair or replace.		Е
Removal and Installation	INFOID:0000000002955329	
REFRIGERANT PRESSURE SENSOR		F
Refer to ATC-151, "Removal and Installation of Refrigerant Pressure Sensor".		
		G
		Н
		1
		J
		K
		L
		M
		Ν
		0
		P

SNOW MODE SWITCH

< SERVICE INFORMATION > [VK45DE]

SNOW MODE SWITCH

Description

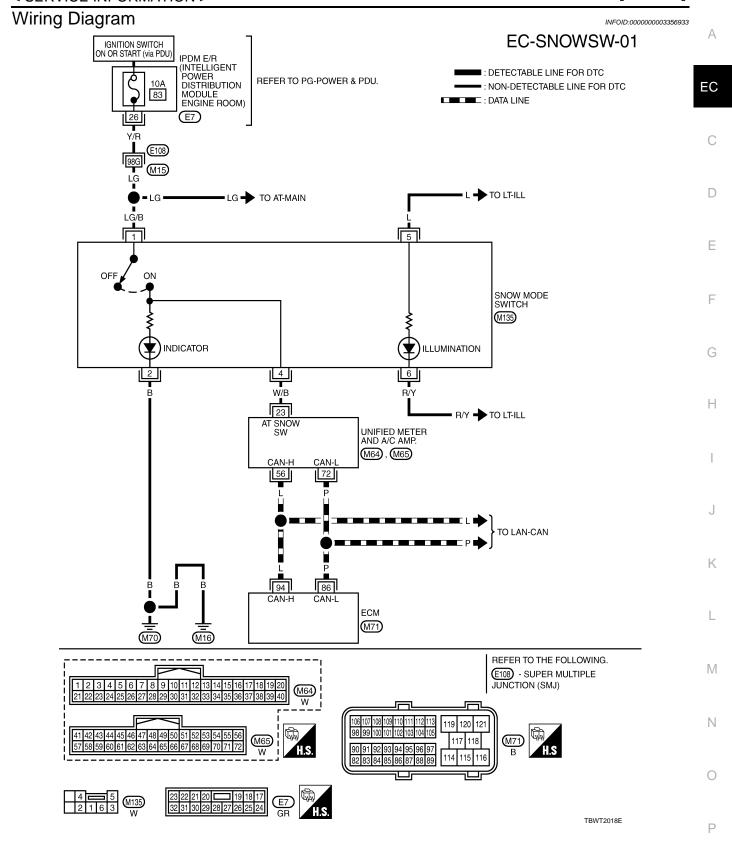
NOTE:

If DTC U1000 or U1001 are displayed, first perform the trouble diagnosis for DTC U1000, U1001.

Refer to EC-770, "DTC Confirmation Procedure".

If DTC U1010 is displayed, first perform the trouble diagnosis for DTC U1010.

Refer to EC-772, "DTC Confirmation Procedure".


The snow mode switch signal is sent to the "unified meter and A/C amp." from the snow mode switch. The "unified meter and A/C amp." then sends the signal to the ECM by CAN communication line.

The snow mode is used for driving or starting the vehicle on snowy roads or slippery areas. If the snow mode is activated, the vehicle speed will not be accelerated immediately than your original pedal in due to avoid the vehicle slip. In other words, ECM controls the rapid engine torque change by controlling the electric throttle control actuator operating speed.

CONSULT-III Reference Value in Data Monitor Mode

MONITOR ITEM	CONDITION		SPECIFICATION
SNOW MODE SW	Ignition switch: ON	SNOW MODE SW: ON	ON
	Ignition switch: ON	SNOW MODE SW: OFF	OFF

INFOID:0000000003356934

Diagnosis Procedure

1. CHECK SNOW MODE SWITICH OVERALL FUNCTION-I

- 1. Turn ignition switch ON.
- 2. Select "SNOW MODE SW" in "DATA MONITOR" mode with CONSULT-III.
- 3. Check "SNOW MODE SW" indication under the following conditions.

< SERVICE INFORMATION >

CONDITION	INDICATION
Snow mode switch: ON	ON
Snow mode switch: OFF	OFF

OK or NG

OK >> GO TO 2. NG >> GO TO 3.

2.CHECK SNOW MODE SWITICH OVERALL FUNCTION-II

- 1. Turn ignition switch ON.
- 2. Start engine.
- 3. Check the snow mode indicator in the snow mode switch under the following condition.

CONDITION	INDICATION
Snow mode switch: ON	ON
Snow mode switch: OFF	OFF

OK or NG

OK >> INSPECTION END

NG >> GO TO 7.

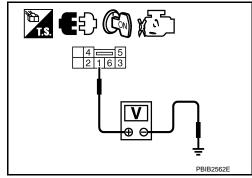
 ${\bf 3.}$ CHECK DTC WITH "UNIFIED METER AND A/C AMP."

Refer to DI-27, "CONSULT-III Function (METER/M&A)".

OK or NG

OK >> GO TO 4.

NG >> Follow the instruction of DI-27, "CONSULT-III Function (METER/M&A)".


4.CHECK SNOW MODE SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect snow mode switch harness connector.
- Turn ignition switch ON.
- Check voltage between snow mode switch terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M15
- IPDM E/R harness connector E7
- 10A fuse
- Harness for open or short between snow mode switch and fuse.

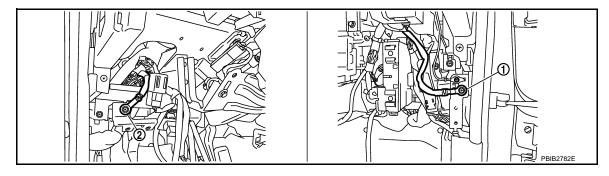
>> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK SNOW MODE SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Disconnect "unified meter and A/C amp." harness connector.
- Check harness continuity between snow mode switch terminal 4 and "unified meter and A/C amp." terminal 23. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.


OK or NG

OK >> GO TO 9.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK GROUND CONNECTIONS

- Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws on the body. Refer to <u>EC-146</u>, "<u>Ground Inspection</u>".

1. Body ground M70

2. Body ground M16

OK or NG

OK >> GO TO 8.

NG >> Repair or replace ground connections.

f 8.CHECK SNOW MODE INDICATOR LAMP GROUND CIRCUIT FOR OPEN AND SHORT

1. Check harness continuity between snow mode switch terminal 2 and ground. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to power.

OK or NG

OK >> GO TO 9.

NG >> Repair open circuit or short to power in harness or connectors.

9. CHECK SNOW MODE SWITCH

Refer to EC-1267, "Component Inspection".

OK or NG

OK >> GO TO 10.

NG >> Replace snow mode switch.

10. CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

>> INSPECTION END

Component Inspection

SNOW MODE SWITCH

EC

Α

D

Е

G

Н

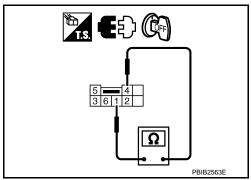
1

K

L

N

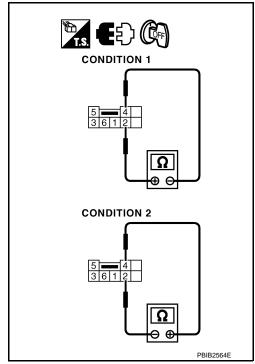
Ν


. .

< SERVICE INFORMATION >

1. Check continuity between snow mode switch terminals 1 and 4 under the following conditions.

CONDITION	CONTINUITY
Snow mode switch: ON	Should exist
Snow mode switch: OFF	Should not exist


2. If NG, replace snow mode switch. If OK, go to following step.

3. Check continuity between snow mode switch terminals 2 and 4 under the following conditions.

CONDITION	CONTINUITY
1	Should exist.
2	Should not exist.

4. If NG, replace snow mode switch.

Α

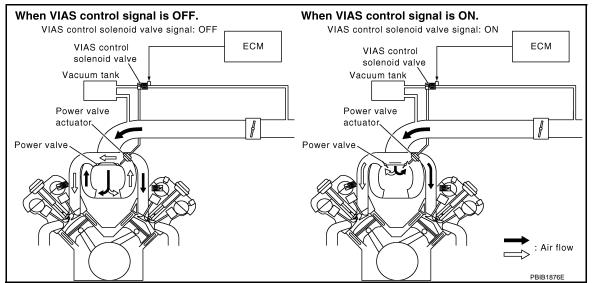
EC

D

Е

F

K


VIAS

Description INFOID:000000002955330

SYSTEM DESCRIPTION

Sensor	Input signal to ECM	ECM function	Actuator	
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed*			
Mass air flow sensor	Amount of intake air		VIAS control solenoid valve	
Throttle position sensor	Throttle position	VIAS control		
Accelerator pedal position sensor	Accelerator pedal position			
Battery	Battery voltage*			
Engine coolant temperature sensor	Engine coolant temperature			

^{*:} The ECM determines the start signal status by the signals of engine speed and battery voltage.

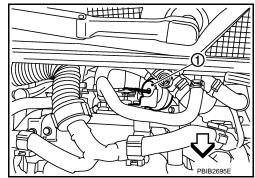
When the engine is running at low or medium speed, the power valve is fully closed. Under this condition, the effective suction port length is equivalent to the total length of the intake manifold collector's suction port including the intake valve. This long suction port provides increased air intake which results in improved suction efficiency and higher torque generation.

The surge tank and one-way valve are provided. When engine is running at high speed, the ECM sends the signal to the VIAS control solenoid valve. This signal introduces the intake manifold vacuum into the power valve actuator and therefore opens the power valve to two suction passages together in the collector.

Under this condition, the effective port length is equivalent to the length of the suction port provided independently for each cylinder. This shortened port length results in enhanced engine output with reduced suction resistance under high speeds.

The power valve is always open regardless of the engine speed when gear position is in N or P.

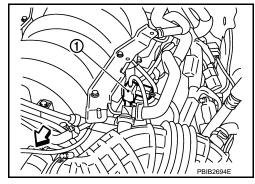
COMPONENT DESCRIPTION


Power Valve

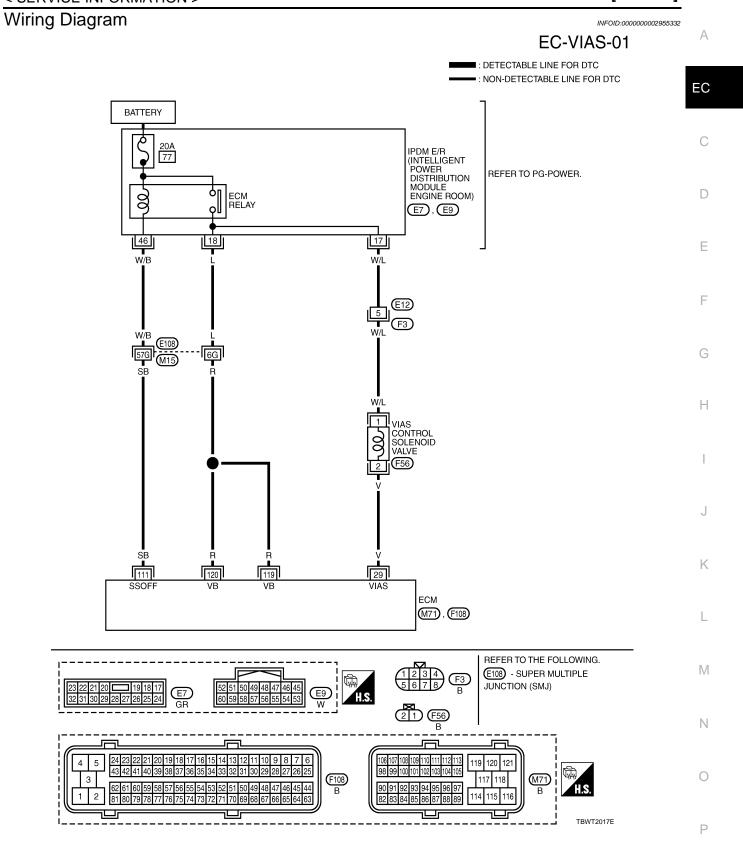
Ρ

Ν

The power valve is installed in intake manifold collector and used to control the suction passage of the variable induction air control system. It is set in the fully closed or fully opened position by the power valve actuator (1) operated by the vacuum stored in the surge tank. The vacuum in the surge tank is controlled by the VIAS control solenoid valve.


• <⊐: Vehicle front

VIAS Control Solenoid Valve


The VIAS control solenoid valve (1) cuts the intake manifold vacuum signal for power valve actuator. It responds to ON/OFF signals from the ECM. When the solenoid is off, the vacuum signal from the intake manifold is cut. When the ECM sends an ON signal the coil pulls the plunger downward and feeds the vacuum signal to the power valve actuator.

• <=: Vehicle front

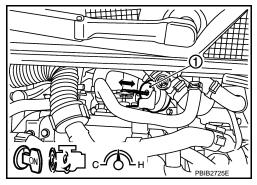
CONSULT-III Reference Value in Data Monitor Mode

MONITOR ITEM	CONDITION	SPECIFICATION
	Selector lever: P or N	ON
VIAS S/V-1	Engine speed: More than 5,000 rpm	ON
	 Selector lever: Except P or N Engine speed: Less than 5,000 rpm 	OFF

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

INFOID:0000000002955333


TER- MI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Engine is running] • Selector lever: P or N	0 - 1.0V
29	V	VIAS control solenoid valve	[Engine is running]Selector lever: DEngine speed: Below 5,000 rpm	BATTERY VOLTAGE (11 - 14V)
			[Engine is running] • Engine speed: Above 5,000 rpm	0 - 1.0V
111	SB	ECM relay	[Engine is running][Ignition switch: OFF]For a few seconds after turning ignition switch OFF	0 - 1.5V
		(Self shut-off)	[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
119 120	R R	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

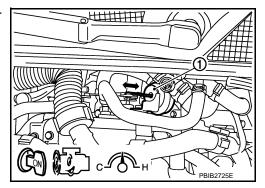
Diagnosis Procedure

1. CHECK OVERALL FUNCTION

(P) With CONSULT-III

- 1. Start engine and warm it up to normal operating temperature.
- Perform "VIAS S/V-1" in "ACTIVE TEST" mode with CONSULT-III.
- 3. Turn VIAS control solenoid valve ON and OFF, and make sure that power valve actuator (1) rod moves.

⋈ Without CONSULT-III


- 1. Lift up the vehicle.
- Start engine and warm it up to normal operating temperature.
- 3. Make sure that power valve actuator (1) rod moves when changing the gear position to N and D alternately.

OK or NG

OK >> INSPECTION END

NG (With CONSULT-III)>>GO TO 2.

NG (Without CONSULT-III)>>GO TO 3.

2. CHECK VACUUM EXISTENCE

(P) With CONSULT-III

Stop engine and disconnect vacuum hose connected to power valve actuator.

Α

EC

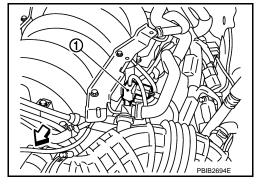
D

Е

- 2. Start engine and let it idle.
- 3. Perform "VIAS S/V-1" in "ACTIVE TEST" mode with CONSULT-III.
- Turn VIAS control solenoid valve ON and OFF, and check vacuum existence under the following conditions.

VIAS S/V-1	Vacuum
ON	Should exist.
OFF	Should not exist.

OK or NG


OK >> Repair or replace power valve actuator.

NG >> GO TO 4.

3. CHECK VACUUM EXISTENCE

⋈ Without CONSULT-III

- 1. Stop engine and disconnect vacuum hose connected to power valve actuator.
- 2. Disconnect VIAS control solenoid valve (1) harness connector.
- <□: Vehicle front
- Start engine and let it idle.

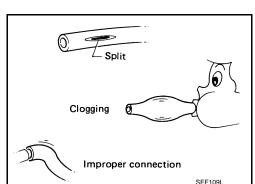
- Apply 12V of direct current between VIAS control solenoid valve terminals 1 and 2.
- 5. Check vacuum existence under the following conditions.

Condition	Vacuum
12V direct current supply	Should exist.
No supply	Should not exist.

OK or NG

OK >> Repair or replace power valve actuator.

NG >> GO TO 4.

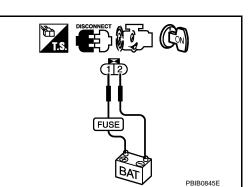

4. CHECK VACUUM HOSE

- Stop engine.
- 2. Check hoses and tubes between intake manifold and power valve actuator for crack, clogging, improper connection or disconnection. Refer to EC-730, "Vacuum Hose Drawing".

OK or NG

OK >> GO TO 5.

NG >> Repair hoses or tubes.


5. CHECK VACUUM TANK

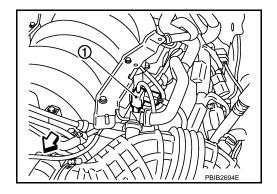
Refer to EC-1275, "Component Inspection".

OK or NG

OK >> GO TO 6.

Revision: 2009 February **EC-1273** 2008 M35/M45

M

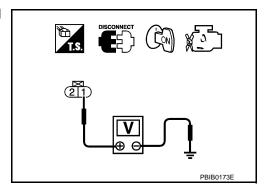

Ν

0

NG >> Replace vacuum tank.

6.CHECK VIAS CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect VIAS control solenoid valve (1) harness connector.
- <□: Vehicle front
- 3. Turn ignition switch ON.



4. Check voltage between VIAS control solenoid valve terminal 1 and ground with CONSULT-III or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E12, F3
- Harness continuity between IPDM E/R and VIAS control solenoid valve
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK VIAS CONTROL SOLENOID VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 29 and VIAS control solenoid valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK VIAS CONTROL SOLENOID VALVE

Refer to EC-1275, "Component Inspection".

OK or NG

OK >> GO TO 10.

NG >> Replace VIAS control solenoid valve.

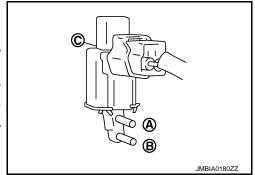
10. CHECK INTERMITTENT INCIDENT

Refer to EC-763, "Diagnosis Procedure".

>> INSPECTION END

Component Inspection

INFOID:0000000002955334


VIAS CONTROL SOLENOID VALVE

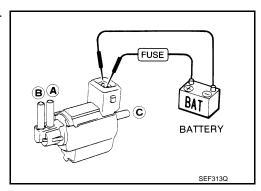
(II) With CONSULT-III

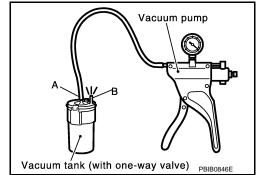
- 1. Reconnect harness connectors disconnected.
- 2. Turn ignition switch ON.
- 3. Perform "VIAS S/V-1" in "ACTIVE TEST" mode.
- 4. Check air passage continuity and operation delay time under the following conditions.

Condition VIAS S/V-1	Air passage continuity between (A) and (B)	Air passage continuity between (A) and (C)
ON	Yes	No
OFF	No	Yes

Operation takes less than 1 second.

(X) Without CONSULT-III


Check air passage continuity and operation delay time under the following conditions.


Condition	Air passage continuity between (A) and (B)	Air passage continuity between (A) and (C)
12V direct current supply between terminals 1 and 2	Yes	No
No supply	No	Yes

Operation takes less than 1 second.

VACUUM TANK

- 1. Disconnect vacuum hose connected to vacuum tank.
- 2. Connect a vacuum pump to the port A of vacuum tank.
- 3. Apply vacuum and make sure that vacuum exists at the port B.

Removal and Installation

VIAS CONTROL SOLENOID VALVE Refer to <u>EM-177</u>.

INFOID:0000000002955335

Revision: 2009 February **EC-1275** 2008 M35/M45

EC

Α

D

Е

F

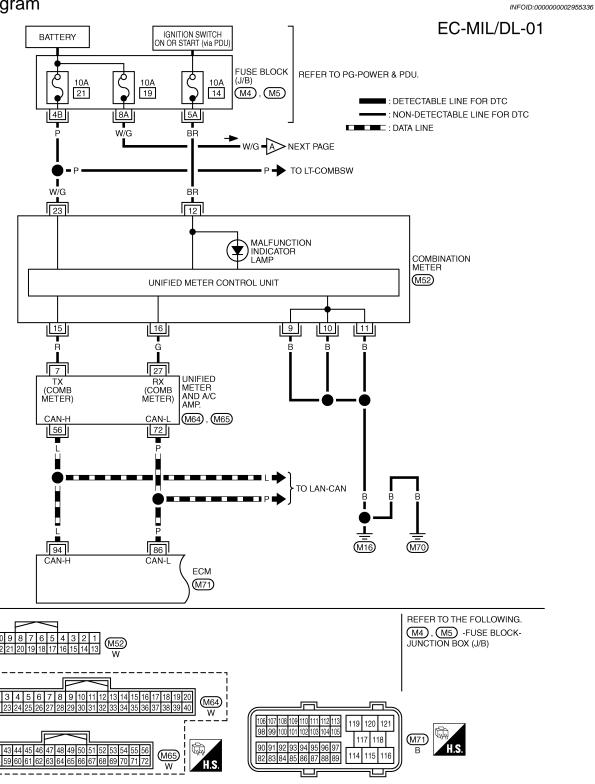
G

Н

|

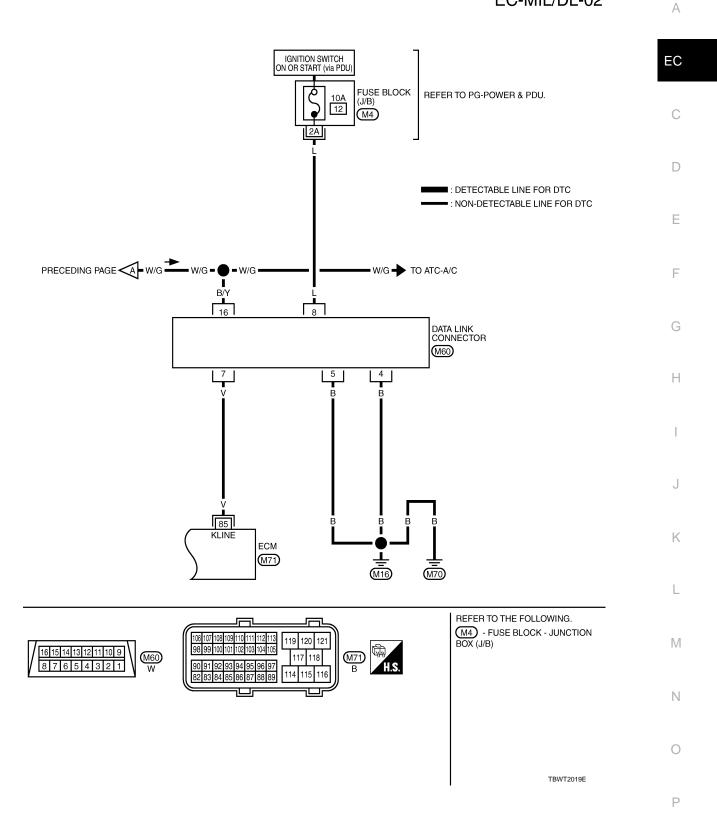
J

K


. .

Ν

. .


MIL AND DATA LINK CONNECTOR

Wiring Diagram

TBWT1508E

EC-MIL/DL-02

SERVICE DATA AND SPECIFICATIONS (SDS)

< SERVICE INFORMATION >

[VK45DE]

SERVICE DATA AND SPECIFICATIONS (SDS)

Fuel Pressure

Fuel pressure at idling kPa (kg/cm ² , psi)	Approximately 350 (3.57, 51)

Idle Speed and Ignition Timing

INFOID:0000000002955338

Target idle speed	No load* (in P or N position)	$650\pm50~\mathrm{rpm}$
Air conditioner: ON	In P or N position	650 rpm or more
Ignition timing	In P or N position	12° ± 5° BTDC

^{*:} Under the following conditions:

- · Air conditioner switch: OFF
- Electric load: OFF (Lights, heater fan & rear window defogger)
- · Steering wheel: Kept in straight-ahead position

Calculated Load Value

INFOID:0000000002955339

Condition	Calculated load value% (Using CONSULT-III or GST)
At idle	14 - 33
At 2,500 rpm	12 - 25

Mass Air Flow Sensor

INFOID:0000000002955340

Supply voltage	Battery voltage (11 - 14V)
Output voltage at idle	0.9 - 1.2V*
Mass air flow (Using CONSULT-III or GST)	2.0 - 6.0 g·m/sec at idle* 7.0 - 20.0 g·m/sec at 2,500 rpm*

^{*:} Engine is warmed up to normal operating temperature and running under no load.

Intake Air Temperature Sensor

INFOID:0000000002955341

Temperature °C (°F)	Resistance kΩ
25 (77)	1.800 - 2.200

Engine Coolant Temperature Sensor

INFOID:0000000002955342

Temperature °C (°F)	Resistance k Ω
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.00
90 (194)	0.236 - 0.260

Fuel Tank Temperature Sensor

Temperature °C (°F)	Resistance k Ω
20 (68)	2.3 - 2.7
50 (122)	0.79 - 0.90

SERVICE DATA AND SPECIFICATIONS (SDS)

< SERVICE INFORMATION >	SPECIFICATIONS (SDS)	[VK45DE]
Crankshaft Position Sensor (POS)		NFOID:0000000002955344
Refer to EC-962, "Component Inspection". Camshaft Position Sensor (PHASE)	Л	NFOID:0000000002955345
Refer to EC-967, "Component Inspection".		
A/F Sensor 1 Heater	И	NFOID:0000000002955346
Resistance [at 25°C (77°F)]	2.3 - 4.3Ω	
Heated Oxygen Sensor 2 Heater		NFOID:0000000002955347
Resistance [at 25°C (77°F)]	5.0 - 7.0Ω	
Throttle Control Motor		NFOID:0000000002955348
Resistance [at 25°C (77°F)]	Approximately 1 - 15Ω	
Fuel Injector		NFOID:0000000002955349
Resistance [at 10 - 60°C (50 - 140°F)]	13.5 - 17.5Ω	
Fuel Pump		NFOID:0000000002955350

Revision: 2009 February **EC-1279** 2008 M35/M45

Ν